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a b s t r a c t 

Internet of Things (IoT) increase the interconnectivity and interoperability of systems in 

various critical sectors, such as industrial control, healthcare and smart transportation sys- 

tems. At the same time, as IoT technologies enable systems to interact both in cyber and 

physical ways, they also act as enablers of complex attack paths against critical systems. 

In this paper we propose a novel risk-based methodology for identifying and assessing IoT- 

enabled attack paths against critical cyber-physical systems. While the majority of existing 

approaches focus on cyber system connectivity only, the proposed methodology models 

both cyber and physical interactions. In comparison to existing cyber physical approaches 

that grow exponentially, our approach is significantly more efficient, by utilizing an attack 

tree topology; the critical system is set as the root (target) of an attack tree that is recursively 

build, based on the identified cyber-physical system interactions. Our methodology uses 

well-known building blocks such Common Vulnerabilities and Exposures (CVE), Common 

Vulnerability Scoring System (CVSS) and threat modeling. Furthermore,we significantly re- 

duce false positives by prioritizing the identified attack paths in a risk manner, which, in 

turn, can assist decision makers in effectively mitigating multi-hop attack paths. To validate 

our methodology, we developed a proof-of-concept implementation and tested it using a 

realistic scenario from the healthcare sector. Our results show that the proposed methodol- 

ogy can efficiently identify and assess hidden and/or underestimated cyber physical attack 

paths. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Cyber-physical systems (CPS) play a key role in various sectors
such as industrial control, energy, transportation and health-
care. Until recently CPS used to operate in isolated physi-
cal and network environments. But the adoption of IoT re-
lated technologies, such as interconnected sensors and ac-
tuators, have transformed these air-gaped CPS by enabling
real-time remotely managed functionalities that reduce op-
� This research has been co - financed by the European Union and Gre
ness, Entrepreneurship and Innovation, under the call RESEARCH - CRE
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erational costs, increase productivity and quality control and
allow the provision of new innovative services. As a side effect,
this increased interoperability and interconnectivity has lead
to a sharp increase of their attack surface, since remote ad-
versaries may exploit a multitude of potential IoT-enabled at-
tack paths ( Stellios et al., 2018 ). Indeed, remotely managed IoT
devices equipped with various cyber and physical interfaces
create new attack capabilities, since they may act as bridges
between different and presumably segregated networks and
technologies and interact in unpredicted ways such as by ex-
ek national funds through the Operational Program Competitive- 
ATE - INNOVATE (project code:T1EDK-01958). 
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ending, abusing or misusing their cyber-physical interactions 
 Ronen et al., 2016; Ronen and Shamir, 2016 ). Even worse, the 
ack of security certification in IoT increases the vulnerabil- 
ty surface and the available attach paths. Traditional risk as- 
essment methodologies fail to capture this novel and con- 
inuously evolving threat landscape. Although they examine 
he network connectivity of the systems and may capture the 
isks deriving from cyber interconnections between systems,
hey are not concerned with ‘non-conventional’ cyber interac- 
ions that rely on the physical proximity of typical network in- 
erfaces. For example, different network interfaces connected 

n unrelated networks, may actually allow an adversary con- 
rolling one interface to affect the security of the other, by 
ntercepting non-encrypted communication or jamming an- 
ther device’s interfaces that if they operate in the same fre- 
uency band, (e.g. ZigBee/WiFi at 2,4 GHz). In addition, they 
ail to capture threats such as those deriving from the physi- 
al capabilities of devices (e.g. physical proximity with moving 
ystems/parts) or those deriving from wireless Input/Output 
nterfaces, such as audio and visual interfaces ( Ronen and 

hamir, 2016 ). 
Motivation. As demonstrated by recent real-world incidents 

nd proof-of-concept attacks ( Stellios et al., 2018 ), such non- 
raditional interactions may be exploited to realize actual 
yber attacks. For example, a remotely controlled industrial 
obot with moving parts, may be misused by adversaries to 
hysically damage a nearby critical system ( Maggi et al., 2017 ); 
ireless IoT may be exploited to trigger jamming or injec- 

ion attacks, against nearby networks ( O’Flynn, 2011; Petit 
t al., 2015 ); line-of-sight interfaces and light emission devices 
e.g. infrared or smart lights) may be abused to create covert 
hannels to leak information from, otherwise, air-gaped sys- 
ems ( Fiebig et al., 2014; Guri and Bykhovsky, 2019; Petit et al.,
015; Ronen and Shamir, 2016 ). To address the limitations 
f traditional security assessment, recent studies have fo- 
used on modeling cyber-physical attack paths in IoT systems 
 Agadakos et al., 2017 ) or to assess the integration of IoT in-
rastructure in typical information systems ( Dorsemaine et al.,
017 ). However, very few methodologies consider both cyber 
nd physical attack paths. In addition, none of the existing 
ethodologies takes into consideration the risk characteris- 

ics, which leads to an exponentially large number of poten- 
ial attack paths without any risk prioritization. Such ‘noisy’ 
esults may not provide a reliable input, for cost timely and 

ost effective risk mitigation. 
Contribution. We propose a novel risk assessment method- 

logy for assessing IoT-enabled, cyber-physical attack paths 
gainst critical systems. Our main contribution is the identifi- 
ation and assessment of attack paths that may combine both 

ypical cyber interactions among systems, as well as physical 
nteractions usually enabled by IoT systems. To identify attack 
ath scenarios that are meaningful/profitable for adversaries,
e follow an attack tree approach that is target oriented and 

ource driven: each critical system is considered as a poten- 
ial target node for adversaries. Then, based on the identified 

nteractions, a recursive algorithm is used to construct all the 
otential cyber-physical attack paths towards the target node.
he exploitability of those attack paths is assessed for various 
dversarial scenarios with respect to: (a) the exposure of the 
nitial (source) node of each attack path against different ad- 
ersaries, and (b) the cumulative vulnerability of all the inter- 
cting nodes within each attack path. This allows us to filter 
ut those interactions that are not ”mature enough” to be ex- 
loited by adversaries and thus to reduce the number of the 
enerated assessed attack paths by focusing only on attack 
aths that are more likely to be exploited based on their cur- 
ent exposure status. Ultimately, by using a properly modified 

isk formula the risk of the identified attack paths against real- 
stic threat agents is calculated, thus providing “ready-to-use”
nformation for applying cost-efficient mitigation controls. By 
eveloping a proof-of-concept implementation and by test- 

ng a realistic scenario, we validate the proposed methodol- 
gy and we demonstrate that it can effectively discover hid- 
en and underestimated complex cyber-physical attack paths 
f high impact and risk. 

Paper Structure . In Section 2 we review the related work,
hile in Section 3 we describe in detail the proposed method- 
logy. In Section 4 we implement and validate the proposed 

ethodology, based on a realistic proof-of-concept scenario 
n the medical sector. Section 5 concludes this paper. 

. Related work 

ttack graphs and CVSS 
Analyzing attacks via attack graphs or attack trees is an ac- 

ive research area for several years, see for example ( Ammann 

t al., 2002; Ingols et al., 2009; Jajodia et al., 2005; Lallie et al.,
020; Phillips and Swiler, 1998 ). Some attack graph method- 
logies have utilized CVSS metrics to assess the vulnerabili- 
ies or security risk. Cheminod et al. (2009) describe how tra- 
itional air-gaped industrial systems can be attacked from 

emote locations (e.g. Internet) by taking advantage of com- 
lex interconnectivity schemes and existing vulnerabilities.
allon and Bascou (2011) integrate CVSS and attack trees 

n order to compute the severity of a multi-stage, multi- 
ost attacks. In particular, they utilize the method described 

n Sheyner et al. (2002) to construct network attack trees,
hich then combine with applicable CVEs in order to assess 

he cumulative damage on hosts and consequently on the 
pplicable networks. Cheng et al. (2012) propose a metric- 
evel aggregation of individual CVEs from three different as- 
ects: Attack vector, authentication and access complexity. In 

i et al. (2019) Li et al describe a quantitative model of attacks 
n Distribution Automation Systems based on CVSS and at- 
ack trees. In particular, they propose an attack probability 
uantification model based on attack trees, in which the max- 

mum probability of each attack path is calculated by utilizing 
VEs of each leaf (node). Lallie et al. (2020) present a thorough 

nalysis of more than 180 attack graphs/trees in order to eval- 
ate the effectiveness of such methods. 

