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SECTION 1

RELIABILITY 

ENGINEERING



ROUGH CLASSIFICATION OF RELIABILITY ANALYSIS METHODOLOGIES

Guidelines:

describe the process of reliability 

analysis, general steps, reports, actions

e.g., Failure Mode and Effects Analysis 

(FMEA)

System-level models:

describe the reliability aspects of the 

product on a system level

e.g.,, Reliability Block Diagrams (RBD)

Component-level metrics:

define the reliability characteristic of a 

single component

e.g., MTTF, MTTR, Failure rate …

Mathematical models:

are used for numerical (probabilistic) 

reliability analysis

e.g., Continuous-time Markov chains (CTMC)

u
s
e

use



SYSTEM-LEVEL MODELS → RELIABILITY BLOCK DIAGRAMS (RBD)

A RBD is a graphical depiction of the system’s components and connectors which can be used to determine the overall system reliability.

Blocks represent system components. Lines describe the connections between components.

If any path through the system is successful, then the system succeeds, otherwise it fails.

Examples or RDB models are the system in series, system in parallel and non-serial-parallel systems you have seen in previous lectures

Component 1

Component 2

Component 3

Component 4 Component 5

System



RELIABILITY 

BLOCK 

DIAGRAMS (RBD) 

STANDARDS, 

TOOLS AND 

LIMITATIONS

Standards and tools

 Standards: The are many standards that describe the procedure for 

modelling the dependability of a system and for using the RBD model in 

order to calculate reliability and availability measures. Examples are the 

International standard IEC 61078 Ed. 2.0 b:2006, the Australian standard 

AS IEC 61078-2008 and the European Standard DIN EN 61078. 

 Tools: There are many software tools to conduct RBD, such as the Relex 

RBD and the RBD Module.

Limitations:

The RBD modelling technique is applied primarily to systems without repair 

and where the order in which failures occur does not matter. For systems 

where the order of failures is to be taken into account or where repairs are to 

be carried out, other modelling techniques, such as Markov chain analysis, 

are more suitable.



MATHEMATICAL DEPENDABILITY MODELS → CONTINUOUS-TIME 

MARKOV CHAINS (CTMC). 

 Markov modelling, named for the Russian mathematician Andrei Markov.

 Markov chain models are well suited for calculating the dependability of systems with conditional probabilities

 The underlying assumption of Markov models is that the state transition depends only on the current state, i.e., 

transitioning from state ⅈ to state 𝑗 is independent of how it arrived in state ⅈ and how long it will stay at state ⅈ.

 The conditional probability of transitioning from one state to the next state can be assembled in a square transition 

matrix T.

 For example, a Markov chain model with two states will have   𝑇 =
𝑇𝑅0,0𝛥𝑡 𝑇𝑅0,1𝛥𝑡

𝑇𝑅1,0𝛥𝑡 𝑇𝑅1,1𝛥𝑡

0 1

𝑇𝑅0,1𝛥𝑡

𝑇𝑅0,0𝛥𝑡 𝑇𝑅1,1𝛥𝑡

Failed

state

Working

states

State space S

Transition rate (TR) 

𝑇𝑅1,0𝛥𝑡



CONTINUOUS-TIME MARKOV CHAINS BASICS

 All entries in the transition matrix T are non-negative 

 The entries in each row shall sum to unity (1)

 Multiplying the vector of marginal probabilities of the different states at time 𝑡 will give the marginal probabilities of 

the different states for the next time period 𝛥𝑡.

𝑇 =
𝑇𝑅0,0𝛥𝑡 𝑇𝑅0,1𝛥𝑡

𝑇𝑅1,0𝛥𝑡 𝑇𝑅1,1𝛥𝑡

[𝑝1 𝑡 + 𝛥𝑡 ,𝑝2 𝑡 + 𝛥𝑡 ]  = [𝑝1(t), 𝑝2(t)] 
𝑇𝑅0,0𝛥𝑡 𝑇𝑅0,1𝛥𝑡

𝑇𝑅1,0𝛥𝑡 𝑇𝑅1,1𝛥𝑡



DERIVING THE RELIABILITY FUNCTION OF A NON-REPAIRABLE SIMPLEX 

SYSTEM (NO REDUNDANCY) WITH MARKOV CHAIN MODELLING

 From previous lectures we know that the Reliability of a non-repairable simplex system is R(t) = ⅇ−𝜆𝑡. 

 In this lecture, we will introduce the Markov chain models by an example. 

