
WEBAPPLICATION
ARCHITECTURE

ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΣΦΑΛΕΙΑΣ (ΤΕΔΑ) - ΠΜΣ ΠΡΟΗΓΜΕΝΑ
ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΡ. ΚΑΡΑΝΤΖΙΑΣ ΘΑΝΟΣ

Topics

• High	Level	Web	Architecture
• Static	Content
• Dynamic	Content
• Session	Management
• Authentication
• Authorization
• Storage

High	Level	Architecture

Static	Content Dynamic	Content

Dynamic	Client	
Code

Session	
Management

Authentication Authorization

Storage

HTTP	
Requests	&	Responses

Static	Content

• Images (company logos, etc)

• Style-sheets

• Client libraries

• It can often be cached and pre-fetched,

• (Depending on the actual content) It can still require authentication
and be subject to authorization rules, making it unfit for caching

Dynamic	Client	Code

• Complex and interactive web applications generate user-specific
content

• It needs to be processed or displayed at the client side

• It is considered dynamic client code, since it is dynamically
generated at the server-side, but executed at the client

• Dynamic client code typically contains sensitive information, and
should not be cached

Dynamic	Server	Code

• The business logic of a web application is considered dynamic code

• It is responsible for retrieving information and processing requests,
often in close conjunction with backend storage mechanisms

• The business logic of an application is typically closely coupled with
authentication and authorization, and is almost always combined
with static content

Session	Management

• Web applications have the possibility to share state among requests
(such as the authentication status of the user, or a shopping cart
with items to purchase, etc.)

• Session management is a crucial component for any dynamic web
application

• It is required by components such as the business logic,
authentication or authorization

Session	Management	Solutions
With Authorization Header
• Session management can be implemented on top of the

Authorization header
• The browser sends the user’s credentials on every request
• The server keeps track of the user sending the request, implicitly

defining a session
• It does not require the use of a session identifier, but it uses the

credentials of the user to identify the correct server-side session
state

NOTE: The user’s credentials have to be sent on every request
NOTE: This approach does not support anonymous sessions when a
user is not yet authenticated (e.g., a shopping cart on a web shop)
NOTE: There is a lack of integration of the authentication prompt with
the layout of the application

Session	Management	Solutions
With Authorization Header

Session	Management	Solutions
With Cookies
• When the server wants to initiate a session with the browser

• it generates a new session identifier
• It associates it with the server-side session object
• It sends the session identifier to the browser using the Set-Cookie response

header
• The server-side session object is typically referred to using a Session

Identifier (SID)
• When the client presents a valid SID, the server automatically assumes

that the request belongs to this session
NOTE: A SID should be sufficiently long, random and unique, in order to
avoid collisions, guessing attacks or brute forcing.
NOTE: Most web development languages and frameworks offer out-of-
the-box support for session management, and developers are strongly
encouraged to use them instead of rolling out their own session
management mechanisms

Session	Management	Solutions
With Cookies

Session	Management	Solutions

SSO With Cookies

Session	Management	Solutions

With URI Parameters
• The session identifier can be embedded as a parameter in the URI
• It enables the same session management techniques, with the

delivery mechanism of the SID as the only difference
NOTE: The session identifier needs to be present in the URI, requiring
the server to rewrite every URI in the response to include the correct
SID. This URI rewriting is especially problematic for web applications
that generate URIs at the client side, for JavaScript-based retrieval of
information.
NOTE 2: Embedding a parameter in the URI can cause unintentional
leaking of the SID through the Referrer header

Session	Management	Solutions
Windows Example
• Windows gives a SID to every logon session
• If the user logs out and logs back in again, he will be attributed

a new Logon SID
• If the same user is logged locally and logged on remotely at

the same, there will be a different Logon SID for each logon
session

Authentication

• Modern web applications offer access to large amounts of
information (typically user-specific information, making
authentication an important component within the web application)

• The authentication procedure allows a user to identify himself to the
web application, enabling access to the protected features of the
application

NOTE: The stateless nature of HTTP couples authentication with
session management, in order to maintain the authentication state
across requests.

