
ΣΧΕΔΙΑΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣΑΣΦΑΛΕΙΑΣ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
ΤμήμαΠληροφορικής

Application Threat Modelling

An approach for analyzing the security of an application.

It is a structured approach that enables you to identify, classify,

rate, compare and prioritize the security risks associated with an

application.

Inducing Application Threat Modeling into SDLC process has its

advantages for the security of the entire project.

Threat Modeling Goals

 GOALI: Systematically identifyand ratethe threats thatare

most likely to affect yourapplication.

 GOALII: Address threatswith appropriatecountermeasures

Threat Modeling Goals

To perform Application Threat Modeling use testing

methodologies/techniques/frameworks/methods (e.g. OWASP

testing framework) to identify, STRIDE methodology to Classify

and DREAD methodology to rate, compare and prioritize risks,

based on severity.

Software
Development
Life Cycle
(SDLC)

Security Development Lifecycle
(SDL)

Phase I: Decomposethe
Application

ApplicationArchitecture

External Dependencies

Trust Levels

EntryPoints

Assets

Data FlowDiagrams

Phase II: Determineand
rank threats.

Threat Identification

ThreatCategorization

SecurityControls

ThreatAnalysis

Ranking of Threats(DREAD)

Phase III: Determine
countermeasures and

mitigation

Countermeasure
Identification

MitigationStrategies

Main Phases

Phase I: Decomposethe
Application
• Goal: gain an understandingof the applicationandhow it

interactswith externalentities.

• This goal is achievedby informationgatheringand

documentation.

• The informationgatheringprocess is carriedout usinga

clearly defined structure, which ensures the correct

informationis collected.

Step 1.1. Application
Architecture
• Goal: Identificationof thebasicentities of the application

Examples:

 ApplicationServers

 DatabaseServers

 ApplicationTechnologies

 Applicationversion

 ApplicationOwner

Step 1.2. External
Dependencies
• Goal: Identificationof anyexternaldependenciesof the

application

• Examples:

 Web Servers (e.g.Apache)

 Connectionbetweendatabaseandweb server

 Firewall

 Other applications

Step 1.3. TrustLevels

• Goal: Identify theappropriateaccess rights of the application

entities (actors)

• “The trust levels are cross referenced with the entry points

and assets. This allows us to define the access rights or

privileges requiredateachentrypoint, andthose requiredto

interact with eachasset”

Trust Levels examples
ID Name Description

1 Anonymous WebUser
A user who has connected to the college library website but has notprovided

valid credentials.

2
User with ValidLogin

Credentials

A user who has connected to the college library website andhas loggedin using

valid login credentials.

3
User with InvalidLogin

Credentials

A user who has connected to the college library website and is attemptingto

log in using invalid logincredentials.

4 Librarian
The librarian can create users on the library website andview their personal

information.

5
DatabaseServer

Administrator

Thedatabase server administrator has read and write accessto the database

that is used by thewebsite.

6 Website Administrator The Website administrator can configure the website.

7 DatabaseRead User The database user account used toaccess the database for read access.

8
DatabaseRead/Write

User

The database user account used to access the database for readand write

access.

Step 1.4. EntryPoints

• Goal: Identify the entry points through which a potential

attackercould interactwith the applicationor gain access to

data

• Examples:

 HTTPSPort

 Main page: Thesplashpage for the websiteis the entrypoint

for allusers.

 Login Function: The login function accepts user supplied

credentialsandcomparesthemwith those in the database.

 Search EntryPage: Thisfunctionality allowsusers to enter a

searchquery.