Risk assessment for IoT-enabled Cyber-Physical systems In 

e et al. (2017) a five phase framework was proposed. The re- 
earchers presented attack scenarios such as a sinkhole at- 
ack in a smart home environment. According to the authors 
he limitations of the methodology included the difficulty 
o depict all diverse connectivity paths, no-connectivity at- 
ack scenarios (e.g. Distributed-Denial-of-Service - DDoS) het- 
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erogeneity on communication protocols and static network
topology. Dorsemaine et al. (2017) examine the potential risks
to a legacy Information System (IS) and IoT infrastructure
whereas Liu et al. (2012) develop a dynamic risk assessment
methodology for IoT that incorporates features from an Arti-
ficial Immune System . Kott et al. (2017) propose an abstractive
threat modeling that is focused on the challenges involved
when modeling large scale, diverse and complex networks. In
Agadakos et al. (2017) Agadakos et al propose a framework to
model both cyber and physical interactions of IoT, in order to
identify unexpected chains of events and thus the potential
impact of the addition or removal of a device on an existing
network. The proposed model was based on time transitions
and states and was evaluated in a smart-home setting. Ac-
cording to Agadakos et al. (2017) the exponential increase of
possible combinations limit the scaleability of their method-
ology. Another limitation is that the model can produce ’false-
positives’, since, it considers all input/output combinations
possible without any security assessment. 

Sequeiros et al. (2020) present related work on attack and
threat modelling for IoT systems and cloud mobile applica-
tions whereas in Alhanahnah et al. (2020) the authors present
IotCom , an approach to discover hidden threats. In particu-
lar, the researchers analyzed multi-app coordination threats
that can trigger infinity activation loops or chain coordination
events that can lead to race conditions and physical wear of
a device. Via their platform they were able to perform static
analysis of multiple IoT applications and detect several events
of safety violations. 

A vulnerability-based risk assessment regarding edge com-
puting and IoT was presented in George and Thampi (2019) .
Authors proposed a multi-attacker multi-target graphical
model that included attackers, targets, vulnerability relations
in the network in order to assess the risk at the edge comput-
ing devices and apply the corresponding mitigation strategies.
Ghazo et al. presented a tool for automatic attack graph gen-
eration for computer and SCADA networks ( Al Ghazo et al.,
2019 ). The authors tested their proposed algorithm in a water
treatment system. 

In summary, although the aforementioned risk-based at-
tack graph methodologies succeed in identifying attack vec-
tors resulting from cyber connectivity, they are not concerned
with attack paths that also involve physical interactions. On
the other hand, works that consider both the cyber and phys-
ical connectivity ( Agadakos et al., 2017; Alhanahnah et al.,
2020; Sequeiros et al., 2020 ) may produce an exponentially
large number of attack paths including a large portion of false
positives, since they do not follow a risk/threat prioritization
process. Thus modeling and assessing complex IoT-enabled
multi-level attacks in an efficient way is an open challenge. 

3. The proposed methodology 

Assessing the risk of complex cyber-physical attack paths
against a critical target system first requires the identifica-
tion of all existing interactions , both direct and indirect, of
other systems with the target system as well as with them-
selves. According to RA standards, risk calculation can be de-
fined based on five different risk class types, as defined in
Zambon et al. (2011) and Gritzalis et al. (2018) , which rely on
threat, vulnerability and impact factors. In our methodology,
risk calculation properly combines ‘Type 1’ with ‘Type 4’ risk
classes as follows. In ‘Type 1’ methods ( Gritzalis et al., 2018;
Zambon et al., 2011 ) risk is analysed in relation to a threat and
an asset, (or a group of similar assets). The calculation com-
bines the likelihood of a threat, the ( combined ) vulnerability of
the asset(s) involved, and the impact of the threat in the (group
of) asset(s), as shown in Eq. (1) : 

Risk(Threat, Asset) = Likelihood(Threat) � Vuln(Threat, Asse

�Impact (Threat, Asset) (1

The operator � denotes a combination between the risk
factors (this can be implemented through a discrete risk ma-
trix). In ‘Type 4’ methods, risk is analysed with respect to an
asset that has previously been categorized as critical. The risk
in relation to a threat combines the vulnerability of the critical
asset only and the potential impact of the threat against the
critical asset, i.e.: 

Risk(Threat, Crit.Asset) = Vuln(Crit.Asset) 

�Impact (Threat, Crit.Asset) (2)

Since our goal is to assess the risk of attack paths of in-
teracting nodes towards a critical target, we properly combine
Eqs. (1) and (2) as follows. Let T denote the critical target sys-
tem and let D denote the set of all the assets (devices) in scope.
Note that D contains both typical Information and Communi-
cation Technology (ICT) systems, as well as cyber-physical and
IoT or IoT-enabled components that may be directly or indi-
rectly interconnected with T . Let AP = (d n → · · · → d 1 → T ) ,
d i ∈ D denote an attack path of interacting nodes, where the
threat is triggered in node d n and the actual target of the at-
tack is the critical target T . Then the risk for such and attack
path is defined as follows: 

Risk (Threat, AP ) = Likelihood(Threat, AP ) � Vuln (Threat, AP ) 

�Impact (Threat , T ) (3)

The reason for combining Type 1 with Type 4 risk classes
was to allow for fine-grained threat and vulnerability input
from open sources (as supported by Type 1), and at the same
time focus on the input of the critical target system (as sup-
ported by Type 4 risk formulas). Since the proposed methodol-
ogy is source driven and target oriented, our goal is to assess
the risk for various threat agents that may trigger an attack at
the source node of an attack path, in order to eventually affect
the critical target system. In our model, Asset is replaced by an
attack path AP of multiple interacting assets, where the des-
tination of the path is the critical target system T . The impact
is assessed based on the consequences of the critical target T .
This is reasonable since the ultimate goal of the adversary is
to harm the critical asset; the other systems in the path are
used in order to extend the attack vector. However, the like-
lihood and the vulnerability assessment take into consider-
ation the whole attack path, since the adversary is expected
to combine any capability having on the interacting node, in
order to gradually exploit all vulnerabilities within an attack
path. Obviously, the optimal adversarial strategy is to combine
vulnerabilities found at the entry point system d n with vul-
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erabilities found in the whole chain, to pivot (horizontally or 
aterally) to the ultimate target T . 

.1. Building blocks: CVSS and CVE 

ommon Vulnerabilities and Exposures 1 (CVE), developed by 
ITRE, is a list of uniquely identifiable vulnerabilities, and 

s a ‘de facto’ standard for numerous software products. The 
ommon Vulnerability Scoring System (CVSS) ( Erd ̋osi, 0000 ) is 
n open framework that incorporates risk characteristics to 
ssess the severity of CVE software vulnerabilities. CVSS in 

ts latest version consists of three metric groups: Base Score,
emporal , and Environmental metrics. The Base Score includes 
he Exploitability and the Impact Metrics. The Exploitability 
etrics include: the Attack Vector (AV) with possible values 

N)etwork, (A)djacent network, (L)ocal and (P)hysical; the At- 
ack Complexity (AC) with values (L)ow or (H)igh; the Privileges 
equired (PR) with values (N)one, (L)ow or (H)igh; the User In- 
eraction (UI) with values (N)one or (R)equired; and the Scope 
S) with values (U)nchanged or (C)hanged. The Impact Met- 
ics include the Confidentiality (C), the Integrity (I) and the 
vailability (A) impact, in the scale of (N)one, (L)ow or (H)igh.
he Base Score produces a score ranging from 0 (lowest) to 10 

most severe). A CVSS vulnerability is represented as a vec- 
or string, a compressed textual representation of the values 
sed to derive the score. The Base Score can be modified with 

emporal and Environmental metrics, to fine-tune the vulner- 
bility level. Temporal metrics contribute to the final score by 
aking into consideration the current state of the vulnerability,
.g. whether a full patch exists or not. The Environmental met- 
ics modify the base score to each custom environment; for 
xample the implementation of network-layer security con- 
rols, relevant to the particular vulnerability. Depending on the 
rganization under assessment it may be possible to apply 
emporal and/or environmental metrics “en masse” for spe- 
ific device/interaction types. 

In our methodology we adopt and make use of the CVSS 
3.1 scoring system and its notation, in order to assess the 
ulnerability of the interactions between the nodes for both 

yber as well as physical interactions. The reader is referred 

o FIRST.Org (2019) for detailed analysis of CVSS. 

.2. Terminology and definitions 

n order to assist the reader, we will first define the basic ter- 
inology. Then, before describing the methodology in detail,
e provide a high-level description. 

