
Secure Applications for Internet of Things Lab 1

M.Sc. in “Cybersecurity and Data Science” - University of Piraeus 1

Lab 1 – IoT and Embedded Systems

Prerequisities
For this lab you will need:

• STM32L4 Discovery kit IoT node (B-L475E-IOT01A)

• A USB Cable

• ARM Keil Studio Cloud (Requires registration)

• MATLAB (version 2021b)

Part 1 : Ιntroduction to Keil Studio
Arm Keil Studio is a free to use, browser-based IDE for the evaluation and development of embedded, IoT,

and Machine Learning software for Cortex-M devices. To work with development boards over USB, you

must use Keil Studio in a desktop browser that supports the WebUSB standard: Google Chrome or

Microsoft Edge (Chromium).

After registration, you can access the IDE. To verify the connection, we will setup an example from the

environments predefined code templates.

First, create a new project. Click File > New… > Mbed Project or Click on New Project on Let’s get started

section:

Choose mbed2-example-blinky. The name of the project is automatically set. Change it to “Lab 1”. Make

sure you have chosen the “Make this the active project” option.

https://www.keil.arm.com/mbed/?utm_source=mbed_com&utm_medium=compiler_button&utm_campaign=mbed_com_promo

Secure Applications for Internet of Things Lab 1

M.Sc. in “Cybersecurity and Data Science” - University of Piraeus 2

Then connect STM32L4 Discovery kit IoT node to your workstation (should be discoverable if you choose

STM32 STLink). Several LEDs should light up on your board. Back on the IDE, go to Target Hardware and

choose your device:

After that, simply run the project. After the build, the code is downloaded from your browser. You can

review the code by opening main.cpp:

Secure Applications for Internet of Things Lab 1

M.Sc. in “Cybersecurity and Data Science” - University of Piraeus 3

Part 2 : Create a Serial connection
The objective of this exercise is to simulate the exchange of data among an edge device – your node- and

a hub – your computer. The scenario involves the following:

• The hub sends some data to the node

• A led blinks to indicate data are read from the serial

• The node responds with the data that received

To establish communication, you first need to create a serial connection to both ends. First go to Keil and

replace main.cpp code with the following:

Secure Applications for Internet of Things Lab 1

M.Sc. in “Cybersecurity and Data Science” - University of Piraeus 4

#include "mbed.h"

// Maximum number of element the application buffer can contain

#define MAXIMUM_BUFFER_SIZE 32

// Create a DigitalOutput object to toggle an LED whenever data is received.

static DigitalOut led(LED1);

// Create a BufferedSerial object with a default baud rate.

static BufferedSerial serial_port(USBTX, USBRX);

int main(void)

{

 // Set serial port properties

 serial_port.set_baud(9600);

 serial_port.set_format(8, BufferedSerial::None, 1);

 // Application buffer to receive the data

 char buf[MAXIMUM_BUFFER_SIZE] = {0};

 // Continuously

 ????{

 // Read serial condition

 ????

 // Toggle the LED.

 ????

 // Echo the input back to the serial

 ????

 }

 }

}

Secure Applications for Internet of Things Lab 1

M.Sc. in “Cybersecurity and Data Science” - University of Piraeus 5

Replace the question marks with the required code. Next, open Matlab environment and create a new

script named “Lab1_Serial_Comm”. Paste the following code in it:

Replace the question marks with the required code. For the COM_PORT_NUMBER, run the command

‘seriallist’ in MATLAB command prompt to derive the active ports in your computer.

%% Script to read constantly the Serial synchronously
clear all
close all

%Clear communication channel
delete(instrfind)

% Init Serial with the same settings as in node’s code
COM_PORT_NUMBER = "????"; % run the command ‘seriallist’ to retrieve this
baud_rate = ????;
data_bits = ????;
myComPort = serial(COM_PORT_NUMBER,'BaudRate',baud_rate,'DataBits',data_bits);

% Init variables
datain = '';
dataout = 'Hello World';

% Open communication channel
fopen(myComPort);

% Continuously
???
 % Send one or more characters to the STM32 device
 ????

 % Pause for a while to slow down the exchange
 ????

 % Read the available UART data as ‘uint8’ and display the result
 ????
 disp(char(datain'));
end

% Close communication channel
fclose(myComPort);

