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CONTEXT DEPENDENT CLASSIFICATION

% Remember: Bayes rule

P(o]x) > P(o,|x), Vj#1

% Here: The class to which a feature vector
belongs depends on:
> Its own value
» The values of the other features
» An existing relation among the various classes



» This interrelation demands the classification to be
performed simultaneously for all available feature
vectors

% Thus, we will assume that the training vectors
X,,X,,...,X, OCCUr in sequence, one after the
other and we will refer to them as observations



% The Context Dependent Bayesian Classifier
>let X :i{X, Xy, Xy
>let o,i1=12,.,.M

> Let Q. be a sequence of classes, that is
Q w, o, ...0,,

There are MY of those

» Thus, the Bayesian rule can equivalently be stated
as

X —=>Q, : P,

X)>P(Q,|X) Vi#j, i,j=12,.,M"

% Markov Chain Models (for class dependence)

P(o, @, )

L

®, 0, ,....0,)=P(o,



*» NOW remember:
P(QZ) = ])(a)l.1 ’a)iz ,...,a). ) =

or

P(Q,) = (Hp(wik

o, ) P(®,)

% Assume:
» X, statistically mutually independent

» The pdf in one class independent of the others,
then

@, )

p(X|Q,) = Hp()_ck




% From the above, the Bayes rule is readily seen
to be equivalent to:

P(Q,

X)(><)P(Q | X)
P(Q) p(X

Q)(><)P(Q;)p(X|Q,)

that is, it rests on

p(X|Q)P(Q,) = P(e,)plx,

N
H P(wik
k=2

@, )-

@, )

@; )p()_ck

» To find the above maximum in brute-force task
we need O(NMV) operations!!



% The Viterbi Algorithm

----------




» Thus, each Q. corresponds to one path through the
trellis diagram. One of them is the optimum (e.q,,
black). The classes along the optimal path determine
the classes to which w; are assigned.

» To each transition corresponds a cost. For our case

+ do,.0,)=Po,

L1

o ).

p(x|o,)

o d(o,0,)=P(0,)p&,

@, )

e D= Hc:’(a)ik ,0, )= p(X|Q,)P(Q,)

k=1



e Equivalently

N N N
InD=>) Ind(.,)=D=>) d(,.)
k=1 k=1
where,

d (a)l.k , @, )=1In d (a)l.k , 0, )

e Define the cost up to a node |,

k
D(a)ik )= Z d(a)ir » ;| )
r=1



» Bellman’s principle now states

(@, )= max{D

|

ii =12, M

max max( Iy

)td(o, o

o, )]

)=0

max (

> The optimal path terminates at w;v

a)iN — arg Hal)aX Dmax (a)iN )
IN

o Complexity O (NM?)
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+ Hidden Markov Models

» Now we shall assume that states are not
observable and can only be inferred from the
training data

» Applications:
e Speech and Music Recognition
e OCR
e Blind Equalization
e Bioinformatics
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> An HMM is a stochastic finite state automaton, that
generates the observation sequence, x,, x,, ..., xy

» We assume that: The observation sequence is
produced as a result of successive transitions
between states, upon arrival at a state:

a
[ S '
-/

I
/

° -0
i J
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» This type of modeling is used for nonstationary
stochastic processes that undergo distinct transitions

among a set of different stationary processes.
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» Examples of HMM:

e The single coin case: Assume a coin that is tossed
behind a curtain. All it is available to us is the
outcome, i.e., H or T. Assume the two states to be:

S=1>H
S=2>T
This is also an example of a random experiment

with observable states. The model is characterized
by a single parameter, e.q., P(H). Note that

P(1]1) = P(H)
PQ|1)=P(T)=1—- P(H)
P(1{1)=P(H) P(2|12)=1-P(H)

P(12)=P(H)
P(H) 1-P(H)

14
(a)



e The two-coins case: For this case, we observe a
sequence of H or T. However, we have no access to
know which coin was tossed. Identify one state for
each coin. This is an example where states are not
observable. H or T can be emitted from either
state. The model depends on four parameters.