Interactions We define as an Interaction between two systems 
nodes), called the source node, say x and the destination node 
 and we denote as (x, y, type ) the directional action or ‘influ- 
nce’ that x may cause to y , due to their proximity and/or con- 
ectivity. We define two categories of interactions (each hav- 

ng detailed types): physical and cyber interactions. 
Cyber interactions They include all the actions that may be 

riggered by the source towards the destination node, due to 
heir cyber connectivity. In order to model cyber interactions,
e make use of two characteristics: the network connectiv- 

ty level and the logical access level. Concerning the network 
1 https://cve.mitre.org/ 

c

onnectivity level x and y may either reside to the same net- 
ork or they may be connected via different network seg- 
ents and/or technologies. Concerning the logical access of 

 to y we distinguish three access levels, none, low and high.
one implies that x has no logical access at all at y ; low corre-

ponds to user-level access whereas high corresponds to priv- 
leged (e.g. root/admin) access. Table 1 summarizes the cyber 
nteraction types. 

Physical Interactions These include all the actions that may 
e triggered by x to y due to their physical proximity. The phys-

cal Attack Vector ( AV:P ) described in CVSS ( FIRST.Org, 2019 ),
s applied for Machine-to-Machine (M2M) interactions that are 
apable to physically reach each another. In addition, AV:A is 
onsidered appropriate for physical interaction types P2 and 

3, since Adjacent network access is adequate for physical 
nteractions that require network proximity. We define three 
ypes of physical interactions, as shown in Table 2 . 

Type P1 describes cases where devices equipped with mov- 
ng parts or moving capabilities (e.g. IoT-enabled industrial 
obotic arm, a robot vacuum cleaner) are in proximity with the 
arget system. Adversaries may exploit network/software vul- 
erabilities of the device to extend their physical reach and 

ause physical damage and/or gain physical proximity with 

he target system ( Maggi et al., 2017 ). Type P2 describes I/O
roximity for specific interfaces (e.g. optical). Such I/O inter- 
aces can be vulnerable against nearby adversaries. For exam- 
le, line-of-sight interfaces such as optical sensors of colli- 
ion avoidance systems may be abused by introducing arti- 
acts ( Petit et al., 2015 ). Other examples include the abuse of
ine-of-sight interfaces for creating covert channels to exfil- 
rate data ( Guri and Bykhovsky, 2019; Ronen and Shamir, 2016 ).
urthermore, audio or video I/O interfaces have been proved 

o leak information as described in Assange (2017) . Finally P3 
ypes are based on the fact that it is possible to cause jamming
r even integrity attacks, when wireless interfaces that oper- 
te on the same bandwidth (even if they are running different 
rotocols) are physically in range (e.g. O’Flynn, 2011; Petit et al.,
015 ). 

Attack Paths Let T denote the critical target system and let 
denote the set of all the assets (devices) in scope. We define 

s an Attack Path against a target system T and we denote as
P = (d n → · · · → d 1 → T ) , d i ∈ D a chain of interactions,
here the threat is triggered in node d n (the entry-point sys- 

em) and the actual target of the attack is the critical system T .
e stress out that for systems that directly interact with the 

arget, we will examine both cyber and physical interactions,
ince any direct interaction may be exploited by the adversary 
o harm the target system. For systems that are indirectly con- 
ected with the target, we only model their cyber dependen- 
ies, since they may be utilized in order to extend the attack 
ector, by successively compromising a chain of interactions 
owards the target system. 

Cumulative Vulnerability Vector of an Interaction: 
V V 

(
(x, y, type ) 

)
This is a CVSS-like vector representing 

he combined vulnerability level of an interaction. It has a cen- 
ral role in our methodology and is described in Section 3.5 .
umulative Vulnerability Vector of an Attack Path: CV V 

(
AP , AV 

)
imilarly, it denotes a CVSS-like vector that represents the 
ombined vulnerability level of an AP consisting of sev- 

https://cve.mitre.org/
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Table 1 – Cyber interaction types: A cyber interaction (x → y ) may belong to type C1–C6, based on the connectivity and the 
logical access of x to y . 

Logical Access 

Connectivity None (no explicit access) Low (user-level) High (admin-level) 

L2 (Local) Network C1 C2 C3 
L3 (Remote) Network C4 C5 C6 

Table 2 – Physical interactions based on the proximity between devices. The implied capabilities of the source node on the 
target system may involve physical tampering, manipulation of I/O interfaces or manipulation of shared-band network 

interfaces. 

Type Description Interface Examples 
Common attack 
patterns 

P1 Physical proximity ( x 
may use a moving part 
and/or moving 
capabilities to 
physically reach y ) 

Remotely controlled 
moving parts or devices 

Robotic arm, crane, 
wheeled device, 
drone 

Cause destruc- 
tion/obstruction. 

P2 Wireless I/O proximity 
( x is in range with a 
wireless I/O interface of 
y ) 

Audio, Visual, Optical 
interfaces 

Line-of-sight (LiDAR, 
IR), audio / video 
interfaces 

I/O suppres- 
sion/manipulation 
(e.g. introduce 
artifacts in optical 
sensors). 
Side-channel attacks 
(covert channels for 
data exfiltration). 

P3 Networks’ proximity ( x 
and y at different 
networks that are in 
range) 

Different, but 
shared-band wireless 
interfaces 

e.g 802.11.x and 
802.15.x operate at 
2.4 GHz 

DoS (jamming) - 
Packet injection 
attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eral interactions. Its computation is described in detail in
Section 3.7 . 

3.3. A high-level description 

The proposed methodology will utilize CVSS information in
order to construct CVSS-like vectors that will enable the as-
sessment of the exploitability of the identified interactions,
and ultimately the vulnerability level of attack paths against
adversaries. In this way we will assess the implied capabilities
of the source to the target node resulting from their interac-
tion, in order to exclude those interactions that are not “ma-
ture enough” to be exploited by adversaries. Then, by combin-
ing the validated interactions, we will generate and assess at-
tack paths that are more likely to happen, based on the current
exposure status of their interactions. The proposed method-
ology, shown in Fig. 1 , consists of the following phases: 

Phase 1 - Interaction modelling: The goal of this phase is
to model all potential cyber and physical interactions between
the target T and all the devices in D, as well as between devices
themselves. It combines information such as a device’s I/O
and network interfaces, moving parts and their active ranges,
devices’ physical location, available networks with their cy-
ber/physical characteristics and logical/physical access rules,
to construct lists of interactions. 

Phase 2 - Interaction vulnerability assessment: The main
goal in this phase is to assess all the potential interactions
identified in Phase 1 by defining the cumulative vulnerability
level of each interaction, based on existing CVEs per device as
well as on environmental information. Essentially, this phase
filters out those interactions that are not ‘mature enough’ to
be exploited by potential adversaries in their current state. 

Phase 3 - Attack Path Construction. The goal of this phase
is to construct all the attack paths against the target system,
by exhaustively combining all the assessed interaction tuples
provided by Phase 2. Attack paths may vary in length, by in-
volving one or more interactions. 

Phase 4 - Attack Path Assessment: Finally all the attack
paths defined is Phase 3 are assessed so as to calculate their
risk level, based on a practical implementation of Eq. (3) . For
each attack path the CVV of each interaction tuple is com-
bined with the vulnerabilities of the initial node and the char-
acteristics of various adversaries, to calculate the risk level for
various attack path scenarios. Fig. 2 presents a graphical rep-
resentation of the first three phases. As shown, the first mod-
eled and assessed based on the input information, in order to
construct valid attack paths to eventually be assessed. 

3.4. Phase 1: interaction modelling 

During this phase we utilize all available information regard-
ing device’s physical characteristics, I/O interfaces and net-
work connectivity, to construct all their cyber and physical in-
teractions as defined in Section 3.2 . Algorithm 1 implements
interaction modeling. Let PT the input for physical topology re-
lated information, NT for network topology and AR for access
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Fig. 1 – High level description of the proposed risk assessment methodology. 

Fig. 2 – A graphical representation of a simplistic, yet realistic, risk assessment scenario that includes interaction modelling, 
assessment and attack path construction phases. 
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capabilities respectively. The algorithm takes as input all of
the described information, and outputs a set of lists (denoted
as Int eract ionList s [] ) containing all the direct and indirect inter-
actions between the critical target T and any device x ∈ D in a
structured way. 

We define as the level-i interaction list (denoted as
Int eract ionList s [ i ] = L i ) the set of all the interactions of the
form (x, y, type ) , where the shortest distance of the source
node x from the target system T is i hops. In addition, since
for the direct interactions we model both cyber and physical
interactions, it holds that if (x, y, type ) ∈ L 1 then y ≡ T and
type ∈ [ P 1 | P 2 | P 3 | C 1 | . . . | C 6] (as defined in Tables 2 and 1 ). On the
other hand, for all indirect interactions ∈ L 2 , . . . , L n , it holds
that y � = T and type ∈ [ C 1 | . . . | C 6] . 

