
Διαχείριση Μεγάλων Δεδομένων
Big Data Management

Εργαστηριακή Διάλεξη Apache Spark

Γιώργος Αλεξίου
galexiou@athenarc.gr

ATHENA Research Center

Ver. 12/2023

mailto:galexiou@athenarc.gr

Big Data and Spark

2

• Data is increasing in volume, velocity, variety.

• The need have faster results from analytics becomes increasingly important.

• Apache Spark is a computing platform designed to be fast and general-purpose, and easy to use

Ø Speed
• In-memory computations
• Faster than MapReduce for complex applications on disk

Ø Generality
• Covers a wide range of workloads on one system
• Batch applications (e.g. MapReduce)
• Iterative algorithms
• Interactive queries and streaming

Ø Ease of use
• APIs for Java, Scala and Python
• Libraries for SQL, Machine Learning, Streaming and Graph processing
• Runs on Hadoop clusters or as a standalone

Who uses Spark and Why?

3

• Parallel distributed processing, fault tolerance on commodity hardware, scalability, in-memory
processing, high level APIs, etc

• Saves time and money!

Ø Data scientists
• Analyze and model the data to obtain insight using ad-hoc analysis
• Transforming the data into re-usable format
• Statistics, machine learning, SQL

Ø Engineers
• Develop a data processing system or application
• Inspect and tune their applications
• Programming with the Spark API

Ø Everyone else
• Ease of use
• Wide variety of functionality
• Mature and reliable

Spark Unified Stack

4

Brief History of Spark

5

• 2002 - MapReduce @ Google
• 2004 - MapReduce paper
• 2006 - Hadoop @ Yahoo!
• 2008 - Hadoop Summit
• 2010 - Spark paper
• 2014 Apache Spark top-level

• MapReduce stated a general batch
processing paradigm

• Two limitations
1. Difficulty programming in

MapReduce
2. Batch processing did not fit many

use cases

• Spawned a lot of specialized systems
 (Storm, Impala, Giraph, etc.)

Used as libs, instead of
specialized systems

Resilient Distributed Datasets (RDD)

6

• Fault-tolerant collection of elements that can be operated on in parallel.
• Immutable

Ø Three methods for creating RDD:
• Parallelizing an existing collection
• Referencing a dataset
• Transformation from an existing RDD

Ø Dataset from any storage supported by Hadoop
• HDFS
• Hive
• HBase
• Amazon S3
• etc.

Ø Types of files supported
• Text files
• SequenceFiles
• Hadoop InputFormat

Resilient Distributed Datasets (RDD) (cont’d)

7

Ø Two types of RDD operations:

§ Transformations
• Creates a DAG
• Lazy evaluations
• No return value

§ Actions
• Performs the transformations and the action that follows
• Returns a value

• Fault tolerance

• Caching

• Example of RDD flow:

Downloading and Installing Spark

8

• Runs on both Windows and Unix-like systems (e.g Linux, OSX)

• To run locally on one machine, all you need is to have Java Installed on your system PATH or the
JAVA_HOME pointing to a valid Java installation

• Visit this page to download: http://spark.apache.org/downloads.html
• Select the Hadoop distribution you require under the “Pre-built packages”
• Place a compiled version of spark on each node on the cluster

• Manually start the cluster by executing:
• ./sbin/start-master.sh

• Once started, the master will print out a spark://HOST:PORT URL for itself, which you can use to
connect workers to it.
• The default master’s web UI is : http://localhost:8080

• Check out Spark’s website for more information
• http://spark.apache.org/docs/latest/spark-standalone.html

http://spark.apache.org/downloads.html
http://localhost:8080/
http://spark.apache.org/docs/latest/spark-standalone.html

For the purpose of this lecture

9

Ø We are going to use:
Ø A docker image of Spark in standalone mode

Ø Spark version : 2.4.4

Ø To get the image:
• docker pull galexiou/sparklab:latest
• docker run -d --name sparklab -e SPARK_MODE=master

galexiou/sparklab

Ø Access to shell:
• docker exec -it sparklab /bin/bash
• Then : cd /

• spark-shell

Spark Jobs and Shell

1
0

• Spark jobs can be written in Scala, Java, or Python
• Spark shells for Scala and Python

• APIs are available for all three

• Must adhere to the appropriate version for each Spark release

• Spark’s native language is Scala, so it’s natural to write Spark apps using Scala

• This lecture will cover code examples from Scala.