P\(H), Py(H),
P(1]1), P(2[2)

P(1]1) P(2]2)

P(112)=1-P(2]2)
P(H) Py(H)

P,(T)y=1-F,(H) B(T)=1-P,

(b) 15



e The three-coins case example is shown below:

11 P(2)2
P(1]1) PRI (212)

P(1[2)

P(23)

PG3[1)

P(1]3) P(3]2)

P\(H) Py(H) Py(H)

P(T)=1-P(H)  P(T)=1-P,(H)  P(T)=1-P(H)
e Note that in all previous examples, specifying the

model is equivalent to knowing:

— The probability of each observation (H,7) to be emitted
from each state.

— The transition probabilities among states: P(i]y).
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> A general HMM model is characterized by the
following set of parameters

« K number of states
o P(i|j),i,j=12,..K
. p()_c‘i),i: 1,2,. K

* P(i),i=1,2,..., K, initial state probabilities, P(.)
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That is:

S ={P(i|)), p(x

i), P(i), K}

» What is the problem in Pattern Recognition

e Given M reference patterns, each described by
an HMM, find the parameters, S, for each of
them (training)

e Given an unknown pattern, find to which one
of the M, known patterns, matches best
(recognition)
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» Recognition: Any path method

e Assume the M models to be known (M
classes).

e A sequence of observations, X, is given.

e Assume observations to be emissions upon
the arrival on successive states

e Decide in favor of the model S* (from the M
available) according to the Bayes rule

S" =arg max P(S‘X)

for equiprobable patterns

S = arg max p(X‘S)
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e For each model S there is more than one
possible sets of successive state transitions Q,
each with probability P(Q.|S)

Thus: | P(X|S) =D p(X,Q,S)

= p(X

QDS)P(QI’

5)

e For the efficient computation of the above
DEFINE

- ali,,)= p()_cla'“a)_ckﬂﬂikﬂ‘s)

P(ik+1 ‘lk )p()_ckﬂ ‘ik+1)

T . .
History Local activity .



i =K

o
1,=1
X

. ........... )
a(ty,)

. ........... ‘

) Xy,

e Observe that

P(X|$) = aiv)

I .
La’(?’lﬁ])
\ .
Py [er)
. ........... ‘
V=1 1=1
i LA

Compute this
for each S
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e Some more quantities

— L) = P(Xprs Xpinsen Xy

— Z p (G )Py,

s

i S)

L) P(X ‘ikﬂ)

- 7/(ik):p(3_619---a)_CNaik‘S)

= a(i)p@,)
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» Training
e The philosophy:

Given a training set X, known to belong to the
specific model, estimate the unknown

parameters of S, so that the output of the
model, e.qg.

p(X]8) =Y aiv)

In=1

to be maximized

> This is a ML estimation problem with missing data
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» Assumption: Data x discrete

xe{l2,.,ri= p()_c‘i) = P()_c‘i)

> Definitions:
v e i = D =DPUDPGBG = )
e 7,.(i)= a(i, =1)p@, =1)

P(X|S)
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» The Algorithm:

e Initial conditions for all the unknown parameters.
Compute P( X ‘S )

e Step 1: From the current estimates of the model
parameters reestimate the new model S from

Y G
- P(j‘i): kzzvl—l (

Z7k(i)

_ #of transitions from i to j
# of transitions from i

. P (]/“l) — k= 1andx—>r)

Z7k(l

~ P(i)=7,(0) N

N
Zyk(l) [_ atstateiand)_c:rj

# of being at state i




e Step 3: Compute P(X‘E). If P(X|S)-P(X|S)>s, S=§
go to step 2. Otherwise stop

— Each iteration improves the model
S: P(X‘E) > P(X|S)

— The algorithm converges to a maximum (local
or global)

— The algorithm is an implementation of the EM
algorithm
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