Algorithm 1 works as follows. First, all the direct interac-
tions with the target system are computed to form the list L 1

(see lines 2–3 in Algorithm 1 ). Then, all the indirect interaction
lists L i , i = 2 , . . . , n are recursively computed, by exhaustively
examining the potential interactions of all the source nodes
in level-i interactions, but now as being destination nodes of
possible interactions (lines 4–15). The algorithm avoids dupli-
cating interactions already defined in previous lists, so that
each interaction is defined once, in the shortest possible list.
The procedure IdentifyInteractions is recursively called
in the main algorithm. In the first call, since the destination of
the interaction will be the target system T , both physical and
cyber interactions will be checked. For all other calls, only the
cyber interactions will be modeled. 

Since each call on IdentifyInteractions has compu-
tational cost proportional to |D| , it is easy to see that the com-
putational cost of Algorithm 1 will be proportional to O (|D | n )
where n is the number of interaction lists. In our implemen-
tation, various ways are used to optimize the identification
of interactions. First, during the identification of the systems
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Algorithm 1 – Continued 
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 D, T ) the physical characteristics (such as movement capa- 
ilities or proximity-based network interfaces and other non- 
ypical interfaces) are identified. Thus, physical dependencies 
ill only be examined for nodes with such capabilities. For ex- 

mple, a device equipped with moving parts/capabilities must 
e within its operating radius range in order to interact with 

he target system. Similarly, devices equipped with wireless 
nterfaces are examined for physical interactions with the tar- 
et system if their interfaces operate in the same frequency 
see Appendix A, Table A.13). This information is assumed in 

T in our algorithm. For the cyber interactions, during the 
dentification of the nodes, each network interface of each 

ode will be assigned to its corresponding network. Cyber in- 
eractions will then be identified based on network relations 
able as well as network access rules. 

Furthermore, the logical access level for each interaction is 
xamined, in order to define the level or remote access capa- 
ilities for each interaction tuple. This information is assumed 

n AR respectively. 

.5. Phase 2: interaction assessment 

he goal of this phase is to filter out from further process- 
ng those interactions that are not ‘mature enough’ to be ex- 
loited by assessing their vulnerability level. For interactions 
hat are considered as valid, their cumulative vulnerability 
evel (CVV), as defined in Section 3.2 , is calculated. 

Assessing whether an interaction (x, y, type ) is valid or not,
s based on the level of the influence that x has on y due to
heir interaction. Recall that by definition, an interaction char- 
cterizes the influence that the source node x has on the des- 
ination y , due to their network connectivity or physical prox- 
mity. Assume that x has been compromised by the adversary 
partially or fully). Then, the adversary can take advantage of 
ll the capabilities of x on y in order to compromise y (partially 
r fully), as the next step towards the actual target system T .
part from the explicit access that x has on y due to their in-

eraction, an adversary controlling x may also attempt to ex- 
end the control on y , by exploiting the existing vulnerabilities 
f y . For example, attempt to escalate the access level of x to
 from user-level to admin-level access. Assessment Strategy: 
n order to assess an interaction, we first define their default 
implied) impact and attack capabilities. These baseline attack 
apabilities of an interaction will be modelled using a CVSS- 
ike vector, denoted as I ntC VSS base . Then, for each particular in-
eraction we will use environmental information to transform 

he baseline capability interaction vector into a vulnerability 
ector, by taking into consideration the characteristics of the 
pecific environment. The modified vulnerability interaction 

ector is denoted as I ntC VSS env . For example for a cyber in-
eraction, I ntC VSS env will take into consideration existing net- 
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Table 3 – Defining the implied capabilities for each of cyber interaction type as a CVSS vector. 

Exploitability Metrics Impact Metrics 

Type AV (M)AC PR UI S ∗ (M)C (M)I (M)A 

I ntC VSS base C1 A H N N U N N N 

C2 A H L N U L L L 
C3 A H H N U H H H 

C4 N H N N U N N N 

C5 N H L N U L L L 
C6 N H H N U H H H 

I ntC VSS env (M): These metrics can be environmentally modified (See Table 4 ) ∗Scope is unchanged (U), for level 1 interactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

work security controls (if any), miss-configured access lists or
context-specific access capabilities. For physical interactions,
environmental information such as physical security controls
and other context-specific information will be considered (e.g.
Appendix A, Table A.15). Finally, in order to assess the possi-
ble ways that an adversary might exploit to escalate its con-
trol on y we will examine the resulting attack capabilities of
x on y , with respect to the overall vulnerabilities identified
on y . 

3.5.1. Defining the implied capabilities and impact of interac-
tions 
As explained above, for each interaction type, we define a
baseline CVSS-like vector, I ntC VSS base , representing the im-
plied attack capabilities of x on y . Cyber interactions For the
cyber interactions, recall that they have been defined based
on the network connectivity and logical access of x to y (see
Section 3.2 and Table 1 ). Thus, if x and y are connected at
the same local network, we define the attack vector capabil-
ity of the interaction as ‘Adjacent Network’ ( AV:A ), while for
remote network connectivity, AV:N is assumed. Concerning
the privileges required metric, we consider the implied logical
access of each interaction type. In the case where the inter-
action type implies no access of x to y (e.g. nodes that only
reside in the same/different network – types C1/C4), then we
set the implied privileges of x to y to ‘None’ (PR:N). Similarly,
the baseline privileges of x to y is set to ‘Low’, for types im-
plying non-privileged access C2 and C5 (e.g. x is an aggrega-
tor that has limited capabilities of to reading/writing and/or
execute data on a sensor y ). Finally, for types C3 and C6 the
privileges metrics are set to ‘High’ (e.g. x is an e-health web
server that is able to remotely administer critical functions of
an IoT-enabled medical infusion pump y ). For the rest of the
exploitability metrics we set the baseline attack complexity
to ‘High’ and the user interaction to ‘None’. The motivation is
to assume as default values the most favorable for the adver-
sary (although these values are modified when environmental
characteristics are applied). Concerning the impact metrics,
we consider that if an interaction does not imply any access
privileges of x on y (C1 and C4), no impact can be caused on
y by default. For interaction types that consider low level ac-
cess of x on y (C2 and C5) we set the implied impact on y to
“Low” for all impact metrics (C-I-A), proportionally to the im-
pact of a user access vulnerability. Similarly, for C3 and C6, we
set the implied impact to “High” for all impact metrics. Table 3
presents the I ntC VSS base vectors for all cyber interaction types.
As presented in Table 4 , the attack complexity and the impact
metrics of I ntC VSS base capability vector are modified in order
to form the I ntC VSS env vulnerability vector, depending on the
available environmental information regarding security con-
trols on network and/or application layer. For example, lack
of security controls reduces the required AC of an I ntC VSS base

whereas a network security control (e.g. use of latest encryp-
tion schemes on network layer) can further reduce the corre-
sponding impact metric (confidentiality). 

Physical interactions For physical interactions we also use a
similar approach. Due to physical proximity the attack vector
is set as the implied access capability of x on y ( AV:P/A ) de-
pending on the interaction type (see Section 3.2 and Table 2 ).
For the rest of the exploitability metrics we follow a same rea-
soning as in the case of cyber interactions, allowing the most
favorable metrics for an adversary as the default values. The
only difference is that for all the types the implied privileges
are set to “None”, since a physical interaction does not require
any kind of privileges (as defined in CVSS) of x on y . Finally
we consider the scope as “Unchanged”, since, physical inter-
actions are only effect the target system T . Similarly to cy-
ber, the transformation of the baseline capabilities of physi-
cal interactions to a vulnerability vector is subject to environ-
mental information. In particular, relevant security controls
(see Appendix A table A.15) and the amount of damage that
the source device’s interface is capable of deliver to the tar-
get system are both taken into consideration for the final CVV
to be calculated. Depending on the target type, several types
of security controls may also be applicable (e.g. Force, 2017;
Force and Initiative, 2013; Stouffer et al., 2011 ). An overview of
how environmental security controls affect attack complexity
and individual impact metrics of I ntC VSS base capability vector
is presented in Table 6 . 

3.5.2. Identifying the vulnerabilities of the destination node 
For each target node of an interaction, we examine its ex-
isting vulnerabilities (CVEs). In addition, vulnerability chain-
ing of single CVSS vectors is applied in specific cases, to as-
sess the effect of combined vulnerabilities (see for example
FIRST.Org, 2019 ). In any case, environmental information (tem-
poral included) must first be applied before the vulnerability
assessment and chaining process begins. Single-vulnerability
CVSS vectors Depending on the cyber interaction type, CVEs
can be considered as possible single (non-chained) vulnerabil-
ity vectors, if their attack vector is adjacent or remote network
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Table 4 – Proposed network environmental modifiers for I ntC V SS env vector according to the corresponding security control 
level. 