Brief Overview of Scala

1
1

Ø Everything is an Object
• Primitive types such as numbers or Boolean
• Functions

Ø Numbers are objects
• 1+2*3/4 -> (1).+(((2).*(3))./(x)))
• Where the +, *, / are valid identifiers in Scala

Ø Functions are objects
• Pass functions as arguments
• Store them in variables
• Return them from other functions

Ø Function declaration
• def functionName ([list of arguments]) : [return type]

Scala - Anonymous Functions

1
2

Ø Functions without a name created for one-time use to pass to another function

Ø Left side of the right arrow => is where the argument resides (no arguments in the example)

Ø Right side of the arrow is the body of the function (the println statement)

Spark’s Scala and Python Shell

1
3

Ø Spark’s shell provides a simple way to learn the API

Ø Powerful tool to analyze data interactively

Ø The Scala shell runs on the Java VM
• A good way to use existing Java libraries

Ø Scala:
• To launch the Scala shell:

./bin/spark-shell
• To read in a text file:

scala> val textFile = sc.textFile(“README.md”)

Ø Python:
• To launch the Scala shell:

./bin/pyspark
• To read in a text file:

>>> textFile = sc.textFile(“README.md”)

Creating an RDD

1
4

Ø Launch the spark shell:
 Cluster: spark-shell --deploy-mode client --master yarn
 example: spark-shell

Ø Create some data:
 val data = 1 to 10000

Ø Parallelize that data (creating the RDD):
 val distData = sc.parallelize(data)

Ø Perform tranformations or invoke an action on it
 distData.filter(_ %2==1).collect()
 distData.filter(x => x %2==1).collect()

Ø Alternatively, create an RDD from an external dataset
 val readme = sc.textFile(“/labdata/README.md”) // local path

RDD Operations - Basics

1
5

Ø Loading a file:
 val lines = sc.textFile(“/labdata/README.md”)

Ø Applying transformations:
 val lineLengths = lines.map(s => s.length)

Ø Invoking actions:
 val totalLengths = lineLengths.reduce((a,b) => a + b)

Ø MapReduce Example:
 val wordCounts = lines.flatMap(line => line.split (“ “))
 .map(word => (word , 1))
 .reduceByKey((a,b) => a + b)

 wordCounts.collect()

Direct Acyclic Graph (DAG)

1
6

Ø View the DAG:
 wordCounts.toDebugString

Ø Sample DAG:

Direct Acyclic Graph (DAG)

1
7

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker

Direct Acyclic Graph (DAG)

1
8

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker
Block 1 Block 3Block 2

The data is partitioned into
different blocks

Direct Acyclic Graph (DAG)

1
9

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker
Block 1 Block 3Block 2

Driver sends the code to be
executed on each block

Direct Acyclic Graph (DAG)

2
0

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker
Block 1 Block 3Block 2

Read HDFS block

Direct Acyclic Graph (DAG)

2
1

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker
Block 1 Block 3Block 2

Process + cache data

Cache Cache Cache

Direct Acyclic Graph (DAG)

2
2

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker
Block 1 Block 3Block 2

Send the data back to driver

Cache Cache Cache

Direct Acyclic Graph (DAG)

2
3

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker
Block 1 Block 3Block 2

Process from cache

Cache Cache Cache

Direct Acyclic Graph (DAG)

2
4

Ø Creating the RDD:
 val logFile= sc.textFile(“/labdata/log.txt”)

Ø Tranformations:
 val errors= logFile.filter(_.startsWith(“ERROR”))
 val messages = errors.map(_.split(“\t”)).map(r=>r(1))

Ø Caching:
 messages.cache()

Ø Actions:
 messages.filter(_.contains(“mysql”)).count()
 messages.filter(_.contains(“php”)).count()

Driver

Worker Worker Worker
Block 1 Block 3Block 2

Send the data back to driver

Cache Cache Cache

RDD Operations - Transformations

2
5

Ø A subset of the transformations available. Full set can be found on Spark’s website

Ø Transformations are lazy evaluations

Ø Returns a pointer to the transformed RDD

Transformation Meaning

map(func) Return a new distributed dataset formed by passing each element
of the source through a function func.

filter(func) Return a new dataset formed by selecting those elements of the
source on which func returns true.

flatMap(func) Similar to map, but each input item can be mapped to 0 or more
output items (so func should return a Seq rather than a single
item).

join(otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a
dataset of (K, (V, W)) pairs with all pairs of elements for each key.

reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V)
pairs where the values for each key are aggregated using the given
reduce function func, which must be of type (V,V) => V.

