1.2

CHAPTER 1 Introduction

SER within the prescribed budget. Often this process is iterated several times
till designers are happy with the predicted SER. This book describes the cur-
rent state-of-the-art in soft error modeling, measurement, detection, and correction
mechanisms.

This chapter reviews basic definitions of faults, errors, and metrics, and depend-
ability models. Then, it shows how these definitions and metrics apply to both
permanent and transient faults. The discussion on permanent faults will place
radiation-induced transient faults in a broader context, covering various silicon
reliability problems.

Faults

User-visible errors, such as soft errors, are a manifestation of underlying faults in a
computer system. Faults in hardware structures or software modules could arise
from defects, imperfections, or interactions with the external environment. Exam-
ples of faults include manufacturing defects in a silicon chip, software bugs, or bit
flips caused by cosmic ray strikes.

Typically, faults are classified into three broad categories—permanent, intermit-
tent, and transient. The names of the faults reflect their nature. Permanent faults
remain for indefinite periods till corrective action is taken. Oxide wearout, which
can lead to a transistor malfunction in a silicon chip, is an example of a permanent
fault. Intermittent faults appear, disappear, and then reappear and are often early
indicators of impending permanent faults. Partial oxide wearout may cause inter-
mittent faults initially. Finally, transient faults are those that appear and disappear.
Bit flips or gate malfunction from an alpha particle or a neutron strike is an example
of a transient fault and is the subject of this book.

Faults in a computer system can occur directly in a user application, thereby
eventually giving rise to a user-visible error. Alternatively, it can appear in any
abstraction layer underneath the user application. In a computer system, the
abstraction layers can be classified into six broad categories (Figure 1.2)—user
application, OS, firmware, architecture, circuits, and process technology. Software
bugs are faults arising in applications, OSs, or firmware. Design faults can arise in
architecture or circuits. Defects, imperfections, or bit flips from particle strikes are
examples of faults in the process technology or the underlying silicon chip.

A fault in a particular layer may not show up as a user-visible error. This is
because of two reasons. First, a fault may be masked in an intermediate layer.
A defective transistor—perhaps arising from oxide wearout—may affect perfor-
mance but may not affect correct operation of an architecture. This could happen,
for example, if the transistor is part of a branch predictor. Modern architectures
typically use a branch predictor to accelerate performance but have the ability to
recover from a branch misprediction.

Second, any of the layers may be partially or fully designed to tolerate faults.
For example, special circuits—radiation-hardened cells—can detect and recover



1.3

1.3 Errors 7

User Applications

Operating System

Firmware

Architecture

Circuits

Process Technology

FIGURE 1.2 Abstraction layers in a computer system.

from faults in transistors. Similarly, each abstraction layer, shown in Figure 1.2,
can be designed to tolerate faults arising in lower layers. If a fault is tolerated at a
particular layer, then the fault is avoided at the layer above it.

The next section discusses how faults are related to errors.

Errors

Errors are manifestation of faults. Faults are necessary to cause an error, but not all
faults show up as errors. Figure 1.3 shows that a fault within a particular scope may
not show up as an error outside the scope if the fault is either masked or tolerated.
The notion of an error (and units to characterize or measure it) is fundamentally
tied to the notion of a scope. When a fault is detected in a specific scope, it becomes
an error in that scope. Similarly, when an error is corrected in a given a scope,
its effect usually does not propagate outside the scope. This book tries to use the
terms fault detection and error correction as consistently as possible. Since an error
can propagate and be detected again in a different scope, it is also acceptable to use
the term error detection (as opposed to fault detection).

Three examples are considered here. The first one is a fault in a branch predictor.
No fault in a branch predictor will cause a user-visible error. Hence, there is no
scope outside which a branch predictor fault would show up as an error. In contrast,
a fault in a cache cell can potentially lead to a user-visible error. If the cache cell
is protected with ECC, then a fault is an error within the scope of the ECC logic.
Outside the scope of this logic where our typical observation point would be, the
fault gets tolerated and never causes an error. Consider a third scenario in which
three complete microprocessors vote on the correct output. If the output of one of
the processors is incorrect, then the voting logic assumes that the other two are



CHAPTER 1 Introduction

Inner Scope Inner Scope

Outer Scope Error Outer Scope

(a) (b)

FIGURE 1.3 (a) Fault within the inner scope masked and not visible outside
the inner scope. (b) Fault propagated outside the outer scope and visible as
an error.

correct, thereby correcting any internal fault. In this case, the scope is the entire
microprocessor. A fault within the microprocessor will never show up outside the
voting logic.