Network Security Controls (M)AC Impact Modifiers 

M(C) M(I) M(A) 

Not defined/Weak H → L No effect No effect No effect 
Moderate H No effect No effect No effect 
Strong H H → L H → L H → L 

L → N L → N L → N 

Table 5 – Defining the implied capabilities for physical interactions as a CVSS-like vector. 

Exploitability Metrics Impact Metrics 

Type AV (M)AC PR (M)UI S (M)C (M)I (M)A 

I ntC VSS base P1 P H N N U N L L 
P2 A H N N U L L L 
P3 A H N N U N L L 

I ntC VSS env (M): Can be modified, based on physical environment (See Table 6 .) 

Table 6 – Proposed physical environmental modifiers for I ntC V SS base vector according to the corresponding security controls 
for each impact metric. 

Physical Security Controls (M) AC Impact Modifiers 

(M)C M(I) (M)A 

Not defined/Weak H → L No effect No effect No effect 
Moderate H No effect No effect No effect 

Strong H H → L H → L H → L 
L → N L → N L → N 

Table 7 – Summary of all vectors utilized in interaction assessment . 

I ntC VSS base 

A CVSS-like capability vector assigned on the interaction based on the 
interaction’s type, using Table 3 (for cyber) or Table 5 (for physical 
interactions). 

I ntC VSS env The modified I ntC VSS base vector based on environmental information for each 
particular interaction (e.g. see Tables 4 and). 

{ SingleCVSS } A list of all the single CVSS vectors corresponding to vulnerabilities identified in y 
satisfying Eq. (6) . 

{ C hained C VSS } A list of all the CVSS vectors of the chained vulnerabilities of y , computed based on 
Eq. (5) and satisfying Eq. (6) . 

CV V 
(
(x, y, type ) 

)
The Cumulative Vulnerability Vector of an interaction as defined on Eq. (7) . 

f

∀

C

F
v
v
S
c
(
a
v

v

c
v
e  

2 Function min/max is based on the following assump- 
tions: AV:N > A > L > P, AC:H > L, PR:H > L > N, UI:R > N, 
S:C > U, C/I/A:H > L > N. 
or C1-C3 ( AV:A/N ), or AV:N for C4-C6 respectively. 

 C VE of d ∈ D, if AV:A/N then C VE ∈ SingleC VSS (4) 

hained-vulnerabilities CVSS vectors 
Vulnerability chaining is based on the paradigm of 

IRST.Org (2019) which demonstrates serial exploitation of 
ulnerabilities for privilege escalation, i.e. escalate the attack 
ector from local access to network or adjacent network (see 
ection 3.4 of FIRST.Org (2019) ). In particular, we consider the 
ases where the exploitation of network vulnerabilities on y 
 AV:A or AV:N ) that result in basic user access or an equiv- 
lent impact of C:L/I:L/A:L is combined with high-impact 
ulnerabilities ( AV:L ) to produce a chained vulnerability CVSS 
ector as described in Eq. (5) 2 : 

C hained C VSS = [ AV : [ N | A ] , max (AC ) , min (PR ) , 

max (UI) , max (S ) , max (C, I, A )] (5) 

Validating CVSS vulnerability vectors After vulnerability 
haining is complete, all of the identified (single and chained) 
ulnerabilities of y are examined, to verify which of them are 
xploitable based on the attack capabilities of x on y , as de-
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fined in I ntC VSS env . Eq. (6) is applied for each vector CVSS ∈
{ SingleC VSS | C hained C VSS } , i.e. 

If I ntC VSS env [ Exploitability ] ≥
CVSS [ E xpl oit abil it y ] then CVSS ∈ ValidCVSS (6)

In Eq. (6) the operator ≥ has the following meaning for
each exploitability metric: AV : A ≥ AV : N (i.e., if x is assumed to
have adjacent network access to y , then it is capable to exploit
vulnerabilities that require either adjacent or remote access);
AC : H ≥ AC : L (i.e., if node x is capable to trigger attacks against
y requiring high complexity, then it is also capable to trigger
low complexity ones); PR : H ≥ PR : L ≥ PR : N (in the same sense
is x is already assumed to have high privilege access on y then
it will be able to also exploit vulnerabilities on y requiring low
privilege access or no logical access at all). For the rest of the
exploitability metrics the explanation is straightforward. 

3.5.3. Assessing the vulnerability level of the interaction 

Now the cummulative vulerability level of an interaction
V V 

(
(x, y, type ) 

)
, defined in Section 3.2 , is computed as follows.

Recall that I ntC VSS env is a cvss-like vector that defines the ac-
tual (environmental) capabilities that x has on y due to their
interaction, and that Valid C VSS is a set of all valid ( i.e. poten-
tially exploitable) vulnerabilities identified on the destination
node y , either single or chained ones. The vulnerability vector
V V that characterizes this interaction will be chosen among

the above, based on the following procedure. 
For all level-1 interactions, the primary criterion for

choosing the vector to be assigned as CV V 

(
(x, T , type ) 

)
is con-

sidered the impact rather than the exploitability sub-score,
since we are interested in identifying the maximum possi-
ble damage that the target node may exhibit by each inter-
action. For level-i , i ≥ 2 interactions, the cumulative vul-
nerability level CV V 

(
(x, y, type ) 

)
, y � = T , is assessed as fol-

lows. From the I ntC VSS env as well as from all the valid sin-
gle and chained vulnerability vectors of y , CVSS ∈ ValidCVSS
choose the one that: (i) concerning its impact metrics, it satis-
fies (C ≥ L&I ≥ L&A ≥ L) and (ii) has the highest exploitability
sub-score. If more than one exist that satisfy the above cri-
teria, choose the CVSS vector that has the maximum impact
sub-score. The main motivation for this process is to ensure
that interactions will be assigned to the CV V vector that cor-
responds to at least a partial compromisation on y (assured by
the impact threshold) with the minimum required effort (i.e.
the higher exploitability sub-score). 

In both cases, if there exist more than one valid vulnerabil-
ity vectors with identical exploitability and impact sub-scores,
the single is preferred over the chained (if any). Finally, if no
CVSS vector exists that satisfies the required criteria set in
Eq. (7) , the interaction is considered as invalid and CV V is set
to ∅ . These rules are described in Eq. (7) . Note that the order of
the arguments in function max denotes their priority in each
case. Algorithm 2 summarizes the interaction vulnerability as-
sessment phase. 

V V 

(
(x, y, type ) 

) = V ∈ (Valid C VSS y , I ntC VSS env ) s.t.: ⎧ ⎨ 

⎩ 

V has max(Impact,Exploitability) if y = T (7)
(C, I, A ) ≥ L & V has max(Expl., Impact) if y � = T 
3.6. Phase 3: attack path construction database 

In this phase all possible attack paths against the target sys-
tem T are constructed, by exhaustively combining all the as-
sessed interactions, produced in the previous phase. The at-
tack path construction is described in Algorithm 3 . The main
algorithm (lines 1–22) works as follows. First, all the assessed
level-1 interactions (i.e., direct interactions with the target sys-
tem T ) are defined by default as one-hop attack paths ( A P 1 ).
Then all the level- i attack paths A P i , i > 1 , are computed re-
cursively using A P i −1 and all the assessed interaction lists up
to level- i ( A L 1 , . . . , A L i ), by exhaustively examining if the des-
tination node of a level- i interaction is the initial (source) node
in each level- (i−1) attack path. The final output is a list of lists
At t ackPat hs [ i ][ j] , containing all the valid chains of interactions
of depth i towards the target system T . The help procedures
isSource and append are described for clarity. 

Note that in Algorithm 3 the interaction tuples have been
extended to also include their cumulative vulnerability vector,
which was defined and assessed in Phase 2. In the case where
interactions have null CVV value (recall that this is possible, as
described in Section 3.5.3 ), they are considered as invalid and
are excluded from any phase of the attack path construction
(lines 7 and 12). It is easy to see that the computational cost of
Algorithm 3 will be proportional to the product of the size of
all the assessed lists, i.e., O(| A L 1 | · · · | A L n | ) . 

3.7. Phase 4: attack path scenarios assessment 

The attack paths constructed in the previous phase can now
be assessed. The risk of each attack path will be assessed us-
ing Eq. (3) , as defined in Section 3 . Recall that the risk for each
attack path, takes into consideration the vulnerability of the
whole attack path, the likelihood of a threat against the at-
tack path being realized, and finally the impact on the actual
critical target system. 

The vulnerability level of each attack path combines the
cumulative vulnerability level of all the interactions that form
the attack path, i.e. { CV V } ∈ AP , which have been assessed
during the second phase ( Section 3.5 ). In addition, we also con-
sider the vulnerabilities of the initial (‘entry’) node of each at-
tack path, i.e. the source node of the level- n interaction, for
each attack path of length n . Recall that for each assessed in-
teraction the CV V calculation has considered the capabilities
of the source node and the vulnerabilities of the destination
node. Thus, the vulnerabilities of the initial entry node have
not been considered. 