RDD Operations - Actions

2
6

Ø Actions return values

Action Meaning

collect() Return all the elements of the dataset as an array at the driver
program. This is usually useful after a filter or other operation that
returns a sufficiently small subset of the data.

count() Return the number of elements in the dataset.

first() Return the first element of the dataset (similar to take(1)).

take(n) Return an array with the first n elements of the dataset.

foreach(func) Run a function func on each element of the dataset. This is usually
done for side effects such as updating an Accumulator or
interacting with external storage systems.

saveAsTextFile(path) Write the elements of the dataset as a text file (or set of text files) in
a given directory in the local filesystem, HDFS

RDD Persistence

2
7

Ø Each node stores any partitions of the cache that it computes in-memory
Ø Reuses them in other actions on that dataset (or datasets derived from it)

Ø Future actions are much faster (often by more than 10x)
Ø Two methods for RDD persistence

Ø persist()
Ø cache() -> essentially just persist with MEMORY_ONLY storage

Storage Level Meaning

MEMORY_ONLY Store RDD as deserialized Java objects in the JVM. If the RDD
does not fit in memory, some partitions will not be cached and will
be recomputed on the fly each time they're needed. This is the
default level.

MEMORY_AND_DISK Store RDD as deserialized Java objects in the JVM. If the RDD
does not fit in memory, store the partitions that don't fit on disk, and
read them from there when they're needed.

RDD Persistence (cont’d)

2
8

Storage Level Meaning

MEMORY_ONLY_SER
(Java and Scala)

Store RDD as serialized Java objects (one byte array per partition).
This is generally more space-efficient than deserialized objects,
especially when using a fast serializer, but more CPU-intensive to
read.

MEMORY_AND_DISK_SER
(Java and Scala)

Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in
memory to disk instead of recomputing them on the fly each time
they're needed.

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY_2,
MEMORY_AND_DISK_2, etc.

Same as the levels above, but replicate each partition on two
cluster nodes.

OFF_HEAP
(experimental)

Similar to MEMORY_ONLY_SER, but store the data in off-heap
memory. This requires off-heap memory to be enabled.

https://spark.apache.org/docs/2.2.0/configuration.html
https://spark.apache.org/docs/2.2.0/configuration.html

Which Storage Level to Choose?

2
9

• If your RDDs fit comfortably with the default storage level (MEMORY_ONLY), leave them that way.

This is the most CPU-efficient option, allowing operations on the RDDs to run as fast as possible.

Ø If not, try using MEMORY_ONLY_SER and selecting a fast serialization library to make the objects

much more space-efficient, but still reasonably fast to access.

Ø Don’t spill to disk unless the functions that computed your datasets are expensive, or they filter a

large amount of the data. Otherwise, recomputing a partition may be as fast as reading it from disk.

Ø Use the replicated storage levels if you want fast fault recovery (e.g. if using Spark to serve requests

from a web application). All the storage levels provide full fault tolerance by recomputing lost data,

but the replicated ones let you continue running tasks on the RDD without waiting to recompute a

lost partition.
Ø In environments with high amounts of memory or multiple applications the experimental OFF_HEAP

mode has several advantages:
• It allows multiple executors to share the same pool of memory
• It significantly reduces garbage collection costs
• Cached data is not lost if individual executors crash

Shared Variables and Key-Value Pairs

3
0

Ø When a function is passed from the driver to a worker, normally a separate copy of the variables are
used.