In traditional fault-tolerance literature, a third term—failures—is used besides
faults and errors. Failure is defined as a system malfunction that causes the system
to not meet its correctness, performance, or other guarantees. A failure is, however,
simply a special case of an error showing up ata boundary where it becomes visible
to the user. This could be an SDC event, such as a change in the bank account, which
the user sees. This could also be a detected error (or DUE) caught by the system
but not corrected and may lead to temporary unavailability of the system itself.
For example, an ATM machine could be unavailable temporarily due to a system
reboot caused by a radiation-induced bit flip in the hardware. Alternatively, a disk
could be considered to have failed if its performance degrades by 1000x, even if it
continues to return correct data.

Like faults, errors can be classified as permanent, intermittent, or transient. As the
names indicate, a permanent fault causes a permanent or hard error, an intermittent
fault causes an intermittent error, and a transient fault causes a transient or soft
error. Hard errors can cause both infant mortality and lifetime reliability problems
and are typically characterized by the classic bathtub curve, shown in Figure 1.4.
Initially, the error rate is typically high because of either bugs in the system or
latent hardware defects. Beyond the infant mortality phase, a system typically
works properly until the end of its useful lifetime is reached. Then, the wearout
accelerates causing significantly higher error rates. The silicon industry typically
uses a technique called burn-in to move the starting use point of a chip to the
beginning of the useful lifetime period shown in Figure 1.4. Burn-in removes any
chips that fail initially, thereby leaving parts that can last through the useful lifetime
period. Further, the silicon industry designs technology parameters, such as oxide
thickness, to guarantee that most chips last a minimal lifetime period.



14

1.4 Metrics 9

Instantaneous
Error
Rate

infant
mortality
phase

wearout
phase

useful lifetime

Time

FIGURE 1.4 Bathtub curve showing the relationship between failure rate,
infant mortality, useful lifetime, and wearout phase.

Metrics

Time to failure (TTF) expresses fault and error rates, even though the term TTF
refers specifically to failures. As the name suggests, TTF is the time to a fault or an
error, as the case may be. For example, if an error occurs after 3 years of operation,
then the TTF of that system for that instance is 3 years. Similarly, MTTF expresses
the mean time elapsed between two faults or errors. Thus, if a system gets an error
every 3 years, then that system’s MTTF is 3 years. Sometimes reliability models use
median time to failure (MeTTEF), instead of MTTF, such as in Black’s equation for
electromigration (EM)-related errors (see Electromigration, p. 15).

Under certain assumptions (e.g., an exponential TTF, see Reliability, p. 12), the
MTTF of various components comprising a system can be combined to obtain the
MTTF of the whole system. For example, if a system is composed of two compo-
nents, each with an MTTF of 6 years, then the MTTF of the whole system is

1
MTTFsystem = 1 1 = = 3

+
IVITTFcomponent 1 MTTFcomponent 2

o=

1
+

o=

More generally,
1

n 1
Z MTTF;
i=0

MTTFsystem =

Although the term MTTF is fairly easy to understand, computing the MTTF
of a whole system from individual component MTTFs is a little cumbersome, as
expressed by the above equations. Hence, engineers often prefer the term failure in
time (FIT), which is additive.



10

CHAPTER 1 Introduction

One FIT represents an error in a billion (10°) hours. Thus, if a system is
composed of two components, each having an error rate of 10 FIT, then the system
has a total error rate of 20 FIT. The summation assumes that the errors in each
component are independent.

The error rate of a component or a system is often referred to as its FIT rate.
Thus, the FIT rate equation of a system is

n
FIT ratesystem = Z FIT rate;
i=0

As may be evident by now, FIT rate and MTTF of a component are inversely
related under certain conditions (e.g., exponentially distributed TTF):
10°
FIT rate x 24 hours x 365 days

MTTF in years =

Thus, an MTTF of 1000 years roughly translates into a FIT rate of 114 FIT.

BMeExXAMPLE

A silicon chip consists of a billion transistors, each with a FIT rate of
0.00001 FIT. What will be the MTTF of a system composed of 100 such
chips?

SOLUTION The FIT rate of each chip=10°x0.00001 FIT=10* FIT. The
FIT rate of 100 such chips=100 x 10* = 10° FIT. Then, the MTTF of a system
with 100 such chips = 10°/(10° x 24) ~ 40 days.