We will derive the reliability R(t) = ⅇ−𝜆𝑡 equation of a non-repairable simplex system through Markov chain modelling

 The reliability of a non-repairable simplex system can be modelled as a Markov process with two states: Functional 

(state 1) and Failed (state 2).

 The system transitions functional to failed at a rate of  𝜆, as labelled on the arc from state 1 to state 2.

 The reliability function of the Markov model depicted above can be derived by first converting the process to a 

continuous-time model and then solving a set of differential equations for the probability the system is in state 2, 

the failed state, at time t.

Functional

state

Failed

state

Failure rate 



MARKOV CHAIN

 Step 1: We create a transition matrix T for our model:

 𝑇 =
𝑟 1,1 𝑟 1,2
𝑟 2,1 𝑟 2,2

=
1 − 𝜆Δ𝑡 𝜆Δ𝑡

0 1
,

 Step 2: From T we define  a set of equations that represent the probability of being in state 1 or 2 at time t + Δ𝑡. 

The distribution of probabilities at time 𝑡 + Δ𝑡 is the product of the transition matrix T by the distribution of the 

probabilities at time 𝑡:

[𝑝1 𝑡 + 𝛥𝑡 ,𝑝2 𝑡 + 𝛥𝑡 ]  = [𝑝1(t), 𝑝2(t)] 
1 − 𝜆Δ𝑡 𝜆Δ𝑡

0 1

Working

state

Failed

state



MARKOV CHAIN

 [𝑝1 𝑡 + 𝛥𝑡 ,𝑝2 𝑡 + 𝛥𝑡 ]  = [𝑝1(t), 𝑝2(t)] 
1 − 𝜆Δ𝑡 𝜆Δ𝑡

0 1

 Which yields

𝑝1 𝑡 + 𝛥𝑡 = 𝑝1 𝑡 ∗ 1 − 𝜆Δ𝑡 + 𝑝2 𝑡 ∗ 0 ⇒ 𝒑𝟏 𝒕 + 𝜟𝒕 = 𝒑𝟏 𝒕 − 𝝀𝜟𝒕 𝒑𝟏 𝒕 Eq. (1)

𝑝2 𝑡 + 𝛥𝑡 = 𝑝1 𝑡 ∗ 𝜆Δ𝑡 + 𝑝2 𝑡 ∗ 1 ⇒ 𝒑𝟐 𝒕 + 𝜟𝒕 = 𝝀𝜟𝒕 𝒑𝟏 𝒕 + 𝒑𝟐 𝒕 Eq. (2)

Subtracting 𝒑𝟏(t) from both sides of Eq.1, 𝒑𝟐(t) from both sides of Eq.2, and dividing both (Eq.1  and Eq.2) by  𝜟𝒕

yields:

𝑝1 𝑡+𝛥𝑡 −𝑝1(𝑡)

𝛥𝑡
= −𝜆 𝑝1 𝑡 Eq. (3)              and                       

𝑝2 𝑡+𝛥𝑡 −𝑝2(𝑡)

𝛥𝑡
= 𝜆 𝑝1 𝑡 Eq. (4)

Working

state

Failed

state

Definition of a derivative



MARKOV CHAIN

 Taking the lim
→0 of Equations 3 and 4 yields:

𝑝′1 𝑡 = −𝜆 𝑝1 𝑡 Eq.(5)              and 𝑝′
2 = 𝜆 𝑝1 𝑡 Eq.(6)

To easily solve the set of equations Eq.(5) and Eq.(6) we first transfer them to the LaPlace domain. The LaPlace 

transform of Equations 5 and 6 yields

ℒ 𝑝′1 𝑡 = ℒ −𝜆 𝑝1 𝑡

s 𝑃1 𝑠 − 𝑃1(0) = −𝜆 𝑃1 𝑠

𝑝1 0 = s P1 𝑠 + 𝜆 𝑃1 𝑠 Eq.(7)



MARKOV CHAIN

Similarly, for Eq.(6) we have

ℒ{𝑝′2(𝑡)} = ℒ{𝜆 𝑝1(𝑡)}
s P2(𝑠)  − p2(0) = 𝜆 P1(𝑠)
p2(0) = s P2(𝑠) - 𝜆 P1(𝑠) Eq.(8)

where pi(0) = pi(t) at t = 0, i.e., p1(0), p2(0) define the initial distribution of the system

Equations 7 and 9 can be written as :

