
DEPENDABLE SYSTEMS AND CRITICAL 

INFRASTRUCTURES DESIGN
RELIABILITY ENGINEERING AND HARDWARE FAULT-TOLERANCE

DIMITRIS AGIAKATSIKAS, PANAGIOTIS KOTZANIKOLAOU, MIHALIS PSARAKIS



WHAT IS FAULT TOLERANCE

(AKA DEPENDABLE COMPUTING)

It is fair to say

 There is no hardware with zero probability to fail

 There is no complex software that is free of bugs

So how should we cope with faults, especially  safe 

critical computing systems ????

 We need to acknowledge the existence of faults 

and incorporate techniques to tolerate  these 

faults while delivering an acceptable level of 

service  



BRIEF HISTORY OF DEPENDABLE COMPUTING

1970s: The field developed quickly (international conference,
many research projects and groups, experimental systems)

1980s: The field matured (textbooks, theoretical developments, 
use of ECCs in solid-state memories, RAID concept), 
but also suffered some loss of focus and interest 
because of the extreme reliability of integrated circuits

2000s: Resurgence of interest owing to less reliable fabrication at 
ultrahigh densities and “crummy” nanoelectronic components

1960s: NASA and military agencies supported research for 
long-life space missions and battlefield computing

1950s: Early ideas by von Neumann (multichannel, with voting) 
and Moore-Shannon (“crummy” relays)

1990s: Increased complexity at chip and system levels made 
verification, testing, and testability prime study topics

1940s: ENIAC, with 17.5K vacuum tubes and 1000s of other electrical 
elements, failed once every 2 days (avg. down time = minutes)

2010s: Integration of reliability, safety, privacy, and security concerns,
particularly in the cloud, artificial intelligence systems, and IoT

http://rsdo.gsfc.nasa.gov/rapidII/downloads/NASA%20Logo.jpg
http://en.wikipedia.org/wiki/Image:P-MMX.JPG




WHAT IS A FAULT? WHAT IS AN ERROR? WHAT IS A FAILURE

Abstraction Layers of a computing system

 (a) Fault within the inner scope masked and not visible outside the 
inner scope. 

 (b) Fault propagated outside the outer scope and visible as an error.

 The manifestation of a fault will produce error in the system’s state, 
which could lead to a system failure

Deviation of the system’s behavior out of specs 



Example: An application ranks images into three categories, A, B and C.

Golden rank A=90%, B=4%, C=6% → This is the correct rank result

Fault A overflow occurred in one variable of the application

Error A=89%, B=6%, C=5% →We have a deviation from the golden rank 

Failure We do not have any failure since the system’s behavior did not 

deviate from the system’s specifications, i.e., the image ranking is still 

correct

Therefore, not every defect, fault, error, malfunction, or 
degradation leads to failure

EXAMPLES AND ANALOGIES → FUNCTIONAL FAILURES



Example: A real time system.

Error free completion time Tc = 10ms

Absolute Deadline Tc = 15ms 

Fault CPU register corrupted due to a soft error

Error Tc-erroneous =  14.99ms 

Failure Do we have a failure??

EXAMPLES AND ANALOGIES → TIMING FAILURES



Example: Automobile brake system

Defect Brake fluid piping has a weak spot or joint

Fault Brake fluid starts to leak out

Error Brake fluid pressure drops too low

Malfunction Braking force is below expectation

Degradation Braking requires higher force or takes longer

Failure Vehicle does not slow down or stop in time

MORE EXAMPLES AND ANALOGIES



FAULT CLASSIFICATION

Duration

 Permanent

 Transient

 Intermittent

When they were introduced

 Design phase

 Implementation phase

 System operation

Intent

 Unintentional

 Intentional 

 Non malicious

 Malicious

 Intentional

 Non-intentional, i.e., a 
faulty sensor  (Byzantine 
faults)



FAILURES CRITICALITY

 The Windows OS on your laprop crashes (blue screen)

 A bank transaction is lost

 Two trains collide

 The automatic landing system of an airplane fails three 

second before touch down

Noncritical

Critical

Safety 

critical



Long-life systems: Fail-slow, Rugged, High-reliability
Spacecraft with multiyear missions, systems in inaccessible locations
Methods: Replication (spares), error coding, monitoring, shielding

Safety-critical systems: Fail-safe, Sound, High-integrity
Flight control computers, nuclear-plant shutdown, medical monitoring
Methods: Replication with voting, time redundancy, design diversity

Non-stop systems: Fail-soft, Robust, High-availability
Telephone switching centers, transaction processing, e-commerce
Methods: HW/info redundancy, backup schemes, hot-swap, recovery

Just as performance enhancement techniques gradually migrate from supercomputers to desktops, so too 
dependability enhancement methods find their way from exotic systems into personal computers

DEPENDABLE COMPUTER SYSTEMS



ASPECTS OF DEPENDABILITY



DEPENDABILITY-RELATED TERMS WITH THEIR MOST COMMON

QUALITATIVE USAGES AND QUANTIFICATIONS (IF ANY).