Authentication	Mechanisms

With a username and password
• Upon first registration with a web

application, a username and
password can be chosen or are
given

• Future authentications depend on
the knowledge of these credentials

• The username and password are
stored by the web application
(typically in a database)

Authentication	Mechanisms

With a client certificate
• Is used to create a secure (e.g. SSL/TLS) connection, where both client

and server are authenticated with their certificates

• The server verifies whether the client certificate is valid (e.g., has a
valid signature by an expected CA), and can extract user-specific
information from the certificate

• Client certificates can be explicitly installed in the browser, or can be
used in combination with electronic identity cards or other smartcards

Authentication	Mechanisms

With a client certificate

Authentication	Mechanisms

Through a third-party authentication provider
• A web application simply directs the user to the authentication

provider (e.g. OpenID, Google, Facebook)
• The provider takes care of the whole authentication process
• After a successful authentication, the application receives some

evidence of the authentication, together with the user’s details
• The exact details depend on the implementation and user’s

configuration, but typically include a username, a name, an email
address, etc.

Authentication	Mechanisms
Through a third-party
authentication provider

Authentication	Mechanisms
Through a third-party
authentication provider

Authentication	Mechanisms

With Multi-factor authentication
• Multi-factor authentication no longer depends on a single secret
• It requires multiple authentication factors to complete the process

(e.g. two-factor authentication, with username and password
authentication on one hand, and a token sent to your cellphone on
the other hand)

• Preferably, each factor uses a different channel, hardening the
process against a single way of stealing credentials

Authentication	Mechanisms

With Multi-factor
Authentication

Authentication	Mechanisms

With Multi-factor Authentication

Authentication	Models

Authentication

LDAP
Authentication

API

Portal

Database Database

Portal

LDAP

Based on Portal API

Authentication	Models

SSO
Authentication

API

Database

Portal

LDAP

SSO

Based on Portal API & SSO Server

Authentication	Models

SSO
Authentication

API

Database

Portal

LDAP

SSO Other IdMs

Based on IDM Solutions

Authentication	Models

SSO
Authentication

API

Database

Portal

LDAP

SSO

Other IdMs

Third Party System

Federated
Authentication

Based on Third Parties

OpenIDProtocol

Web	Application
(OpenID Consumer)

OpenID URL

OpenID Provider

1

3

2

5

4

6

7

User	Posts	OpenID URL1

Discover	Provider2

Generated	Shared	Secret3

Redirected	to	Provider4

User	Logs	into	Provider5

Redirect	to	Consumer6
Post	result	of	Login	&	Simple	
Registration	Info7

Kerberos

Kerberos
• a protocol for authentication
• uses tickets to authenticate
• avoids storing passwords locally or sending them over the

internet
• involves a trusted 3rd-party
• built on symmetric-key cryptography
A user owns a ticket (proof of identity encrypted with a secret key for
the particular service requested – on the local machine)

As long as it’s valid, the user is able to access the requested service
that is within a Kerberos realm

NOTE: Typically, this is used within corporate/internal environments.

Kerberos	Realm

• Admins create realms (Kerberos realms) that will encompass
all that is available to access

• A user may not have access to certain services or host
machines that is defined within the policy management

• A realm defines what Kerberos manages in terms of who can
access what

• User’s machine, the Client, lives within this realm, as well as
the service or host he wants to request and the Key
Distribution Center (KDC).

KDC Clients KDC

Authentication
Server

Ticketing
Server

Requesting	Access

Three Interactions take place:
• User & Authentication Server
• User & Ticket Granting Server
• User & Service or host machine that he wants access to
NOTE 1: Each Interaction has two messages - one that the user can
decrypt, and one that the user cannot
NOTE 2: The service/machine the user requests access to, never
communicates directly with the KDC
NOTE 3: Secret keys are passwords plus info that are hashed
NOTE 4: All secret keys are stored in the KDC database (symmetric)
NOTE 5: The KDC itself is encrypted with a master key to add a layer of
difficulty from stealing keys from the database