Step 1.5. Assets

• Goal: identify the critical assets (physicalandabstract

assets). Applicationinformation that theattacker is

interestedin

• Examples:

 Availability of the application

 User LoginDetails

 User PersonalData

 Access to the DatabaseServer

 Login Session

 Reputationof the organization

Step 1.6. Data FlowDiagrams

• Goal: better understandtheapplicationprocesses andworkflow

• Basic DFDs shapes:
 External Entity: user (actor), otherapplication
 Process:basicapplicationprocess thathandles data(reads or writes data)

 Multiple process: this shaperepresents a collection of sub processes
 DataStore:Thedatastore shape is used to represent locations wheredata

is stored.
 DataFlow:This shape represents datamovementwithinthe application
 Privilege Boundary: The privilegeboundary shapeis used to represent the

changeof privilege levels as the dataflows through the application.

DFDExample
• “Search and View user list” byApplication

Admin Use Case
1. Application Admin clicks “User Management”

link
2. The User Management page isdisplayed
3. Application Admin enters search criteria and

click “Submit”
4. Application Admin is able to view the userslist

based on the requested search criteria

5. Application Admin is able to click the “Details”
button for a specific user (in order to see the
selected user details)

6. Application Admin is able to click the “print”
button (in order to print the list)

7. Application Admin is able to click the “Export”
button (in order to export the list)

8. Application Admin is able to click the “Add”
button (in order to add a newuser)

9. Application Admin is able to click the “Delete”
button for a specific user (in order to delete
the user)

Phase II: Determine andrank
threats.
• Goal: Identify and ranking threats

 Identify Threats

 Identify Possible Weaknesses

 Identify Security Controls

 Ranking Threats

Step 2.1. Threat Identification

• How can the malicious
actor use ormanipulate
the asset to:

 Modify or control the
application?

 Retrieve information
within theapplication?

 Manipulateinformation
within theapplication?

 Cause the application to
fail or becomeunusable?

 Gain additional rights?

• Can a malicious actor
access the application
asset:

 Without beingaudited?

 And skipany access
controlchecks?

 And appear tobe
another user?

Source: SANS Institute-ThreatModeling:AProcessToEnsureApplication Security

Step 2.2. Threat Categorization

 Categorizingthreatsmakes it easierto understand whatthethreats
allowan attackerto do andaids inassigningpriority

 The threatcategorizationisperformedbasedon theSTRIDE model:
o Spoofing: Threat action aimed to illegally access and use another

user's credentials, such as username and password

o Tampering: Threat action aimed to maliciously change/modify
persistent data, such as persistent data in a database, and the
alteration of data in transit between two computers over anopen
network, such as theInternet

o Repudiation: Threat action aimed to perform illegal operations in a
system that lacks the ability to trace the prohibited operations

o Information Disclosure:Threataction to read a file thatone was not
granted access to, or to read data intransit

o Denial of Service: Threat aimed to deny access to valid users, suchas
by making a web server temporarily unavailable orunusable

o Elevationof privilege: Threat aimed to gain privileged access to
resources for gaining unauthorized access to information or to
compromise a system

Threats by Application Vulnerability
Category

Category Threats

Input validation Buffer overflow; cross-site scripting; SQL injection; canonicalization

Authentication Network eavesdropping; brute force attacks;dictionary attacks; cookie replay;

credential theft

Authorization Elevation of privilege; disclosure of confidential data; data tampering; luring

attacks

Configuration

management

Unauthorized access to administration interfaces; unauthorized access to

configuration stores; retrieval of clear text configuration data; lack of individual

accountability; over-privileged process and service accounts

Sensitive data Access sensitive data in storage; network eavesdropping; data tampering

Session management Session hijacking; session replay; man in the middle

Cryptography Poor key generation or key management; weak or custom encryption

Parameter

manipulation

Query string manipulation; form field manipulation; cookie manipulation; HTTP

header manipulation

Exception

management

Information disclosure; denial of service

Auditing and logging User denies performing an operation; attacker exploits an application without

trace; attacker covers his or her tracks

Step 2.3. Security Controls

 The primary goal of the code review is to ensure that

appropriatecontrolsarein placeand work properlyin order to

mitigate the identifiedthreats

 Detailed check listwith security controlsshouldbe prepared

by taking into account the ASVS (Application Security

VerificationStandard)

ASVS (Application Security
Verification Standard) Domains
 Secure Software

Development Lifecycle

 Authentication
Architecture

 Access Control
Architecture

 Input and Output
Architecture

 Cryptographic
Architecture

 Errors, Logging and
Auditing Architecture

 Data Protection and
Privacy Architecture

 Communications
Architecture

 Malicious Software
Architecture

 Business Logic
Architecture

 Configuration
Architecture

Secure Software Development
Lifecycle
 Verify the use of a secure software development lifecycle that addresses

security in all stages of development.