In order to examine all applicable threat agents against an
attack path, for the initial node we first calculate all the ap-
plicable CV V vectors, one for each available AV:N/A/L/P) .
As in Section 3.5.3 each individual CVV must meet the im-
pact threshold criterion. As defined in Section 3.2 , we denote
as CV V 

(
AP , AV 

)
the CV V for a specific attack path and for a

specific Attack Vector ∈ [ N | A | L | P ] . For example CV V ( AP 1 , N 

)
denotes the CVV of AP 1 for the attack vector “Network’. The
threat level for each attack path will then be assessed based on
threat modeling against each available AV of the initial node
of the path. Recall that, by definition, this node will be the en-
try point for an adversary exploiting an attack path. Thus, we
will model and assess all the applicable threat agents that are
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apable of utilizing different attack vectors against the initial 
ode. For each attack vector of an attack path, the correspond- 

ng threat level is determined by taking into consideration the 
elevant CV V 

(
AP , AV 

)
exploitability metrics, physical/network 

haracteristics of the initial node, as well as adversarial pro- 
ling features including, among others, required resources,
otivation and even current threat landscape reports. Finally,

he impact level for all attack paths will be based on the ac- 
ual business impact that the loss of confidentiality, integrity 
nd availability of the target system has on the organization.
e utilize the impact metrics (C,I,A) of the level-1 interaction 

here T is the destination node, and modify them properly by 
pplying the corresponding Impact Subscore Modifier as defined 

n the CVSS scoring system. 

.7.1. Vul n (Threat , AP ) : calculating the vulnerability level of 
ttack paths 
s discussed above, for an attack path AP , this process will 
ombine the cumulative vulnerability CV V of each interac- 
ion involved in AP along with the vulnerabilities of the ini- 
ial node of a path, to form, for each attack path, the Cumula-
ive Vulnerability Vector(s) for all existing attack vectors of the 
ath’s entry node, i.e. CV V 

(
AP , AV 

)
. At first all individual CVEs

f the initial entry node are processed to form single and/or 
hained CVSS vectors. 

Similarly to Section 3.5.2 , for each possible AV a single or a
hained vulnerability with the highest impact and exploitabil- 
ty sub-score is selected to from the CVSS vulnerability vector.
ach of the latter is then combined using Eq. (8) : 

CV V 

(
AP , AV 

) = [AV : [N | A] , max (AC) , 

max (PR) , max (UI) , max (S) , Level 1 (C , I , A)] (8) 

.7.2. Likelihood(Threat, AP ) : calculating the threat level of 
ttack paths 
fter all the relevant CV V 

(
AP , AV 

)
have been calculated, the 

hreat likelihood can be defined. In order to calculate the 
hreat level one must first identify all available profiles of 



c o m p u t e r s  &  s e c u r i t y  1 0 7  ( 2 0 2 1 )  1 0 2 3 1 6  13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

threat agents that fit the organization under assessment.
Then, the corresponding capabilities for each type of the ad-
versary are defined by utilizing the CVSS exploitability metrics
AV / AC / PR / UI ( Fig. 3 ). 

For example, a disgruntled employee is considered as
someone with both logical as well as physical access to in-
ternal networks/devices ( AV:N/A/L/P ), restricted (user) ac-
cess ( PR:Low ), basic computer skills ( AC:Low ) and is not re-
lying on any user interaction in order to launch an attack
( UI:None ). On the other hand well-organized, groups of cy-
ber criminals usually attack organizations from external net-
works (e.g. Internet - AV:N ) without the need of any prior log-
ical access ( PR:None ), consist of adversaries that are highly
skilled ( AC:High ) and are capable of exploiting vulnerabil-
ities with both UI:Required/None in order to gain initial
foothold to the organization (e.g. via spear-phishing e-mails or
by exploiting zero-day vulnerabilities). In order to define the
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Algorithm 3 – Continued 

Fig. 3 – Threat level (likelihood) calculation methodology. 
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hreat level we adopt the context and scale as described in 

roup et al. (2012) . 
For each AV of CV V 

(
AP , AV 

)
of the initial node (attack sce-

ario) the corresponding access level (physical or network) of 
he adversary is defined. For physical access ( AV ≡ P ), Public 
pplies to devices which are placed in a public places (e.g. an 

P camera in a outside a building), Private can be considered 

n area where the access is limited to certain groups of people 
e.g. an IP surveillance camera in a corporate garage accessi- 
le only to employees) whereas Protected can be considered a 
lace heavily monitored and safeguarded by physical access 
ecurity systems (e.g. a smart thermostat placed inside a data 
enter). Similarly, for network access ( AV ≡ L , A , N ) we charac- 
erize as internal networks that are accessible from within 

he corporate environment whereas external are the ones 
hat reside outside the organization’s premises, Internet in- 
luded. 

In order to match all applicable threat agents for each at- 
ack path scenario each individual metric of CV V 

(
AP , AV 

)
is 

ompared to the corresponding metrics of each attacker pro- 
le. Then, for the adversary types that satisfy all individual 
riteria described in the previous paragraph, the correspond- 
ng likelihood for each particular threat agent is applied. 
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Table 8 – Risk calculation matrix for assessing Risk (T hreat, AP ) by combining Vul n (T hreat, AP) , Likel ihood(T hreat, AP ) and 

Impact (T hreat , T ) , as defined in Eq. (3) . 

Risk Level 

Vulnerability Level Impact Level 

Very Low Low Moderate High Very High 

Threat Level 

VL L M H VH VL L M H VH VL L M H VH VL L M H VH VL L M H VH 

Low VL VL L L M VL L L M M L L M M M L M M M M M M M M H 

Medium VL L L M M L L M M M L M M M M M M M M H M M M H H 

High L L M M M L M M M M M M M M H M M M H H M M H H VH 

Critical L M M M M M M M M H M M M H H M M H H VH M H H VH VH 

Risk Level: Very Low = VL, Low = L, Moderate = M, High = H, Very High = VH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7.3. Impact (Threat , T ) : calculating the impact level of attack
paths 
In order to assess the actual impact that the organization suf-
fers from each attack path in terms of CIA, we utilize each
individual impact metric of the Level-1 interaction tuple
and apply the appropriate security requirement weights as
defined in the CVSS scoring system. Guidelines for defining
these weights according to the type of the target system can be
found in the CVSS Guide (see §3.11 of FIRST.Org (2019) ), as well
as in several other publications such as Barker and NIST (2008) .
For example, the applicable security requirements” weights
for a power generator could be set to High for integrity and
availability and Low for confidentiality. In Table A.16 at the
Appendix, we define the values of each individual CIA impact
metric after the proper weight is applied. As in threat level,
we adopt a [ Very Low ... Very High ] scale, identical to the context
and scale of NIST ( Group et al., 2012 ). Finally the overall impact
level can be computed by combining the individual (C,I,A) im-
pact metrics (see Table A.17 in A). 

3.7.4. Attack path risk assessment 
By combining all the above information, the risk level of each
attack vector for each attack path can be computed, according
to our risk assessment formula of Eq. (3) . This is essentially
computed using the risk matrix shown in Table 8 . Similarly to
impact the context and scale of risk level is identical with the
one described in Group et al. (2012) . 

3.7.5. Attack path scenario risk mitigation 

Since the implementation of security controls varies, gran-
ular security policies can be tested and implemented, e.g.
from applying low cost security controls like system patch-
ing, medium cost controls like ICT vulnerability patching, up
to targeted policies such as software security hardening on the
selected nodes. 

Depending on a pre-selected risk threshold, the assessor
can identify which attack path scenarios exhibit an unaccept-
able security risk. Then, the assessor can implement the mit-
igation plan based on the organization’s security policies and
procedures. In addition, our methodology enables the assessor
to add alternative mitigation schemes. For example, if impact
is considered of utmost importance the proposed strategy is
to apply the appropriate security controls at all the nodes and
corresponding networks of level-1 interactions. In addition,
the assessor may choose to eliminate certain types of adver-
saries just by focusing on applying the proper security coun-
termeasures on entry nodes. Finally, in situations where secu-
rity policies and procedures is difficult to implement and/or
an intermediate response is needed, the assessor may choose
to prioritize the mitigation process by selecting specific de-
vices that have the highest multitude of attack path scenarios
and/or are above a predefined risk level. All of the aforemen-
tioned mitigation scenarios can be simulated and the most
efficient, cost beneficial security policies/procedures can then
be selected. 