User	&	Authentication	Server
• The user wants to access an HTTP Service
• First he must introduce himself to the Authentication Server
• He logs into his computer
• He initiates that introduction via a plaintext request for a

Ticket Granting Ticket (TGT)
• He send all this to the Authentication Server
The plaintext message contains:
• Name/ID
• The name/ID of the requested service (in this case, service is

the Ticket Granting Server)
• Network address (may be a list of IP addresses for multiple

machines, or may be null if wanting to use on any machine)
• Requested lifetime for the validity of the TGT

User	&	Authentication	Server

User Authentication
Server

• Name/ID
• The	name/ID	of	the	requested	

service
• Network	address	Requested	

lifetime	for	the	validity	of	the	TGT

User	&	Authentication	Server
• The Authentication Server will check if the user exists in the KDC database

(no credentials are checked)
• If there are no errors, it will randomly generate a key called a session key for

use between the user and the TGS
• The Authentication Server will then send two messages back to the user
• Message 1 (encrypted with TGS Secret Key): Name/ID, the TGS name/ID,

timestamp, user’s network address, lifetime of the TGT, and TGS Session Key
• Message 2 (encrypted with user’s Secret Key): the TGS name/ID, timestamp,

lifetime (same as above), and TGS Session Key
NOTE 1: The TGS Session Key is the shared key between the user and the TGS

NOTE 2: User’s Secret Key is determined by prompting user’s password, appending a salt
(made up of user@REALMNAME.COM) and hashing the whole thing.

The user can use it for decrypting the second message in order to obtain the TGS Session
Key. If the password is incorrect, then the user will not be able to decrypt the message.

NOTE 3: The user can not decrypt the TGT since he doesn’t not know the TGS Secret
Key. The encrypted TGT is stored within his credential cache

User	&	Authentication	Server

User Authentication
Server

MESSAGE	1
(encrypted	with	TGS	Secret	Key)

• Name/ID	
• the	TGS	name/ID
• Timestamp
• user’s	network	address,
• lifetime	of	the	TGT
• TGS	Session	Key

MESSAGE	2
(encrypted	with	user’s	Secret	Key)

• the	TGS	name/ID
• Timestamp
• Lifetime
• TGS	Session	Key

User	&	Ticket	Granting	Server

• The user has the TGT that he can not read because he does
not have the TGS Secret Key to decrypt it. He has however the
TGS Session Key

• The user sends two messages
• He first prepares the Authenticator, encrypted with the TGS

Session Key, containing name/ID, and timestamp.
• He then sends an unencrypted message that contains the

requested HTTP Service name/ID he wants access to, and lifetime
of the Ticket for the HTTP Service

along with the encrypted Authenticator and TGT to the Ticket
Granting Server.

User	&	Ticket	Granting	Server

User Ticket Granting
Server

MESSAGE	1
(encrypted	with	TGS	Session	Key)

• Name/ID	
• Timestamp

MESSAGE	2
(encrypted	with	user’s	Secret	Key)

• the	requested	HTTP	Service	
name/ID	

• lifetime	of	the	Ticket	for	the	HTTP	
Service

User	&	Ticket	Granting	Server
• The Ticket Granting Server will first check the KDC database to see if

the HTTP Service exists
• If so, the TGS decrypts the TGT with its Secret Key. Since the now-

unencrypted TGT contains the TGS Session Key, the TGS can decrypt
the Authenticator the user sent

• The TGS will then do the following:
• compare user’s client ID from the Authenticator to that of the TGT
• compare the timestamp from the Authenticator to that of the TGT
• check to see if the TGT is expired (the lifetime element),
• check that the Authenticator is not already in the TGS’s cache (for

avoiding replay attacks),
• if the network address in the original request is not null, compares the

source’s IP address to user’s network address (or within the requested
list) within the TGT.