BMeExXAMPLE

What is the MTTF of a computer’s memory system that has 16 gigabytes of
memory? Assume FIT per bit is 0.00001 FIT.

SOLUTION The FIT rate of the memory system =16 x 2% x 8 x 0.00001 =
1374390 FIT. This translates into an MTTF of 10°/(1374390 x 24) ~ 30 days.

Besides MTTF, two terms—immean time to repair (MTTR) and mean time between
failures (MTBF)—are commonly used in the fault-tolerance literature. MTTR
represents the mean time needed to repair an error once it is detected. MTBF



1.5

1.5 Dependability Models 11

System Start System Start
or Re-start Fault Detected — / or Re-start

»
1=

Time

A
Y

MTTF MTTR

4
\

MTBF

FIGURE 1.5 Relationship between MTTF, MTTR, and MTBF.

represents the average time between the occurrences of two errors. As Figure 1.5
shows, MTBF=MTTF+MTTR. Typically, MTTR « MTTE The next section
examines how these terms are used to express various concepts in reliable
computing.

Recently, Weaver et al. [26] introduced the term mean instructions to failure
(MITF). MITF captures the average number of instructions committed in a micro-
processor between two errors. Similarly, Reis et al. [19] introduced the term mean
work to failure (MWTEF) to capture the average amount of work between two errors.
The latter is useful for comparing the reliability for different workloads. Unlike
MTTF, both MITF and MWTF try to capture the amount of work done till an error
is experienced. Hence, MITF and MWTF are often useful in doing trade-off studies
between performance and error rate.

The definitions of MTTF and FIT rate have one subtlety that may not be obvious.
Both terms are related to a particular scope (as explained in the last section).
Consider a bit with ECC, which can correct an error in the single bit. The MTTEF(bit)
is significantly lower than the MTTF(bit + ECC). Conversely, the FIT rate(bit) is sig-
nificantly greater than the FIT rate(bit + ECC). In both cases, it is the MTTF that is
affected and not the MTBF. Vendors, however, sometimes incorrectly report MTBF
numbers for the components they are selling, if they add error correction to the
component.

All the above metrics can be applied separately for SDC or DUE. Thus, one can
talk about SDC MTTF or SDC FIT. Similarly, one can express DUE MTTF or DUE
FIT. Usually, the total SER is expressed as the sum of SDC FIT and DUE FIT.

Dependability Models

Reliability and availability are two attributes typically used to characterize the
behavior of a system experiencing faults. This section discusses mathematical mod-
els to describe these attributes and the foundation behind the metrics discussed in
the last section. This section will also discuss other miscellaneous related models
used to characterize systems experiencing faults.



12

CHAPTER 1 Introduction

1.5.1 Reliability

The reliability R(t) of a system is the probability that the system does not experience
a user-visible error in the time interval (0, ]. In other words, R(t)=P(T > t), where T
is arandom variable denoting the lifetime of a system. If a population of Ny similar
systems is considered, then R(f) is the fraction of the systems that survive beyond
time t. If N; is the number of systems that have survived until time ¢ and E(t) is the
number of systems that experienced errors in the interval (0, t], then

Ne _ No — E(t) E(t)

=1

R(t) = ~t = o — =t
(® No Ny Ny

Differentiating this equation, one gets

dr(t) %Y

dt Ny
The instantaneous error rate or hazard rate h(f)—graphed in Figure 1.4—is defined
as the probability that a system experiences an error in the time interval At, given
that it has survived till time t. Intuitively, h(t) is the probability of an error in the
time interval (¢, t + At].

d(l:;(t) iéig dZ t)
h(t)=P(t< T < t+ At|(T > 1)) N, %t R()
0
Rewriting,
dR(t) _
TR —h(t)R(t)

The general solution to this differential equation is

R(t) — e—fh(t)dt

If one assumes that /(t) has a constant value of A (e.g., during the useful lifetime
phase in Figure 1.4), then
R(t)=e

This exponential relationship between reliability and time is known as the
exponential failure law, which is commonly used in soft error analysis. The expecta-
tion of R(t) is the MTTF and is equal to A.

The exponential failure law lets one sum FIT rates of individual transistors or
bits in a silicon chip. If it is assumed that a chip has n bits, where the ith bit has
a constant and independent hazard rate of /;, then, R(t) of the whole chip can be
expressed as

n—1 _ <Z hi> t
Rit)=]JRit)=]]et=e \i



1.5 Dependability Models 13

Thus, the reliability function of the chip is also exponentially distributed with a
constant FIT rate, which is the sum of the FIT rates of individual bits.