 Verify the use of threat modeling for every design change or sprint

planning to identify threats, plan for countermeasures, facilitate

appropriate risk responses, and guide security testing.

 Verify documentation and justification of all the application's trust

boundaries, components, and significant data flows.

 Verify definition and security analysis of the application's high-level

architecture and all connected remote services

 Verify implementation of centralized, simple (economy of design), vetted,

secure, and reusable security controls to avoid duplicate, missing,

ineffective, or insecure controls

 Verify availability of a secure coding checklist, security requirements,

guideline, or policy to all developers and testers.

Authentication Architecture

 Verify the use of unique or special low-privilege operating system

accounts for all application components, services, and servers.

 Verify that communications between application components, including

APIs, middleware and data layers, are authenticated. Components should

have the least necessary privileges needed.

 Verify that the application uses a single vetted authentication mechanism

that is known to be secure, can be extended to include strong

authentication, and has sufficient logging and monitoring to detect

account abuse or breaches.

 Verify that all authentication pathways and identity management APIs

implement consistent authentication security control strength, such that

there are no weaker alternatives per the risk of the application.

Access Control Architecture

 Verify that trusted enforcement points, such as access control gateways,

servers, and serverless functions, enforce access controls.

 Verify the application uses a single and well-vetted access control

mechanism for accessing protected data and resources. All requests must

pass through this single mechanism to avoid copy and paste or insecure

alternative paths.

 Verify that attribute or feature-based access control is used whereby the

code checks the user's authorization for a feature/data item rather than

just their role. Permissions should still be allocated using roles

Input and Output Architecture

 Verify that input and output requirements clearly define how to handle

and process data based on type, content, and applicable laws,

regulations, and other policy compliance.

 Verify that serialization is not used when communicating with untrusted

clients. If this is not possible, ensure that adequate integrity controls (and

possibly encryption if sensitive data is sent) are enforced to prevent

deserialization attacks including object injection.

 Verify that input validation is enforced on a trusted service layer

Cryptographic Architecture

 Verify that there is an explicit policy for management of cryptographic

keys and that a cryptographic key lifecycle follows a key management

standard.

 Verify that consumers of cryptographic services protect key material and

other secrets by using key vaults or API based alternatives.

 Verify that all keys and passwords are replaceable and are part of a well-

defined process to re-encrypt sensitive data.

 Verify that the architecture treats client-side secrets--such as symmetric

keys, passwords, or API tokens--as insecure and never uses them to

protect or access sensitive data.

Errors, Logging and Auditing
Architecture
 Verify that a common logging format and approach is used across the

system

 Verify that logs are securely transmitted to a preferably remote system
for analysis, detection, alerting, and escalation

Data Protection and Privacy
Architecture
 Verify that all sensitive data is identified and classified into protection

levels.

 Verify that all protection levels have an associated set of protection

requirements, such as encryption requirements, integrity requirements,

retention, privacy and other confidentiality requirements, and that these

are applied in the architecture.

Communications Architecture

 Verify the application encrypts communications between components,

particularly when these components are in different containers, systems,

sites, or cloud providers.

 Verify that application components verify the authenticity of each side in

a communication link to prevent person-in-the-middle attacks.

Malicious Software Architecture

 Verify that a source code control system is in use, with procedures to

ensure that check-ins are accompanied by issues or change tickets. The

source code control system should have access control and identifiable

users to allow traceability of any changes.