[p1 0 , p2 0 ]  = [P1(s), P2(s)] 
𝑠 + 𝜆 −𝜆

0 𝑠
,

in matrix form

Solving for [P1(s), P2(s)] gives

[P1(s), P2(s)] = [p1 0 , p2 0 ]
𝑠 + 𝜆 −𝜆

0 𝑠

−1

The inverse of the matrix yields

[P1(s), P2(s)] = [p1 0 , p2 0 ]

1

𝑠+𝜆

𝜆

𝑠+𝜆 𝑠

0
1

𝑠

  Eq.(13)

Assuming that the system starts at state 1 (working 

state), the initial probability distribution is 

[p1 0 , p2 0 ] = [1, 0] Eq.(14)

Substituting  Eq.(14) into Eq.(13) yields

[P1(s), P2(s)] = [1, 0]

1

𝑠+𝜆

𝜆

𝑠+𝜆 𝑠

0
1

𝑠

P1(s) =
1

𝑠+𝜆
and P2(s) =

𝜆

𝑠+𝜆 𝑠



MARKOV CHAIN

 Last, we transfer back to the time domain by taking the inverse Laplace of P1(s) which gives the reliability function 

R(t) of the non-repairable simplex system:

ℒ−1{P1(s)} = ℒ−1{
1

𝑠+𝜆
}

R(t) = 𝑝1(t) = 𝒆−𝝀𝒕

Similarly, we can find the probability of being in state 2 by taking the inverse Laplace of P2(s) 

ℒ−1{P2(s)} = ℒ−1{
𝜆

𝑠+𝜆 𝑠
}

𝑝2(t) = 𝟏–𝒆−𝝀𝒕

 Since the probabilities of all states in a Markov chain model should add to 1 (i.e., σ𝑖=0
𝐾 𝑝𝑖 𝑡 = 1) we can subtract 

𝑝2(t) from unity (1),  which gives the probability of being in state 1 

R(t) = 1 – 𝑝2(t) = 1 – (1 – 𝒆−𝝀𝒕) = 𝒆−𝝀𝒕



MARKOV CHAIN

 Markov chains provide a nice structural representation of the system’s states, but the derivation of dependability 

expressions is quite tedious and becomes more demanding as the states of the chain increase.

 Fortunately, there are plenty of Markov chain software tools, such as Relex Markov, SHARPE and Isograpgh Markov. 

Most of these tools perform numerical Markov chain analysis rather than symbolic.

 Wolfram Mathematica is a nice tool that focuses on symbolic computation of Markov chain models. For example, 

the reliability of a non-repairable simplex system can be derived with the following code:

code:

T = { {1 - 𝝀}, 𝝀}, {0, 1} }

initialDistribution = {1, 0};

proc = ContinuousMarkovProcess [initialDistribution ,T] ;

R = FullSimplify[PDF[ proc [ t ] , 1 ] ]

output:

R = 𝒆−𝝀𝒕



DERIVING THE AVAILABILITY AND STEADY-STATE AVAILABILITY OF A 

REPAIRABLE SIMPLEX SYSTEM WITH MARKOV CHAIN MODELLING

 Now that we know how to use Mathematica, let’s accelerate the derivation of the availability function with the 

following code, which finds the probability distribution of the system being in stare 1 (working)

code:

T = { {1 - 𝝀}, 𝝀}, {𝜇, 1 −𝜇} }

initialDistribution = {1, 0};

proc = ContinuousMarkovProcess [initialDistribution ,T] ;

A = FullSimplify[PDF[ proc [ t ] , 1 ] ]

output:

A = 
𝜇

𝝀 + 𝜇
+

𝝀 𝒆−𝒕(𝝀 + 𝜇)

𝝀 + 𝜇

Failure rate 

Recovery rate 



AVAILABILITY VS STEADY AVAILABILITY

 Let’s examine the Availability A(t) function

A(t) = 
𝜇

𝝀 + 𝜇
+

𝝀 𝒆−𝒕(𝝀 + 𝜇)

𝝀 + 𝜇
Eq. (14)

 The system starts at state 1 (working) and at time t=0, the 

availability A(0) = 1 

 As the time passes, the system reaches  the steady state 

availability

 In Eq. (14), the first term captures the steady state expression, 

and the second term captures the transitory behaviour as the 

system approaches steady state.