The exponential failure law is extremely important for soft error analysis because
it allows one to compute the FIT rate of a system by summing the FIT rates of indi-
vidual components in the system. The exponential failure law requires that the
instantaneous SER in a given period of time is constant. This assumption is reason-
able for soft error analysis because alpha particles and neutrons introduce faults
in random bits in computer chips. However, not all errors follow the exponential
failure law (e.g., wearout in Figure 1.4). The Weibull or log-normal distributions
could be used in cases that have a time-varying failure rate function [18].

1.5.2 Availability

Availability is the probability that a system is functioning correctly at a particular
instant of time. Unlike reliability, which is defined over a time interval, availability
is defined at an instant of time. Availability is also commonly expressed as

system uptime MTTF MTTF

Availability = = -
variabity system uptime + system downtime ~ MTTF + MTTR ~ MTBF

Thus, availability can be increased either by increasing MTTF or by decreasing
MTTR.

Often, the term five 9s or six 9s is used to describe the availability of a system.
The term five 9s indicates that a system is available 99.999% of the time, which
translates to a downtime of about 5 minutes per year. Similarly, the term six 9s
indicates that a system is available 99.9999% of the time, which denotes a system
downtime of about 32 seconds per year. In general, 1 9s indicate two 9s before the
decimal point and (1 — 2) 9s after the decimal point, if expressed in percentage.

BMeEXAMPLE

If the MTTR of a system is 30 minutes, how many crashes can it sustain per
year and still maintain a five 9s uptime? What is the MTTF in this case?

SOLUTION A five 9s uptime denotes a total downtime of about 5 hours per
year. Hence, the number of system crashes allowed for this system per year is
(5 x 60/30) = 10. The MTTF is (1 year-5hours)/10 = 876 hours.

1.5.3 Miscellaneous Models

Three other models, namely maitainability, safety, and performability, are often
used to describe systems experiencing faults. Maintainability is the probability that
a failed system will be restored to its original functioning state within a specific



14

1.6

CHAPTER 1 Introduction

period of time. Maintainability can be modeled as an exponential repair law, a
concept very similar to the exponential failure law.

Safety is the probability that a system will either function correctly or fail in a
“safe” manner that causes no harm to other related systems. Thus, unlike reliability,
safety modeling incorporates a “fail-stop” behavior. Fail-stop implies that when a
fault occurs, the system stops operating, thereby preventing the effect of the fault
to propagate any further.

Finally, performability of a system is the probability that the system will per-
form at or above some performance level at a specific point of time [10]. Unlike
reliability, which relates to correct functionality of all components, performability
measures the probability that a subset of functions will be performed correctly.
Graceful degradation, which is a system’s ability to perform at a lower level of
performance in the face of faults, can be expressed in terms of a performability
measure.

These models are added here for completeness and will not be used in the rest of
this book. The next few sections discuss how the reliability and availability models
apply to both permanent and transient faults.

Permanent Faults in Complementary Metal
Oxide Semiconductor Technology

Dependability models, such as reliability and availability, can characterize both
permanent and transient faults. This section examines several types of permanent
faults experienced by complementary metal oxide semiconductor (CMOS) transis-
tors. The next section discusses transient fault models for CMOS transistors. This
section reviews basic types of permanent faults to give the reader a broad under-
standing of the current silicon reliability problems, although radiation-induced
transient faults are the focus of this book.

Permanent faults in CMOS devices can be classified as either extrinsic or intrinsic
faults. Extrinsic faults are caused by manufacturing defects, such as contaminants
in silicon devices. Extrinsic faults result in infant mortality, and the fault rate usu-
ally decreases over time (Figure 1.4). Typically, a process called burn-in, in which
silicon chips are tested at elevated temperatures and voltages, is used to acceler-
ate the manifestation of extrinsic faults. The defect rate is expressed in defective
parts per million.

In contrast, intrinsic faults arise from wearout of materials, such as silicon diox-
ide, used in making CMOS transistors. In Figure 1.4, the intrinsic fault rate corres-
ponds to the wearout phase and typically increases with time. Several architecture
researchers are examining how to extend the useful lifetime of a transistor device
by delaying the onset of the wearout phase and decreasing the use of the device
itself.