Business Logic Architecture

 Verify the definition and documentation of all application components in

terms of the business or security functions they provide.

 Verify that all high-value business logic flows, including authentication,

session management and access control, do not share unsynchronized

state

 Verify that all high-value business logic flows, including authentication,

session management and access control are thread safe and resistant to

time-of-check and time-of-use race conditions

Configuration Architecture

 Verify the segregation of components of differing trust levels through

well-defined security controls, firewall rules, API gateways, reverse

proxies, cloud-based security groups, or similar mechanisms

 Verify that binary signatures, trusted connections, and verified endpoints

are used to deploy binaries to remote devices.

 Verify that the build pipeline warns of out-of-date or insecure components

and takes appropriate actions.

 Verify that the build pipeline contains a build step to automatically build

and verify the secure deployment of the application, particularly if the

application infrastructure is software defined, such as cloud environment

build scripts.

 Verify that application deployments adequately sandbox, containerize

and/or isolate at the network level to delay and deter attackers from

attacking other applications, especially when they are performing

sensitive or dangerous actions such as deserialization.

Step 2.4. Threat Analysis

 Threat trees shouldbepreparedforeachidentified threat

 Identificationof vulnerabilitiesforeach threat

Vulnerabilitiesexamples:

o SQL injection

oWeak encryptionalgorithms

o CrossSite Scripting / HTML injection

o Browsercaches sensitiveinformation

o Lack of passwordcomplexityenforcement.

o Failureto validate cookie input.

Step 2.5. Ranking ofThreats
(DREAD)

Step 2.5. Ranking ofThreats
(DREAD)
 Damage: How big would the damagebe if the attack

succeeded?

 Reproducibility: How easy is it to reproduceanattackto

work?

 Exploitability: How much time, effort,andexpertiseis needed

to exploit thethreat?

 Affected Users: If a threatwere exploited,whatpercentageof

userswouldbe affected?

 Discoverability: How easy is it for an attackerto discoverthis

threat?

Damage Potential

If a threat exploit occurs, how much damage will be caused?

0 = Nothing

3 = Individual user data is compromised, affected or

availability denied

5 = All individual tenant data is compromised, affected or

availability denied

7 = All tenant data is compromised, affected or availability

denied

7 = Availability of a specific cloud controller

components/service is denied

8 = Availability of all cloud controller components is denied

9 = Underlying cloud management and infrastructure data

is compromised or affected

10 = Complete system or data destruction, failure or

compromise

Reproducible

How easy is it to reproduce the threat exploit?

0 = Very hard or impossible, even for administrators. The

vulnerability is unstable and statistically unlikey to be

reliably exploited

5 = One or two steps required, tooling / scripting readily

available

10 = Unauthenticated users can trivially and reliably

exploit using only a web browser

Exploitability

What is needed to exploit this threat?

0 = N/A We assert that every vulnerability is exploitable,

given time and effort. All scores should be 1-10

1 = Even with direct knowledge of the vulnerability we do

not see a viable path for exploitation

2 = Advanced techniques required, custom tooling. Only

exploitable by authenticated users

5 = Exploit is available/understood, usable with only

moderate skill by authenticated users

7 = Exploit is available/understood, usable by non-

authenticated users

10 = Trivial - just a web browser

Affected Users

How many users will be affected?

0 = None

2.5 individual/employer that is already compromised.

6 = some users of individual or employer privileges, but not

all.

8 = Administrative users

10 = All users

Discoverability

How easy is it to discover this threat?

0 = Very hard to impossible to detect even given access to

source code and privilege access to running systems

5 = Can figure it out by guessing or by monitoring network

traces

9 = Details of faults like this are already in the public

domain and can be easily discovered using a search engine

10 = The information is visible in the web browser address

bar or in a form

Rate, Compare and Prioritize
Threats

DREAD score:

(Damage + Reproducibility+Exploitability +AffectedUsers +Discoverability)

/5= RISK

0-3 as "Trivial, fix in next release“,

4-7 as “Important, fix as a priority“,

8-10 may be "Critical, fix immediately".