User	&	Ticket	Granting	Server
• The Ticket Granting Server then randomly generates the HTTP Service

Session Key, and prepares the HTTP Service ticket for the user that contains:
• User’s name/ID
• HTTP Service name/ID
• User’s network address
• timestamp
• lifetime of the validity of the ticket
• HTTP Service Session Key

and encrypts it with the HTTP Service Secret Key.
• Then the TGS sends User two messages.
• Message 1: the encrypted HTTP Service Ticket
• Message 2 (encrypted with the TGS Session Key): HTTP Service name/ID,

timestamp, lifetime of the validity of the ticket, and HTTP Service Session
Key

• User’s machine decrypts the latter message with the TGS Session Key that it
cached earlier to obtain the HTTP Service Session Key.

NOTE 1: User’s machine can not, however, decrypt the HTTP Service Ticket
since it’s encrypted with the HTTP Service Secret Key.

User	&	Ticket	Granting	Server

User Ticket Granting
Server

MESSAGE	1
(encrypted	with	HTTP	Service	Secret	

Key)

• User’s	name/ID
• HTTP	Service	name/ID
• User’s	network	address
• timestamp
• lifetime	of	the	validity	of	the	ticket
• HTTP	Service	Session	Key

MESSAGE	2
(encrypted	with	TGS	Session	Key)

• HTTP	Service	name/ID
• Timestamp
• lifetime	of	the	validity	of	the	ticket
• The	HTTP	Service	Session	Key

User	&	HTTP	Service
• The user’s machine prepares another Authenticator message

that contains:
• User’s name/ID
• timestamp

NOTE 1: This is encrypted with the HTTP Service Session Key.
• User’s machine then sends the Authenticator and the still-

encrypted HTTP Service Ticket received from the TGS.

User	&	HTTP	Service

User HTTP Service
Server

MESSAGE	1
(encrypted	with	HTTP	Service	Session	

Key)

• User’s	name/ID
• timestamp

MESSAGE	2
(encrypted	with	TGS	Session	Key)

• HTTP	Service	name/ID
• Timestamp
• lifetime	of	the	validity	of	the	ticket
• The	HTTP	Service	Session	Key

User	&	HTTP	Service
• The HTTP Service then decrypts the Ticket with its Secret Key to obtain the

HTTP Service Session Key.
• It uses that Session Key to decrypt the Authenticator message the user sent.
• Similar to the TGS, the HTTP Server will then do the following:
• compares user’s client ID from the Authenticator to that of the Ticket
• compares the timestamp from the Authenticator to that of the Ticket
• checks to see if the Ticket is expired (the lifetime element)
• checks that the Authenticator is not already in the HTTP Server’s cache (for

avoiding replay attacks)
• if the network address in the original request is not null, compares the source’s IP

address to user’s network address (or within the requested list) within the Ticket.

• The HTTP Service then sends an Authenticator message containing its ID
and timestamp in order to confirm its identity to the user and is encrypted
with the HTTP Service Session Key.

• User’s machine reads the Authenticator message by decrypting with the
cached HTTP Service Session Key, and knows that it has to receive a
message with the HTTP Service’s ID and timestamp.

• The user has been authenticated to use the HTTP Service

User	&	HTTP	Service

User HTTP Service
ServerMESSAGE	1

(encrypted	with	HTTP	Service	Secret	
Key)

• HTTP	Service	ID
• timestamp

Overview

Authorization

• The functionality of a web application is typically shared among a
large number of users, making authorization crucial to ensure that a
user has the correct permissions to access certain features or
specific data

• Authorization checks need to be performed both on the available
features, but also on the data used in these features

• It prevents an authorized action on unauthorized data objects (such
as making a wire transfer from an account that does not belong to
the user)

NOTE: Naturally, authorization is closely coupled to authentication and
session management.

Storage

• Dynamic web applications typically require backend data storage, to
keep track of users and their data

• The type of storage depends on the type of application

• Database storage is the most popular choice, closely followed by
file-system storage

NOTE : The backend storage is typically only accessible through the
business logic, which acts as the frontend

Ευχαριστώ	
για	την	προσοχή	σας!!

Επικοινωνία: karant@unipi.gr

Ενημέρωση: http://gunet2.cs.unipi.gr/eclass/

mailto:karant@unipi.gr
http://gunet2.cs.unipi.gr/eclass/