Ø Two types of variables:
q Broadcast variables

• Read-only copy on each machine
• Distribute broadcast variables using efficient broadcast algorithms

q Accumulators
• Variables added through an associative operation
• Implement counters and sums
• Only the driver can read the accumulators value
• Numeric types accumulators. Extend for new types

Programming the Key-Value Pairs

3
1

Ø There are special operations available on RDDs of key-value pairs
Ø Grouping or aggregating elements by a key

Ø Tuple2 objects created by writing (a , b)
Ø Must import org.apache.spark.SparkContext._

Ø PairRDDFunctions contains key-value pair operations
• reduceByKey((a, b) => a + b)

Ø Custom objects as key in key-value pair requires a custom equals() method with a matching
hashCode() method.

Ø Example:
val textFile = sc.textFile(“ …. “)
val readmeCount = textFile.flatMap(line => line.split(“ “)).map(word => (word, 1))
.reduceByKey(_+_)

Scala - Working with RDD operations

3
2

Ø Create an RDD file from the file README (already in: “/labdata/README.md”). This is created
using the spark context ".textFile”.

Ø As we know the initial operation is a transformation, so nothing actually happens. We're just telling it
that we want to create a readme RDD.

Ø This was an RDD transformation, thus it returned a pointer to a RDD, which we have named as
readme.

 val readme = sc.textFile("/labdata/README.md")

Ø Let’s perform some RDD actions on this text file. Count the number of items in the RDD using this
command:

 readme.count()

Ø Let’s run another action. Run this command to find the first item in the RDD:
 readme.first()
Ø Now let’s try a transformation. Use the filter transformation to return a new RDD with a subset of the

items in the file. Type in this command:
 val linesWithSpark = readme.filter(line => line.contains("Spark"))
 linesWithSpark.count()

Scala - Working with RDD operations (cont’d)

3
3

Ø You can even chain together transformations and actions. To find out how many lines contains the
word “Spark”, type in:.

 readme.filter(line => line.contains("Spark")).count()

Ø You will see that RDD can be used for more complex computations. You will find the line from that
readme file with the most words in it.

 readme.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

v There are two parts to this. The first maps a line to an integer value, the number of words in that
line. In the second part reduce is called to find the line with the most words in it. The arguments to
map and reduce are Scala function literals (closures). You can use any language feature or
Scala/Java library.

Ø Use the Math.max() function to show that you can indeed use a Java library instead. Import in the
java.lang.Math library:

 import java.lang.Math

Ø Now run with the max function:
 readme.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))

Scala - Working with RDD operations (cont’d)

3
4

Ø Spark has a MapReduce data flow pattern. We can use this to do a word count on the readme file.
 val wordCounts = readme.flatMap(line => line.split(" "))

 .map(word => (word, 1))
 .reduceByKey((a,b) => a + b)

Ø To collect the word counts, use the collect action.
 wordCounts.collect().foreach(println)

v It should be noted that the collect function brings all of the data into the driver node. For a small
dataset, this is acceptable but, for a large dataset this can cause an Out Of Memory error. It is
recommended to use collect() for testing only. The safer approach is to use the take() function e.g.
take(n).foreach(println)

Ø You can also do:
println(wordCounts.collect().mkString("\n"))

Scala - Working with RDD operations (cont’d)

3
5

Ø Analysing a log file
 val logFile = sc.textFile("/labdata/notebook.log")

Ø Filter out the lines that contains INFO (or ERROR, if the particular log has it)
val info = logFile.filter(line => line.contains("INFO"))

Ø Count the lines:
info.count()

Ø Count the lines with Spark in it by combining transformation and action.
info.filter(line => line.contains("spark")).count()

Ø Fetch those lines as an array of Strings
info.filter(line => line.contains("spark")).collect() foreach println

v Remember that we went over the DAG. It is what provides the fault tolerance in Spark. Nodes can
re-compute its state by borrowing the DAG from a neighboring node. You can view the graph of an
RDD using the toDebugString command.

println(info.toDebugString)

Scala - Working with RDD operations (cont’d)

3
6

Ø Joining RDDs.
Ø Next, you are going to create RDDs for the README and the POM file in the current directory.
 val readmeFile = sc.textFile("/labdata/README.md")
 val pom = sc.textFile("/labdata/pom.xml")

Ø How many Spark keywords are in each file?
 println(readmeFile.filter(line => line.contains("Spark")).count())

 println(pom.filter(line => line.contains(”spark")).count())