 Therefore, the steady state A of the system is

A = lim
𝑡→∞

𝐴 𝑡 =
𝜇

𝝀 + 𝜇
+

𝝀 𝒆−𝒕(𝝀 + 𝜇)

𝝀 + 𝜇
=

𝜇

𝝀 + 𝜇



SECTION 2
FAULT-TOLERANCE



FAULT-TOLERANCE 

INCORPORATES 

SOME FORM OF 

REDUNDANCY TO 

DETECT AND/OR 

MASK ERRORS

Types of redundancy:

 HARDWARE → Example: Instead of having one CPUs, we can use 

two or three CPUs, each performing the same function, to detect 

and/or mask errors, respectively.

 INFORMATION → Example:  Extra (redundant) bits are added to 

the original data bits of a RAM so that an error in the data bits can 

be detected and corrected. These are usually called Error 

Correction Codes (ECC).

 TIME → Example: Re-execute the  same program on the same 

CPU to detect transient faults.

 SOFTWARE → Example:  Mitigate software faults (bugs) by 

independently producing (from disjoint teams of programmers) 

two versions of a software in the hope that the different versions 

will not fail on the same input.



HARDWARE FAULT-TOLERANCE



NON-REPAIRABLE 

M-OF-N SYSTEM

 An M-of-N system consists of N modules and 

needs at least M of them for proper operation. 

 The key assumption for a high reliability system 

of M-of-N system is the proper isolation of faults 

between modules (or otherwise fault 

containment). Even a slightly extend of positive 

correlated (i.e., common-mode) failures has a 

greatly impact on overall reliability.

 The best-known example is the triplex system or 

Triple Modular Redundant (TMR) system that will 

be presented in detail in the next slide.



EXAMPLE OF HARDWARE REDUNDANCY TO MASK FAULTS/ERRORS

(SPATIAL) TRIPLE MODULAR REDUNDANCY (TMR)

TMR Basics

 The basic concept of TMR is to replicate a circuit three 

times, provide the three identical circuits with the 

same input stimulus, and perform bit-wise majority 

voting on the outputs of each circuit replica

 The majority voter (V) simply masks any erroneous 

result from a faulty TMR by outputting the result 

corresponding to at least two of its inputs.

 Each circuit replica is referred to as TMR domain or 

module of the TMR scheme.



BITWISE TMR MAJORITY VOTER WITH ERROR LOCALISATION

• The majority voter is used to mask any number 

of errors from a single TMR domain

• The minority voter is used to detect and report 

which TMR domain is faulty

• N voters are used for each bit of a N-bit signal 

Truth table of bitwise the majority voter (V) with 

error localisation (E)



PLURALITY VOTERS

 Bitwise voters work well when we can guarantee that every module will generate an output that matches the output of 

every other functional module, bit-by-bit.  

Example → M identical processors that use identical inputs and identical software, and have tightly synchronized clocks  

 To implements M-of-N redundancy in systems with different modules (e.g., different CPUs or different software for the same 

problem), we can declare two outputs 𝒙 and 𝒚 as “practical identical” if 𝐱 − 𝒚 < 𝜹 for some specified 𝜹

 The plurality voter looks for a set of 𝐤 practically identical outputs picks their median as the representative

 For example, if we set δ = 0.1, and the five outputs were 1.10, 1.11, 1.32, 1.49, 3.00, then the subset {1.10, 1.11} would 

be selected by a K=2 plurality voter and the representative 1.105

Typⅇ ⅇquation
hⅇrⅇ.

practically

identical

All outputs



TMR WITH TRIPLICATED INPUTS, MAJORITY VOTERS AND OUTPUTS

I/Os and majority voter shall be triplicated, 

otherwise the circuit is prone to Common Mode 

Failures or otherwise Single Point of Failure (SPFs)

Fully triplicated circuit, no SPFs

SPFs dictate the total reliability of the TMR system and shall 

be eliminated. 

Inputs 

R=0.5

TMR 

R=0.99

Voter + outputs 

R=0.5
Rtotal = 0.52 ∗ 0.99 = 0.2475



RELIABILITY OF A NON-REPAIRABLE TMR SYSTEM

Reliability by using M-of-N general function of a 

Reliability Block Diagram (RBD) analysis

 𝑅𝑀 𝑜𝑢𝑡 𝑜𝑓 𝑁 𝑡 
𝑖=𝑀

𝑁
𝑁

𝑖
𝑅𝑖 𝑡 1 − 𝑅 𝑡 𝑁−1, 

where 
𝑁

𝑖
=

𝑁!

𝑀−𝑖 !𝑖!