Phase III: Determine
countermeasures andmitigation

• Goal: Identify theappropriatecountermeasureanddetermine

the effective mitigationstrategies

Threat Countermeasures

Spoofing user identity Use strong authentication.

Do not store secrets (for example, passwords) in plaintext.

Do not pass credentials in plaintext over the wire.

Protect authentication cookies with Secure Sockets Layer (SSL).

Tampering with data Use data hashing and signing.

Use digital signatures.

Use strong authorization.

Use tamper-resistant protocols across communication links.

Secure communication links with protocols that provide

message integrity.

Repudiation Create secure audit trails.

Use digital signatures.

Information disclosure Use strong authorization.

Use strong encryption.

Secure communication links with protocols that provide

message confidentiality.

Do not store secrets (for example, passwords) in plaintext.

Denial of service Use resource and bandwidth throttling techniques.

Validate and filter input.

Elevation of privilege Follow the principle of least privilege and use least privileged

service accounts to run processes and access resources.

Step 3.1. Countermeasure
Identification
• Purpose:Determinethe protectivemeasures inorderto mitigate

each identifiedthreat

• Countermeasuresare basedon theASVS (ApplicationSecurity
Verification Standard)requirements

• Threedifferentchoices arepossible:

 Non mitigatedthreats:Threats which have no countermeasures and
represent vulnerabilities that can be fully exploited and cause an
impact

 Partially mitigated threats: Threats partially mitigated by one or
more countermeasures which represent vulnerabilities that can only
partially be exploited and cause a limitedimpact

 Fully mitigated threats: These threats have appropriate
countermeasures in place and do not expose vulnerability and cause
impact

Step 3.2. MitigationStrategies

 The decision of which strategy is most appropriate dependson:
 the impactan exploitation of a threatcan have,
 the likelihood of itsoccurrence,
 and the costs for transferring (i.e. costs for insurance) or avoiding (i.e. costs

or lossesdue redesign) it.

Decision is based on the risk a threat poses to the application

 Possible mitigationStrategies
 Do nothing: noaction
 Inform about the risk: forexample, warninguser population about the risk
 Mitigate therisk: forexample, by puttingcountermeasures in place

 Accept therisk: forexample, after evaluatingthe impactof the exploitation
(business impact)

 Transfer the risk: for example, through contractualagreements and
insurance

 Terminatetherisk: forexample, shutdown, turn-off, unplugor decommission
the asset

Useful tools

 SDL ΤhreatModeling:

• http://www.microsoft.com/en-

us/download/details.aspx?id=2955

 MicrosoftThreatModelingTool2014:

• http://www.microsoft.com/en-

us/download/details.aspx?id=42518

http://www.microsoft.com/en-
http://www.microsoft.com/en-

References

• https://www.owasp.org/index.php/Application_Threat_Model

ing

• http://msdn.microsoft.com/en-us/library/ff649779.aspx

• http://msdn.microsoft.com/en-us/library/ff648866.aspx

• http://msdn.microsoft.com/en-us/library/ff647894.aspx

• https://www.sans.org/reading-

room/whitepapers/securecode/threat-modeling-process-

ensure-application-security-1646

• https://www.owasp.org/images/5/58/OWASP_ASVS_Version_

2.pdf

http://www.owasp.org/index.php/Application_Threat_Model
http://msdn.microsoft.com/en-us/library/ff649779.aspx
http://msdn.microsoft.com/en-us/library/ff648866.aspx
http://msdn.microsoft.com/en-us/library/ff647894.aspx
http://www.sans.org/reading-
http://www.owasp.org/images/5/58/OWASP_ASVS_Version_

ΣΧΕΔΙΑΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣΑΣΦΑΛΕΙΑΣ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑΠΛΗΡΟΦΟΡΙΚΗΣ

Thankyou

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
ΤμήμαΠληροφορικής