Ø Now do a WordCount on each RDD so that the results are (K,V) pairs of (word,count)
 val readmeCount = readmeFile.
 flatMap(line => line.split(" ")).
 map(word => (word, 1)).
 reduceByKey(_ + _) // .collect() foreach println

 val pomCount = pom.
 flatMap(line => line.split(" ")).
 map(word => (word, 1)).
 reduceByKey(_ + _) // .collect() foreach println

Scala - Working with RDD operations (cont’d)

3
7

Ø Now let's join these two RDDs together to get a collective set. The join function combines the two
datasets (K,V) and (K,W) together and get (K, (V,W)). Let's join these two counts together and then
cache it.

 val joined = readmeCount.join(pomCount)
 joined.cache()
Ø Let's see what's in the joined RDD.

joined.collect.foreach(println)

Ø Let's combine the values together to get the total count. The operations in this command tells Spark
to combine the values from (K,V) and (K,W) to give us(K, V+W). The ._ notation is a way to access
the value on that particular index of the key value pair.

 val joinedSum = joined.map(k => (k._1, (k._2)._1 + (k._2)._2))
 joinedSum.collect() foreach println

Ø To check if it is correct, print the first five elements from the joined and the joinedSum RDD
println("Joined Individial\n")
joined.take(5).foreach(println)

println("\n\nJoined Sum\n")
joinedSum.take(5).foreach(println)

Scala - Working with RDD operations (cont’d)

3
8

Ø Shared variables

v Broadcast variables allow the programmer to keep a read-only variable cached on each worker
node rather than shipping a copy of it with tasks.

v They can be used, to give every node a copy of a large input dataset in an efficient manner.

v After the broadcast variable is created, it should be used instead of the value v in any functions run
on the cluster so that v is not shipped to the nodes more than once.

v The object v should not be modified after it is broadcast in order to ensure that all nodes get the
same value of the broadcast variable (e.g. if the variable is shipped to a new node later).

Ø Let's create a broadcast variable:
val broadcastVar = sc.broadcast(Array(1,2,3))

Ø To get the value, type in:
 broadcastVar.value

Scala - Working with RDD operations (cont’d)

3
9

Ø Shared variables

v Accumulators are variables that can only be added through an associative operation.

v It is used to implement counters and sum efficiently in parallel.

v Spark natively supports numeric type accumulators and standard mutable collections.

v Programmers can extend these for new types.

v Only the driver can read the values of the accumulators. The workers can only invoke it to
increment the value.

Ø Create the accumulator variable. Type in:
val accum = sc.accumulator(0)

Ø Next parallelize an array of four integers and run it through a loop to add each integer value to the
accumulator variable. Type in:
 sc.parallelize(Array(1,2,3,4)).foreach(x => accum += x)
 accum.value

Scala - Working with RDD operations (cont’d)

4
0

Ø Key-Value Pairs

v You have already seen a bit about key-value pairs in the Joining RDD section. Here is a brief
example of how to create a key-value pair and access its values. Remember that certain operations
such as map and reduce only works on key-value pairs.

Ø Create a key-value pair of two characters. Type in:
 val pair = ('a', 'b’)

Ø To access the value of the first index using the ._1 method and ._2 method for the 2nd.
 pair._1
 pair._2

Scala - Example Application

4
1

Ø A subset of a data for taxi trips will be used, that will determine the top 10 medallion numbers based
on the number of trips.

 val taxi = sc.textFile("/labdata/nyctaxi.txt")

Ø To view the five rows of content, invoke the take function. Type in:
 taxi.take(5).foreach(println)

Ø To parse out the values, including the medallion numbers, you need to first create a new RDD by
splitting the lines of the RDD using the comma as the delimiter. Type in:

 val taxiParse = taxi.map(line=>line.split(","))

Ø Now create the key-value pairs where the key is the medallion number and the value is 1. We use
this model to later sum up all the keys to find out the number of trips a particular taxi took and in
particular, will be able to see which taxi took the most trips. Map each of the medallions to the value
of one. Type in:

 val taxiMedKey = taxiParse.map(vals=>(vals(6), 1))

v vals(6) corresponds to the column where the medallion key is located

Scala - Example Application (cont’d)