 𝑅2 𝑜𝑢𝑡 𝑜𝑓 3 𝑡 
𝑖=2

3
3

𝑖
𝑅𝑖 𝑡 1 − 𝑅 𝑡 3−𝑖

= 
3

2
𝑅2 𝑡 1 − 𝑅 𝑡 3−2 +

3

3
𝑅3 𝑡 1 − 𝑅 𝑡 3−3

=3 𝑅2 𝑡 − 2 𝑅3 𝑡

 For constant failure rate 𝑒−𝜆𝑡 we therefore have 

= 3 𝑒−2𝜆𝑡 − 2𝑒−3𝜆𝑡

Reliability by using Markov chain modeling

3

Modules 

Working

2

Modules 

Working

1 or 0

Modules 

Working

3𝜆Δ𝑡 2𝜆Δ𝑡
11-3Δ𝜆𝑡

1 − 2𝜆Δ𝑡
code:

T = {{(1 - 3 𝜆), 3 𝜆, 0}, {0, (1 - 2 𝜆), 2 
𝜆}, {0, 0, 1}};
Init = {1, 0, 0};
proc = ContinuousMarkovProcess[Init, T];
rTMRNR = FullSimplify[1 - PDF[proc[t], 3]]

output:

3 𝑒−2𝜆𝑡 − 2𝑒−3𝜆𝑡



RELIABILITY OF A REPAIRABLE TMR SYSTEM

Reliability by using M-of-N general 

function

 Very difficult to evaluate in 

this way repairable systems

 We use Markov chain 

modelling instead

Reliability by using Markov chain modeling

3

Modules 

Working

2

Modules 

Working

1 or 0

Modules 

Working

3𝜆Δ𝑡 2𝜆Δ𝑡
11-3Δ𝜆𝑡

1 − (2𝜆Δ𝑡 + 𝜇Δ𝑡)
code:

T = {{(1 - 3 𝜆), 3 𝜆, 𝜇}, {0, (1 – (2 𝜆 +
𝜇)), 2 𝜆}, {0, 0, 1}};
Init = {1, 0, 0};
proc = ContinuousMarkovProcess[Init, T];
rTMRNR = FullSimplify[1 - PDF[proc[t], 3]]

output:

𝜇Δ𝑡

As the states increase and repair 

techniques are incorporated, the R(t) 

functions become tedious.

In practice, we only evaluate R(t) functions 

numerically and don’t care of symbolic 

expressions 



RELIABILITY: SIMPLEX VS NON-REPAIRABLE TMR VS REPAIRABLE 

TMR

 The reliability of a non-repairable TMR system is 

only higher than its functionally equivalent simplex 

circuit in its early operation.

 The reason for this counter-intuitive fact is that 

once one module of the TMR circuit fails, the 

remaining two healthy modules have a higher 

probability of failing than the simplex circuit itself.

 The reliability of a TMR FPGA circuit increases 

considerably when combined with error recovery 

mechanisms



CONVERTING THE RELIABILITY MARKOV MODEL OF A REPAIRABLE 

TMR SYSTEM TO AN AVAILABILITY MARKOV MODEL

State-A
3-Modules 

Working

State-B
2-Modules 

Working

State-C

0 or 1

Modules 

Working

3𝜆Δ𝑡 2𝜆Δ𝑡
11-3Δ𝜆𝑡

1 − (2𝜆Δ𝑡 + 𝜇Δ𝑡)
𝜇Δ𝑡

State-A
3-

Modules 

Working

State-B
2-Modules 

Working

State-C

1 or 0

Modules 

Working

3𝜆Δ𝑡 2𝜆Δ𝑡
1-

𝜇

3
Δ𝑡1-3Δ𝜆𝑡

1 − (2𝜆Δ𝑡 + 𝜇Δ𝑡)
𝜇Δ𝑡

𝜇

3
Δ𝑡

 The reliability of the TMR system is modeled by “trapping” the chain to State-C once it fails (see transition with 

rate 1) and summing the probability distribution of state-A and State-B

 The availability of the TMR system is modeled by adding a transition arrow from State-C to State-A with rate 
𝜇

3
Δ𝑡

to capture the fact that all three modules need to be recovered since in State-C one cannot know which modules 

are faulty. Similarly, the availability is found by summing the probability distribution of state-A and State-B

Reliability Markov chain model  Availability Markov chain model  



IMPROVING 
RELIABILITY THROUGH 
TMR PARTITIONING

 TMR is a 2-out-of-3 redundancy scheme, which means that 

a TMR circuit can withstand faults in only one TMR domain 

at a time.

 However, if the same circuit is partitioned into k smaller 

TMR components it can then mask faults in k TMR 

domains, assuming that each partition (i.e., TMR 

component) has no more than one faulty TMR domain.