4. Implementation and validation 

In order to validate the proposed methodology a proof-of-
concept implementation was created with in python3, utiliz-
ing several libraries. Pandas dataframes were used to struc-
ture and analyze the required input and output data of the
application. The AST library was used in order to split com-
plex input data from.csv files, so they can be inserted to lists
and dataframes. For the vulnerabilities, the CVSS/CVSSlib li-
brary was used to calculate the base score (the exploitability
and impact sub scores) of the interaction CVSS vectors and the
newly produced CVSS vectors. The CVEs were collected from
the NIST database and were pulled from the json files, based
on their CPE identifier. For the implementation of Algorithm 1 ,
the interaction tuples were properly adjusted and extended to
also include the network id and the interface id used by the
source and destination nodes. This extension aims to raise
the complexity of attack paths from n 2 to n 2 · n i , where n is
the number of devices and n i the number of interfaces per de-
vice. During the interaction assessment phase ( Algorithm 2 ),
rules for network connectivity, physical interactions and se-
curity controls were applied. Then, capability vectors with the
CVE/CVSS vectors of the destination node of each interaction,
were utilized, along with python libraries CVSSlib/CVSS, for
the calculation of the highest scoring vector for each AV , the
CVV score and the production of the Assessed Interaction Lists . 

The attack path construction module ( Algorithm 3 ) is an
iterative procedure that takes as input the Assessed Interaction
Lists , along with an extensive CVSS centric rule-set, in order
to produce a structured Assessed Attack Paths Lists . Finally for
the attack path assessment, the CVV vector for each vulner-
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Fig. 4 – The simulated scenario - Network diagram, CVEs, cyber and physical proximity. 
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bility AV is calculated by utilizing CVSS/CVSSlib, based on 

he available vulnerabilities on the source node of each attack 
ath. The exploitability metrics of the produced vector are 
hen checked with each attacker’s capabilities and the phys- 
cal/logical access of the each adversary profile to the initial 
ode. 

.1. Test scenario 

o validate the efficiency and accuracy of the proposed 

ethodology we used as a test case a realistic scenario from 

he healthcare sector (see Fig. 4 ). In particular, we focused on 

ritical systems and services such as on-line remote health- 
are services and near-patient infusion pumps. We simulated 

cenarios where the infusion pump is placed both in a smart 
ome, as well as within the hospital. In addition, we included 

arious low-importance IoT devices in both environments 
uch as smart lamps, thermostats and IP surveillance cam- 
ras, as well as traditional ICT systems such as personal com- 
uters, network routers and access points. We defined logical 
ccess rules among the devices (e.g. to allow a doctor to mon- 
tor and reprogram infusion pumps via e-health services). In 

ddition, for each device several well-known CVEs, or in some 
ases custom CVEs based on previous research were assigned 

e.g. CUS-2016-1 Ronen et al. (2016) ). 
In order to be as realistic as possible we included popular 

edical devices and ICT equipment. In particular, we utilized 

wo infusion pumps, one by ’BD Alaris’ (near-patient, home) 
nd another one by ’Medtronic’ (in-hospital), as well as a pa- 
ient monitor (Carescape B450 by ’GE healthcare’). In addition,
e added IoT devices such as smart lighting systems (Philips),
 smart thermostat, an IP-enabled surveillance camera with 

nfrared interface as well as windows server(s) running re- 
ote medical services, network equipment by Cisco and D- 
ink and home/hospital workstations running Windows 10.
or each device specific software version(s) based on the Com- 
on Platform Enumeration (CPE) standard (CPEIDs - see Ta- 

le ), corresponding vulnerabilities, cyber-physical interfaces,
hysical location (hospital/home), the corresponding network 
or each device’s interface and logical access to other devices 
as assigned. Furthermore, we defined network relations (see 

able ), network access rules among devices as well as rele- 
ant security controls on network layer (environmental infor- 
ation). For each interface type we defined the corresponding 

yber and physical interaction types, range and type (internal,
xternal). For example, an infusion pump is physical located 

t the hospital (internal), has one wireless interface that com- 
unicates via a 802.11.x network (NetID 1 - internal), can in- 

eract with other devices with interfaces that operate in the 
ame band (e.g. Philips hue smart lamps - interaction type P3) 
nd is remotely managed by e-healthcare software (DevID 5).
xcept from traditional cyber attack vectors ( AV:N/A/L ) we 
lso included non-traditional attack methods such as those 
escribed in Guri and Bykhovsky (2019) . 

Healthcare is an attractive sector for adversaries such as 
rganized cyber crime, due to the great value of proprietary 
esearch data (e.g. COVID-19 vaccine) as well as patient’s med- 
cal information such as Electronic Health Records (EHR) in the 
lack market whereas healthcare organizations such as hos- 
itals are considered as ‘profitable business’ of ransomware 
ampaigns. In addition, COVID-19 pandemic increased the 
eed for telehealth services and therefore the interest in dark 
eb mentions increased 144% according to a recent threat re- 
ort ( SecurityScorecard, 2020 ). In our threat analysis we con- 
idered several types of realistic threat agents, ranging from 

ighly motivated adversaries such as cyber criminals, to in- 
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Table 9 – Adversarial model for healthcare ecosystem (PoC). 

Adversaries Capabilities 
Physical/Network 
Access Level Motives Resources Likelihood 

Healthcare Rights Activist AV:N/AC:L/PR:N/UI:N External 1 Limited Low 

Disgruntled Healthcare Worker AV:N,A,L/AC:L/PR:N,L/UI:N,R Internal (Hospital) 1,2 Limited Low 

Disgruntled Healthcare 
Systems’ Administrator 

AV:N,A,L,P/AC:H/PR:N,L,H/UI:N,R Internal/Protected (Hospital) 1,2 Moderate Low 

Business Competitor AV:N/AC:L/PR:N/UI:N,R External(Internet) 1 Significant Moderate 
Cyber Criminals AV:N/AC:L,H/PR:N/UI:N,R External (Internet) 3,4,5 High Very High/Low 

Cyber Terrorist AV:N,A,L,P/AC:L,H/PR:N/UI:N,R External/Internal 
(Hospital/Home) 

1,2,4 High Moderate/Low 

Nation State AV:N,A,L,P/AC:L,H/PR:N/UI:N,R External/Internal 
(Hospital/Home) 

1,2,4,5 Very High Low 

Motivation: 1 = Harm Reputation, 2 = Damage/Disable equipment, 3 = Financial Gain, 4 = Harm Patient(s), 5 = Steal Patients’ Data ( ∗)Likelihood: 
Hospital/Home 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ternal, moderately motivated/skilled disgruntled employees.
In addition, we defined specific motives known to be applica-
ble to the healthcare sector. Finally, for each motive we took
into consideration past and present threat reports (( for Net-
work and, ENISA; Proofpoint, 2019; ProofPoint, 2020; Securi-
tyScorecard, 2020 )) including recent reported incidents (e.g.
Scroxton, 2020 ) concerning the healthcare ecosystem in order
to define the likelihood of each adversary type. We also applied
different likelihood levels for same adversary types depending
on the point-of-entry devices’ environment (home/hospital).
To test our methodology, we first identify all the cyber and
physical interactions, using all devices in scope as possible
targets. Then we calculated the attack paths for the three crit-
ical target systems: two medical pumps, one inside the hos-
pital and the other in the home environment (DevIDs 7 , 8 )
and also an e-health services web server (DevID 5 ). We assess
the relevant interactions and we calculated the risk of the at-
tack paths towards all the three predefined targets. In the at-
tack path assessment phase we firstly computed all applicable
CVVs of the initial node of each attack path and then we went
on calculating the CV V 

(
AP , AV 

)
for each attack path scenario.

In order to define the applicable threat agents for each attack
path we compare their characteristics shown in Table 9 with
each of the CV V 

(
AP , AV 

)
exploitability metrics. 

To calculate the impact level for each attack path we uti-
lize the vulnerability impact metrics of the ’ Level-1 ’ in-
teraction of each attack path and apply the security re-
quirement weights. In particular we defined the latter as
C:L, I:M, A:M / C:M, I:H, A:H for in-home/in-hospital
infusion pumps and C:H, I:H, A:H for the e-health ser-
vices. In particular, we consider the impact of exploiting a sin-
gle infusion pump placed in a home environment to be signif-
icant lower than the one of multiple infusion pumps installed
in a hospital whereas the e-health web services is considered
as a high impact target. 

Finally, we utilized Table 8 from Section 3.7.4 to define the
risk level of each attack path scenario. 

4.2. Results analysis 

In order to test the performance of the algorithm we run the
simulation for the creation of interaction tuples using each
node as the target device. Table 10 sums up the required time
for computing all possible interactions. Then, we proceeded
with the implementation of all of the methodology phases for
the three selected critical targets. 