4
2

Ø Next use the reduceByKey function to count the number of occurrence for each key.
 val taxiMedCounts = taxiMedKey.reduceByKey((v1,v2)=>v1+v2)

 taxiMedCounts.take(5).foreach(println)

Ø Finally, the values are swapped so they can be ordered in descending order and the results are
presented correctly.

 for (pair <-taxiMedCounts.map(_.swap).top(10)) println("Taxi Medallion %s had %s
 Trips".format(pair._2, pair._1))

Ø While each step above was processed one line at a time, you can just as well process everything on
one line:
 val taxiMedCountsOneLine
 = taxi.map(line=>line.split(',’)).map(vals=>(vals(6),1)).reduceByKey(_ + _)

Scala - Example Application (cont’d)

4
3

Ø Let's cache the taxiMedCountsOneLine to see the difference caching makes. Run it with the logs set
to INFO and you can see the output of the time it takes to execute each line.

Ø First, let's cache the RDD
 taxiMedCountsOneLine.cache()

Ø Next, you have to invoke an action for it to actually cache the RDD. Note the time it takes here
 taxiMedCountsOneLine.count()

Ø Run it again to see the difference.
 taxiMedCountsOneLine.count()

v The bigger the dataset, the more noticeable the difference will be. In a sample file such as ours, the
difference may be negligible.

APPLICATION PROGRAMMING

4
4

Spark Context

4
5

Ø The main entry point for Spark Functionality

Ø Represents the connection to a Spark cluster

Ø Create RDDs, accumulators and broadcast variables on that cluster

Ø In the spark shell, the SparkConetxt, sc, is automatically initialized for you to use

Ø In a Spark program, import some classes and implicit conversions into your program:
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

Linking with Spark - Scala

4
6

Ø Spark applications requires dependencies.
Ø Must have a compatible Scala version to write applications

e.g Spark 1.6.0 uses Scala 2.10

Ø To write a Spark application, you need to add a Maven dependency on Spark.
• Spark is available through Maven Central at.

 groupId = org.apache.spark
 artifactId = spark-core_2.10
 version = 1.6.0

Ø To access a HDFS Cluster, you need to add a dependency on Hadoop-client for your version of
HDFS

 groupId = org.apache.hadoop
 artifactId = Hadoop-client
 version = <version>

Linking with Spark - Java

4
7

Ø Spark 1.6.0 works with Java 7 and higher.
• Java 8 supports lambda expressions

Ø Add a dependency on Spark.
• Available through Maven Central at.

 groupId = org.apache.spark
 artifactId = spark-core_2.10
 version = 1.6.0

Ø If you wish to access a HDFS Cluster, you must add a dependency as well:
 groupId = org.apache.hadoop
 artifactId = Hadoop-client
 version = <version>

Ø Import some spark classes
import org.apache.spark.api.java.JavaSparkContext
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.SparkConf

Initializing Spark - Scala

4
8

Ø Build a SparkConf object that contains information about your application
 val conf = new SparkConf().setAppName(“appname”).setMaster(master)

Ø The appName parameter -> Name for your application to show on the cluster UI

Ø The master parameter -> is a Spark or YARN cluster URL (or a special “local” string to run in local
mode)
• In testing, you can pass “local” to run Spark
• local[16] will allocate 16 cores
• In production mode, do not hardcode master in the program. Launch with spark-submit and

provide it there.

Ø Then, you will need to create the SparkContext object
 new SparkContext(conf)

Initializing Spark - Java

4
9

Ø Build a SparkConf object that contains information about your application
 SparkConf conf = new SparkConf().setAppName(appname).setMaster(master);

Ø The appName parameter -> Name for your application to show on the cluster UI

Ø The master parameter -> is a Spark or YARN cluster URL (or a special “local” string to run in local
mode)
• In testing, you can pass “local” to run Spark
• local[16] will allocate 16 cores
• In production mode, do not hardcode master in the program. Launch with spark-submit and

provide it there.