 The more partitions a TMR FPGA has, the less the 

likelihood of soft errors affecting the one TMR component 

and the higher the total reliability of the circuit.

 However, when k becomes very large the benefits of circuit 

partitioning are overwhelmed by the area and 

performance overheads of the added voters used between 

the TMR components.



SYSTEM PARTITIONING CAN ALSO REDUCE MAINTAINING COSTS

Module MTBF(h) Replacement

cost (€)

Replacements 

per year (30K hours)

Yearly cost (€)

M1 2.5K 3.0K 30K/2.5K=12 12*3K =36K

M2 4.0K 2.0K 30K/4K=7.5 7.5*2K=15K

M3 4.0K 2.5K 30K/4K=7.5 7.5*2K=18.75K

M4 10.0K 1.0K 30K/10K=3 3*10K=3K

TOTAL(€) 72750

Aircraft Engine MTBF(h) 30k

M2 M3 M4

Partitioning the engine  

into 4 modules

Example

 An aircraft engine has MTBF = 1K hours (scheduled and 

unscheduled)

 With a total annual flying rate of 30K hours and an average 

replacement cost of 10K €, the annual repair bill is (30K/1K) * 

10K € = 300000 €

 The manufacturer redesigned the engine so it could be 

separated into four modules. 

 What would be the new annual cost?

M1



COLD REDUNDANCY

 This best suited or non-critical systems where 

down-time and reliability is not a big concern. A cold 

redundant system consists of an ACTIVE module 

and N SPARE modules that are inactive (powered 

off). The fault-detector and reconfiguration unit 

(DRU) replaces any failed ACTIVE module with a 

SPARE module and powers it on (i.e., the SPARE 

becomes the ACTIVE module).

Inactive/not powered to conserve energy 

and mitigate aging effects

Both, fault detection and ACTIVE/SPARE 

swap can be slow, down-time can be 

tolerated. 



WARM REDUNDANCY

 This is suited to systems where time and 

response are important, but a momentary outage 

is still acceptable. 

Spare modules are in standby mode and 

are periodically powered on to synchronize 

their state with the Active module 



HOT REDUNDANCY

 Hot redundancy is the best solution 

for critical systems that cannot 

tolerate an outage for even a brief 

moment.

 Spare modules are powered on and 

their state is always synchronized 

with the state of the Active module.

 The NMR (e.g.,, TMR) systems that 

we examined follow the HOT 

redundancy methodology 

Active 1

Active N



DUPLEX OR DOUBLE MODULAR 

REDUNDANT (DMR) SYSTEMS 

 In contrast with M-of-N (e.g., TMR) systems that detects, localises and mask faults, the Duplex systems are only used 

for error detection.

 The reliability and availability function of the Duplex system or Double Modular Redundant (DMR) system is similar 

with that of a simplex system assuming a perfect comparator (or 𝜆1+ 𝜆𝑐 >> 𝜆𝑐):

𝑅 𝑡 = ⅇ−(𝜆1+𝜆2)𝑡, and 𝑅 𝑡 = ⅇ−2𝜆𝑡, for 𝜆1 = 𝜆2

Module

(𝜆1)

Module

(𝜆2)

Comparator 

(𝜆𝑐)
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MATHEMATICAL DEPENDABILITY MODELS → CONTINUOUS-TIME 

MARKOV CHAINS (CTMC). 

 A discrete state continuous time Markov chain is a stochastic process with infinite random variables X(t) indexed by 

time t (0 ≤ t ≤ 1), which take states from a finite state space S = {0, 1, ..., K}, where (K > 0).

 The main assumptions of a Markov chain are:

 Given that a system just entered state ⅈ, it will remain for exponential distributed time ⅇ−𝜆𝑡 in state ⅈ until it moves to the next state 𝑗 with 

rate 𝜆𝑖,𝑗𝛥𝑡 ∈ ℝ, 𝜆𝑖,𝑗 > 0 and constant over time.

 Memoryless: The rate 𝑟𝑖,𝑗𝛥𝑡 of the system transitioning from state ⅈ to state 𝑗 is independent of how it arrived in state ⅈ and independent 

of the time it will stay at state ⅈ.

 A Markov chain essentially consists of a set of transitions, which are determined by some probability distribution. 

Metrics such as reliability and availability are obtained by this probability distribution

 See https://setosa.io/ev/markov-chains/ for visual/intuitive explanation of Markov-chain models
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