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v This lecture was prepared based on material (slides 
and text) from the books:

S. Theodorids and K. Koutroumbas, “Pattern 
Recognition, 4th Edition”, Academic Press, 2008
S. Theodoridis, A. Pikrakis, K. Koutroumbas and 
D. Cavouras, “Introduction to Pattern 
Recognition: a Matlab Approach”, Academic 
Press, 2010
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v Least Squares Methods
Ø If classes are NOT linearly separable, we shall compute 

the weights

so that the difference between
• The actual output of the classifier,          , and

• The desired outputs, e.g.
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Ø SMALL, in the mean square error sense, means to choose        
so that the cost function
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Ø Minimizing

where Rx is the autocorrelation matrix

and the crosscorrelation vector
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Ø Multi-class generalization
• The goal is to compute M linear discriminant functions:

according to the MSE.

• Adopt as desired responses yi:

• Let

• And the matrix
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• The goal is to compute    :

• The above is equivalent to a number M of MSE minimization 
problems. That is:

Design each    so that its desired output is 1 for           and 0 for 
any other class.

Ø Remark: The MSE criterion belongs to a more general class of 
cost function with the following important property:

• The value of          is an estimate, in the MSE sense, of the 
a-posteriori probability              ,  provided that the desired 
responses used during training are                    and 0 
otherwise.
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ØMean square error regression: Let          ,           be  
jointly distributed random vectors with a joint pdf
• The goal: Given the value of      estimate the value of    . 

In the pattern recognition framework, given      one wants 
to estimate the respective label          .

• The MSE estimate     of      given       is defined as:

• It turns out that:

The above is known as the regression of       given     and 
it is, in general, a non-linear function of      . If             is 
Gaussian the MSE regressor is linear.
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v SMALL in the sum of error squares sense means

Ø

that is, the input xi and its
corresponding class label  (±1).
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v Pseudoinverse Matrix
Ø Define

Ø

Ø

Ø

responses desired ingcorrespond  y
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Thus

Ø Assume N=l X square and invertible.  Then
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Ø Assume N>l. Then, in general, there is no solution to
satisfy all equations simultaneously:

Ø The “solution” corresponds to the minimum
sum of squares solution

unknowns equations     
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Ø Example:
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Ø

ú
ú
ú

û

ù

ê
ê
ê

ë

é-
==

ú
ú
ú

û

ù

ê
ê
ê

ë

é-
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

-

34.1
24.0
13.3

)(

0.0
1.0
6.1

 , 
107.48.4

7.441.224.2
8.424.28.2

1 yXXXw

yXXX

TT

TT



15

v The Bias – Variance Dilemma
A classifier        is a learning machine that tries to predict
the class label y of    . In practice, a finite data set D is used 
for its training. Let us write           . Observe that:

Ø For some training sets,                                    ,  the 
training may result to good estimates, for some others
the result may be worse.

Ø The average performance of the classifier can be tested 
against the MSE optimal value, in the mean squares 
sense, that is:

where ED is the mean over all possible data sets D.
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• The above is written as:

• In the above, the first term is the contribution of the 
bias and the second term is the contribution of the 
variance.

• For a finite D, there is a trade-off between the two 
terms. Increasing bias it reduces variance and vice 
verse. This is known as the bias-variance dilemma.

• Using a complex model results in low-bias but a high 
variance, as one changes from one training set to 
another. Using a simple model results in high bias but 
low variance.
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Ø Let an   -class task,                  . In logistic 
discrimination, the logarithm of the likelihood ratios
are modeled via linear functions, i.e.,

Ø Taking into account that 

it can be easily shown that the above is equivalent 
with modeling posterior probabilities as:

v LOGISTIC DISCRIMINATION

( )
( ) 121 ,

|
|ln 0, , ..., M-,  ixww

xP
xP T

ii
M

i =+=÷÷
ø

ö
çç
è

æ
w
w

( ) 1|
1

=å
=

M

i
i xP w

Mwww  ..., , , 21M



18

Ø For the two-class case it turns out that
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Ø The unknown parameters                                     are 
usually estimated by maximum likelihood arguments.