Ø Then, you will need to create the SparkContext object
 JavaSparkContext sc = new JavaSparkContext(conf);

Passing functions to Spark

5
0

Ø Spark’s API relies on heavily passing functions in the driver program to run on the cluster

Ø Three methods
• Anonymous function syntax

 (x : Int) => x + 1
• Static methods in a global singleton object

 object Myfunctions {
 def func1 (s : String) : String = { … }
 }
 myRdd.map(Myfunctions.func1)

• Passing by reference
• to avoid sending the entire object consider copying the function to a local variable
• Example:

 val field = “hello”
• Avoid

 def doStuff(rdd : RDD[String]) : RDD[String] = {rdd.map(x => field + x)}
• Consider

def doStuff(rdd : RDD[String]) : RDD[String] = {
val field_ = this.field
rdd.map(x=> field_ +x) }

Programming the Business Logic

5
1

Ø Spark’s API available in Scala, Java or
Python

Ø Create the RDD from an external
dataset or from existing RDD

Ø Transformations and actions to
process the data

Ø Use RDD persistence to improve
performance

Ø Use broadcast variables or
accumulators for specific use cases

Create Spark Standalone applications - Scala

5
2

Create Spark Standalone applications - Java

5
3

Run Standalone Applications

5
4

Ø Define the dependencies - can use any system build (Ant, sbt, Maven)

Ø Example
Ø Scala -> simple.sbt
Ø Java -> pom.xml
Ø Python -> --py-files argument (not needed for SimpleApp.py)

Ø Create the typical directory structure with the files

Ø Create a JAR package containing the application’s code
Ø Scala: sbt
Ø Java: mvn
Ø Python: submit-spark

Ø Use spark-submit to run the program

Submit Applications to the Cluster

5
5

Ø Package application into a JAR (Scala/Java) or set of .py or .zip (Python)

Ø Use spark-submit under the $SPARK_HOME/bin directory
 spark-submit \
 --class <main-class> \
 --master <master-url> \
 --deploy-mode <deploy-mode> \
 -- conf <key>=<value> \
 … # other-options …
 <application-jar> \
 [application-arguments]

Ø spark-submit --help will show you the other options

Ø Example:
 spark-submit \
 --class org.apache.spark.examples.sparkPi \
 --master local[8] \
 /path/to/examples.jar \
 100

Spark Libraries

5
6

Spark Libraries

5
7

Ø Extension of the core Spark API

Ø Improvements made to the core are passed to these libraries

Ø Little overhead to use with the Spark Core

Spark SQL

5
8

Ø Allows relational queries expressed in
• SQL
• HiveQL
• Scala

Ø SchemaRDD
• Row objects
• Schema
• Created from:

§ Existing RDD
§ Parquet file
§ JSON dataset
§ HiveQL agianst Apache Hive

Ø Supports Scala, Java and Python

Spark SQL - Getting Started

5
9

Ø SQLContext
Ø Created from a SparkContext
• Scala:

val sc : SparkContext // An existing SparkContext
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

• Java:
JavaSparkContext sc = …; // An existing JavaSparkContext
JavaSQLContext sqlContext = new org.apache.spark.sql.api.java.JavaSQLContext(sc);

• Python:
from pyspark.sql import SQLContext sqlContext = SQLContext(sc)

Ø Import a library to convert an RDD to a SchemaRDD
• Scala only: import sqlContext.createSchemaRDD

Ø SchemaRDD data sources:
Ø Inferring the schema using reflection
Ø Programmatic interface

Spark SQL - Getting Started (cont’d)

6
0

Ø SQLContext
Ø Scala for spark > version 2

import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder().appName("Spark SQL").getOrCreate() //already in spark-
shell

val sqlContext = spark.sqlContext

• For implicit conversions like converting RDDs to DataFrames:
 import spark.implicits._

Spark SQL - Inferring Schema Using Reflection

6
1

Ø The case class in Scala defines the schema of the table
 case class Person(name: String, age: Int)

Ø The arguments of the case class become the names of the columns

Ø Create the RDD of the Person object
 val people = sc.textFile(“labdata/people.txt”).map(_.split(“,”))
 .map(p => Person(p(0),p(1).trim.toInt)).toDF()

Ø Register the RDD as a table
 people.createOrReplaceTempView("people")

Ø Run SQL statements using the sql method provided by the SQLContext
 val teenagers = sqlContext.sql(“SELECT name, age FROM people WHERE age >13 AND

age<=18”)

Ø The results of the queries are SchemaRDD. Normal RDD operations work on them
 teenagers.map(t => "Name: "+t(0)+" Age: "+t(1)).collect().foreach(println)