4.2.1. Interaction modelling and attack path construction
phase 
From Table 11 we can infer that our target-oriented approach
reduced the multitude of potential interactions of all devices,
networks and interfaces for all three targets to 245 cyber-
physical interaction tuples in total whereas in the vulnera-
bility assessment of the interaction tuples phase the overall
number was further reduced by 27% (182). From the latter 2103
attack paths were formed, of which 272 cyber-physical, for all
three targets. Finally, for all the predefined threat agents, 6163
cyber and 1016 cyber-physical attack path scenarios (map-
pings of attack paths to applicable threat agents) were formed
and assessed. 

4.2.2. Risk assessment phase 
Risk analysis of the formed attack path scenarios resulted
in a variety of risk levels ranging from Very Low (VL) to
Very High (VH) (see Fig. 5 ). In particular, 75 (1,2%) of the
assessed cyber threat scenarios were characterized as Very
High whereas the highest risk level of cyber-physical was
High (4%). 

The adversary risk profiles for the healthcare ecosystem
paradigm is depicted in Fig. 6 . By further analyzing the results
we defined the AP scenarios that each device participated ei-
ther as an intermediate node in the attack chain or as a Point-
of-Entry. As shown in Table 12 the devices with IDs 3 , 0 and 13
are the top three devices that are part of, or act as enablers for
an AP scenario. In addition, the aforementioned devices were
also the ones with the highest score concerning AP scenarios
with risk levels Very High or High . 

Besides the analysis and ranking of the attack paths and
the relevant scenarios, and beyond the ’expected’ high-risk
paths, our methodology may assist the risk assessor to iden-
tify underestimated and/or hidden attack paths. We analyse
three characteristic AP scenarios provided by our tool (see
Fig. 7 ). We deliberately included high impact - low proba-
bility scenarios, as those are likely to be overlooked by typ-
ical risk assessment methodologies. The first is a stealthy,
cyber-physical AP Scenario of high risk. A cyber-criminal takes
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Table 10 – Interaction modelling calculation time (per target device/total/average). 

Target Device 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sum averg 

Time (sec) 1,71 1,46 0,80 1,02 1,04 1,14 1,34 1,40 1,11 0,70 1,19 0,85 1,39 0,84 1,39 1,01 1840 1,15 
Levels 3 6 4 3 3 4 6 5 3 3 4 4 6 4 6 3 N/A 4,19 
Interactions 113 142 109 108 76 118 97 75 113 107 124 112 137 109 140 99 1773 12,006 

Table 11 – Interactions, attack paths and attack path scenarios per interaction level for all three targets. 

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

Interactions 23 (9 Phy) 87 87 50 1 0 
Assessed Interactions 19 (9 Phy) 65 47 50 1 0 
Attack Paths (Cyber) 10 47 154 454 688 478 
Attack Paths (Cyber-Physical) 8 24 68 171 1 0 
AP Scenarios (Cyber) 46 162 514 1555 2283 1603 
AP Scenarios (Cyber-Physical) 16 66 246 682 6 0 

Fig. 5 – Cyber and cyber-physical attack paths scenarios per risk level. 

Fig. 6 – Risk profile of each predefined threat agent. 

Table 12 – Multitude of AP scenarios per node for targetIDs 5 , 7 and 8 . 

TargetID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

AP Scenarios 4857 32 4574 4927 709 2458 122 0 2002 2568 288 3199 101 4742 92 2138 
As point-of-entry 315 11 762 1016 0 9 24 0 465 2568 230 423 11 562 24 759 
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Fig. 7 – High impact, IoT-enabled, stealthy cyber/cyber-physical AP scenarios paradigms from our test scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

advantage of software vulnerabilities on the hospital’s main
router to gain initial foothold, then exploits vulnerabilities
found on IoMT devices (patient healthcare monitors - smart
beds) and causes DoS to multiple IoT-enabled infusion pumps
by exploiting the physical proximity of interfaces working in
the same band frequency). Such an attack path could be part
of a ransomware campaign. 

In the second AP scenario, a remote adversary exploits a
critical vulnerability found on an Internet exposed IP surveil-
lance camera; then exploits via lateral movement an IoT-
enabled healthcare monitor to ultimately to gain access to
hospital’s web services and exfiltrate sensitive patient data.
Finally, the third AP scenario is considered as a stealthy, high
impact - low likelihood scenario. An highly skilled/resourced
adversary (e.g. nation state) targets a home patient and via
war driving techniques manages to infiltrate the patient’s
home network by exploiting vulnerabilities found in smart
light bulbs and the corresponding controller. Then, she pivots
into the home patient’s network and takes advantage vulnera-
bilities found on the actual target (IoT-enabled infusion pump)
ultimately threatening the patient’s life. 

4.2.3. Risk mitigation 

After calculating the risk for cyber and cyber-physical AP sce-
narios we proceeded to the risk mitigation phase. In particular,
we simulated a typical patch scenario which an organization
would most likely implement in order to mitigate the risks. As
the first step in a typical threat remediation process is to ad-
dress the vulnerabilities found at the critical devices (targets).
Then, the next stage is to patch the ICT equipment such as
servers, workstations and crucial network equipment. Finally,
the last step is considered to be addressing the vulnerabili-
ties found on IoT devices. As depicted in Fig. 8 after patch-
ing all three critical systems there was a significant reduc-
tion from a total of 7179 to 4984 AP scenarios (31%). Especially
for cyber AP scenarios there was a significant reduction (100%
for Very High , 25% for High , 35% for Moderate and Low )
whereas there was no reduction to cyber-physical ones, since,
physical interactions with the target system do not rely on
software vulnerabilities. In the next stage (ICT patch process)
AP scenarios related with high risk level were fully mitigated,
leading to a significant reduction from 4984 to just 95 (just
6 cyber and 95 cyber-physical) AP scenarios. The numbers of
cyber-physical AP scenarios where further reduced to just 10
after IoT devices’ vulnerabilities were addressed. The residual
risks after the whole patching process was completed, where
mainly due to insider threats such as adversaries with logi-
cal access to specific devices. ( Disgruntled Healthcare Systems’
Administrator/ Worker ). All of the above are depicted in Fig. 8 . 

In order to further improve the mitigation process we
strategically utilize the available information from the risk as-
sessment phase. In particular, from the available information
in Table 12 we classified the devices based on the multitude of
AP scenarios (either as intermediate or entry node). We chose
the first three devices with the highest score (IDs 3 ,0 and 13 )
and applied all security patches. We then run the simulation
and discover a total reduction of 94% (from 7179 to just 396) for
all AP scenarios (97% for cyber and 78,5% for cyber-physical).
This in turn makes this approach a far more efficient way to
reduce risks especially when a quick response is of utmost im-
portance. In addition, an assessor may utilize the available in-
formation to prioritize the security countermeasures against
specific types of adversaries and/or specific types of cyber or
physical interactions (e.g. cyber criminals able to physically
interact with a near-patient medical device from a remote lo-
cation such as the Internet). 

5. Conclusions 

In order to address the risk deriving from the increased cyber
and physical interoperability among ICT and IoT systems, we
have proposed a target-oriented and source-driven methodol-
ogy, in order to efficiently define and assess the attack paths
against critical targets. By extending CVSS metrics we model
and assess both cyber and physical interactions using vulner-
ability vectors, which are then utilized to assess various attack
path scenarios. As demonstrated in our test scenario, our ap-
proach greatly reduces the number of identified paths, which
may provide useful input for risk mitigation. Furthermore, by
integrating exploitability metrics to threat agents’ character-
istics, we automated the risk assessment process in order to
be able to identify and assess hidden realistic attack scenarios.

Future work includes the enrichment of interaction mod-
elling phase by including additional physical interaction
types. In addition, we aim to automate the interaction identi-
fication phase, by creating a cyber security ontology expressed
as a knowledge graph that will improve the processing of tem-
poral and environmental information provided by automated
network scanning tools, to automatically produce network in-
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Fig. 8 – Risk level and multitude of attack path scenarios per patch level. 

f
t
a
c
i
c
t
t

D

W

S

S
f

C

t
i
l
i  

P
a
v
i

R

A

A

A

A

A

B

C

C

D

ormation and other stable datasets. A promising approach for 
he production of stable datasets such as the CVSS temporal 
nd environmental scores and the adversarial (threat agent) 
haracteristics, is the utilization of Natural Language Process- 
ng (NLP) and other Machine Learning techniques to parse and 

reate context from existing open sources. Finally, we plan 

o investigate the potential of integrating publicly available 
hreat intelligence sources (e.g. Stergiopoulos et al. (2018) ). 
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