Term Qualitative Usage(s) Quantitative Measure(s)

Availability Highly available, High-availability, Continuously available Steady availability, availability, 

MTBF, MTTR

Integrity High-integrity, Tamper-proof, Tamper-proof

Maintainability Easily maintainable, Maintenance-free, Self-repairing

Performability MEBF, MWBF, MCBF

Reliability Reliable, Highly reliable, Highly reliable, Ultrareliable Reliability, MTTF or MTFF

Resilience Resilient

Robustness Robust Impairment tolerance count

Safety High-safety, Fail-safe Risk

Security Highly secure, High-security, Fail-secure

Serviceability Easily serviceable

Testability Easily testable, Self-testing, Self-checking Controllability, Observability



RELIABILITY - DEFINITION

The ability of a system or component to perform its required functions under stated conditions for 

a specified period of time

[IEEE610]: IEEE Standard Glossary of Software Engineering Terminology,

IEEE Std 610.12-1990 (R2002).



RELIABILITY 

 R(t): probability that the system remains in the 

“Functional” state through the interval [0, t] 

R(t) = P(not failed during [0, t])

assuming it was functional at time t = 0

 t = duration of the mission. If a system needs to 

work for slots of ten hours at a time, then (t = 10hrs)

 R(t) for system with exponential distributed failure 

rate λ is

 R(t) = e− 𝜆 𝑡

Functional

state

Failed

state

Failure rate 

R(t) is a non-increasing function 

varying from 1 to 0 over [0,+∞)

Sys1 Sys2 Sys3



EXAMPLE

Context

 We are developing a computing system for a Cubsat to fly in Low Earth Orbit (LEO)

 The mission will last 1 month

 We need to choose RAM1 or RAM2 for the system such that R(t=1 month) of the RAM is not lower than 0.83.

 λ οf RAM1 is 1 failure per year, while for RAM2 it is twice the failure rate of RAM1.

Question?

Which RAM should I choose??? 



MEAN TIME TO FAILURE (NON REPAIRABLE SYSTEMS)

MEAN TIME BETWEEN FAILURE (REPAIRABLE SYSTEMS)

 MTTF = 0׬
∞
𝑅 𝑡 = 0׬

∞
e − 𝜆 𝑡 = 1/λ

 MTTD → Average time to detect

 MTTC → Average time to correct

 MTTR = MTTD + MTTC

 MTBF = MTTF / MTTR

MTTC

Failure rate 

Recovery rate 



AVAILABILITY VS STEADY AVAILABILITY

 Let’s examine the Availability A(t) function

A(t) = 
𝜇

𝝀 + 𝜇
+

𝝀 𝒆−𝒕(𝝀 + 𝜇)

𝝀 + 𝜇
Eq. (14)

 The system starts at state 1 (working) and at time t=0, the 

availability A(0) = 1 

 As the time passes, the system reaches  the steady state 

availability

 In Eq. (14), the first term captures the steady state expression, 

and the second term captures the transitory behaviour as the 

system approaches steady state.

 Therefore, the steady state A of the system is

A = lim
𝑡→∞

𝐴 𝑡 =
𝜇

𝝀 + 𝜇
+
𝝀 𝒆−𝒕(𝝀 + 𝜇)

𝝀 + 𝜇
=

𝜇

𝝀 + 𝜇



 Assume a system with n components, e.g. CPU, memory, disk, 

etc.

 All components must be UP for the system to be operational

 The reliability of the system is 

where Ri is the reliability of component i

 Assuming constant failure rate λ:

( ) ( )
=

=
n

i

iseries tRtR
1

1 2 3 n

R sys = R1 • R2 • R3 • ... • Rn

)exp()exp()exp()(
11

ttttR system
n

i
i

n

i
iseries  −=−=−=  ==

SYSTEM IN SERIES



 System failure rate:

 MTTF = 1/nλ

 Example:

 If each component has reliability 0.99 for one year, then a system with 10 
components has reliability 0.9910 ή 0.9

 =
=

n

i isystem 1


SYSTEM IN SERIES

1 2 3 n



 Assume a system with n spare units (redundancy)

 Only one unit must be UP for the system to be operational

 Reliability of the unit i (probability to be up): Ri

 Unreliability of the unit i (probability to be down): 1-Ri

 Probability all the units to be down

 (1-R1)(1-R2)…(1-Rn)