Ø Logistic discrimination is a useful tool, since it allows 
linear modeling and at the same time ensures posterior 
probabilities to add to one.

121  , , 0, , ..., M-, iww ii =



20

Ø The goal:  Given two linearly separable classes, design 
the classifier

that leaves the maximum margin from both classes

0)( 0 =+= wxwxg T

v Support Vector Machines
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Ø Margin:  Each hyperplane is characterized by

• Its direction in space, i.e., 

• Its position in space, i.e.,

• For EACH direction, , choose the hyperplane that 
leaves the SAME distance from the nearest points 
from each class. The margin is twice this distance.
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Ø The distance of a point from a hyperplane
is given by

Ø Scale, so that at the nearest points from
each class the discriminant function is ±1:

Ø Thus the margin is given by

Ø Also, the following is valid
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Ø SVM (linear) classifier

Ø Minimize

Ø Subject to

Ø The above is justified since by  minimizing

the margin is maximised
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Ø The above is a quadratic optimization task, subject to 
a set of linear inequality constraints.  The Karush-
Kuhh-Tucker conditions state that the minimizer
satisfies:

• (1)

• (2)

• (3)

• (4)

• Where is the Lagrangian
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Ø The solution:  from the above, it turns out that

•

•
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Ø Remarks:
• The Lagrange multipliers can be either zero or

positive. Thus,

–

where , corresponding to positive
Lagrange multipliers

– From constraint (4) above, i.e.,

the vectors contributing to
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– These vectors are known as SUPPORT
VECTORS and are the closest vectors, from
each class, to the classifier.

– Once is computed, is determined from
conditions (4).

– The optimal hyperplane classifier of a support
vector machine is UNIQUE.

– Although the solution is unique, the resulting
Lagrange multipliers are not unique.

w 0w
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Ø Dual Problem Formulation
• The SVM formulation is a convex programming 

problem, with
– Convex cost function
– Convex region of feasible solutions

• Thus, its solution can be achieved by its dual 
problem, i.e.,

– maximize

– subject to
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• Combine the above to obtain

– maximize

– subject to
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Ø Remarks:
• Support vectors enter via inner products

Ø Non-Separable classes
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In this case, there is no hyperplane such that

• Recall that the margin is defined as twice the 
distance between the following two hyperplanes
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Ø The training vectors belong to one of  three possible 
categories

1) Vectors outside the band which are correctly
classified, i.e.,

2) Vectors inside the band, and correctly classified,
i.e.,

3) Vectors misclassified, i.e.,
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Ø All three cases above can be represented as

1)
2)
3)

are known as slack variables
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Ø The goal of the optimization is now two-fold
• Maximize margin
• Minimize the number of patterns with           ,

One way to achieve this goal is via the cost

where C is a constant and

• I(.) is not differentiable.  In practice, we use an 
approximation

•

• Following a similar procedure as before we obtain
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Ø KKT conditions
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Ø The associated dual problem

Maximize

subject to

Ø Remarks: The only difference with the separable
class case is the existence of     in the 
constraints
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Ø Training the SVM
A major problem is the high computational cost. To 
this end, decomposition techniques are used. The 
rationale behind them consists of the following:

• Start with an arbitrary data subset (working set) that 
can fit in the memory. Perform optimization, via a 
general purpose optimizer.

• Resulting support vectors remain in the working set, 
while others are replaced by new ones (outside the set) 
that violate severely the KKT conditions.

• Repeat the procedure.
• The above procedure guarantees that the cost function 

decreases.
• Platt’s SMO algorithm chooses a working set of two 

samples, thus analytic optimization solution can be 
obtained.
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Ø Multi-class generalization
Although theoretical generalizations exist, the most 
popular in practice is to look at the problem as M two-
class problems (one against all).

Ø Example:

Ø Observe the effect of different values of C in the case of 
non-separable classes.