 System reliability:

1

2

3

n

( ) ( )( )
=

−−=
n

i

iparallel tRtR
1

11

SYSTEM IN PARALLEL



 Example:

 A system consists of 10 spare units, and 

 The reliability of each unit is 0.75

 The system reliability is:

1-(1-0.75)10 ≈ 0.9999

1

2

3

n

( ) ( )( )
=

−−=
n

i

iparallel tRtR
1

11

SYSTEM IN PARALLEL



SERIAL-PARALLEL SYSTEMS

 Example: Two CPUs (a, c) are connected with two memories (b, d) in different ways

a

c

b

d

R SP = 1- (1-Ra Rb) (1-Rc Rd)

a

c

b

d

R PS = (1-(1-Ra)(1-Rc)) (1-(1-Rb)(1- Rd))

CPU Memory

Serial-to-parallel

Parallel-to-serial

CPU Memory



NON SERIAL-PARALLEL SYSTEMS

 Every path from X to Y is a system configuration that 

allows the system to be operational

 The system reliability can be measured by examining 

the operation of the system for each unit m

Rsys = Rm  P(system works|m works) + 

(1-Rm)  P(system works|m fails)

A B C D

E

F

X Y



FLIGHT CONTROL SYSTEM OF BOEING 777

 Boeing’s first commercial jet with FBW was the 777 

(1995)

 In planes with no FBW, the actuators moving the surfaces 

of the plane are controller with mechanical interfaces

 Planes with FBW use a flight computer that reads the input 

from pilots and sensors (e.g., speed, angle of attack etc.) 

and controller the actuators in a closed feedback loop.

 In simple words, the pilots gives simple instructions to the 

computer and the computer in turn controls the plane. 

Needless to say, this computer should be very reliable!

 The A(T=1h) of 777’s computer is 0.999999999, i.e., 

the probability of a fault impacting the integrity and 

availability of the computer should be less than 10-10 / 1h



BLOCK DIAGRAM OF 

THE PRIMARY 

FLIGHT COMPUTER 

(PFC) SYSTEM 

 The PFC is a TMR system consisting of three computing channels (left, center, 

right).  

 Each computing channel consists of three computing lanes.

 Each lane has its own power supply.

 Each channel is physically and electrically isolated via ARINC 629 data bus

digital autonomous terminal access communication (DATAC), also called ARINC 629 data bus



BLOCK DIAGRAM OF 

THE PRIMARY 

FLIGHT COMPUTER 

(PFC) SYSTEM 

 All communications over the ARINC 629 data bus are CRC checked

 Each computing lane uses a different processor (Intel, AMD and Motorola)

 Each processor runs control software that is compiled by a different compiler

 Each computing lane does not operate in TMR. Instead one of the three lanes 
serves as the command processor and the other two monitor the outputs 
generated by the designated command processor. 

 Only the command processor is communicating through the data buses with the 
remaining two channels; it transmits its proposed flight surface command to the 
other two channels

 Each command lane receives three values of the proposed commands, and 
performs a median value select to determine what is called the “selected” surface 
command.

1 of the 3 

computing channels

Initially, Boeing management decided to use also 3-version programming for 
developing the control software.

But each team of programmers asked to many questions to clarify software 
requirements and the management cancelled the 3-version programming 
approach


	Default Section
	Slide 1: Dependable Systems and Critical Infrastructures Design
	Slide 2: What is fault tolerance (aka dependable computing)
	Slide 3: Brief History of Dependable Computing
	Slide 4: fault tolerant Applications 
	Slide 5: What is a fault? What is an error? What is A failure
	Slide 6: Examples and Analogies  Functional failures
	Slide 7: Examples and Analogies  Timing failures
	Slide 8: More Examples and Analogies
	Slide 9: Fault classification
	Slide 10: Failures Criticality
	Slide 11: Dependable Computer Systems 
	Slide 12: Aspects of Dependability 
	Slide 13: Dependability-related terms with their most common qualitative usages and quantifications (if any).
	Slide 14: Reliability - definition 
	Slide 15: Reliability  
	Slide 16: Example
	Slide 17: Mean time to failure (non repairable systems) mean time between failure (repairable systems)
	Slide 18: Availability vs steady availability
	Slide 19: System in series 
	Slide 20: System in series 
	Slide 21: System in parallel 
	Slide 22: System in parallel 
	Slide 23: SERIAL-PARAllel systems 
	Slide 24: Non serial-parallel systems 
	Slide 25: Flight control system of Boeing 777
	Slide 26: Block diagram of the primary flight computer (PFC) system 
	Slide 27: Block diagram of the primary flight computer (PFC) system 