Spark SQL - Programmatic Interface

6
2

Ø Use when you cannot define the case classes ahead of time
Ø Create the RDD:
 val people = sc.textFile(“/labdata/people.txt”)

Ø Three steps to create the SchemaRDD:
1. Create an RDD of Rows from the original RDD

 val schemaString = “name age”

2. Import SQL types
 import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType}
Or…
 import org.apache.spark.sql.types._

3. Create the schema represented by a StructType matching the structure of the Rows in the
RDD from step 1.

 val schema = StructType(schemaString.split(“ “)
 .map(fieldname => StructField(fieldname, StringType, true)))

Spark SQL - Programmatic Interface (cont’d)

6
3

4. Apply the schema to the RDD of Rows using the applySchema method.
 val rowRDD = people.map(_.split(“,”)).map(p => Row(p(0),p(1).trim))

val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)

Ø Register the RDD as a table
 peopleDataFrame.registerTempTable(“people”)
Ø Run SQL statements using the sql method provided by the SQLContext
 val results = sqlContext.sql(“ SELECT name FROM people”)
 results.map(t => “Name: “+t(0)).collect().foreach(println)

Spark SQL - Hands on!

6
4

Ø Spark SQL provides the ability to write relational queries to be run on Spark. There is the abstraction
SchemaRDD which is to create an RDD in which you can run SQL, HiveQL, and Scala.

Ø In this example, we will use SQL to find out the average weather and precipitation for a given time
period in New York. The purpose is to demonstrate how to use the Spark SQL libraries on Spark.

Ø Let's take a look at the nycweather.csv data:

"2013-01-01",1,0
"2013-01-02",-2,0
"2013-01-03",-2,0
"2013-01-04",1,0
"2013-01-05",3,0
"2013-01-06",4,0
"2013-01-07",5,0
"2013-01-08",6,0
"2013-01-09",7,0
"2013-01-10",7,0

There are three columns in the dataset, the date, the mean
temperature in Celsius, and the precipitation for the day.
Since we already know the schema, we will infer the
schema using reflection.

Spark SQL - Hands on! (cont’d)

6
5

Ø Import a library for creating a SchemaRDD.
 import sqlContext.implicits._

Ø Create a case class in Scala that defines the schema of the table
 case class Weather(date: String, temp: Int, precipitation: Double)

Ø Create the RDD of the Weather object. You first load in the file, and then you map it by splitting it up
by the commas and then another mapping to get it into the Weather class.

 val weather = sc.textFile("/labdata/nycweather.csv").map(_.split(",")). map(w =>
Weather(w(0), w(1).trim.toInt, w(2).trim.toDouble)).toDF()

Ø Next you need to register the RDD as a table. Type in:
 weather.createOrReplaceTempView("weather")

Spark SQL - Hands on! (cont’d)

6
6

Ø At this point, you are ready to create and run some queries on the RDD. You want to get a list of the
hottest dates with some precipitation. Type in:

 val hottest_with_precip = sqlContext.sql("SELECT * FROM weather WHERE precipitation > 0.0
ORDER BY temp DESC")

 hottest_with_precip.collect()

Ø Print the top hottest days with some precipitation out to the console:
 hottest_with_precip.map(x => ("Date: " + x(0), "Temp : " + x(1), "Precip: " +

x(2))).take(10).foreach(println)

Spark Streaming

6
7

Ø Scalable, high-throughput, fault tolerant
stream processing of live data streams

Ø Receives live input data and divides into small
batches which are processed and returned as
batches

Ø Dstream - sequence of RDD

Ø Currently supports Scala and Java

Ø Limited Python support from Spark 1.2

q Receives Data from:
§ Kafka
§ Flume
§ HDFS / S3
§ Kinesis
§ Twitter

q Pushes Data out to:
§ HDFS
§ Databases
§ Dashboards

Spark Streaming - Internals

6
8

Ø The input stream (Dstream) goes into Spark Streaming

Ø Breaks up into batches

Ø Feeds into the Spark engine for processing

Ø Generate the final results in streams of batches

Ø Sliding window operations:
q Windowed computations

• Window length
• Sliding interval
• reduceByKeyAndWindow

Spark Streaming - Getting Started

6
9

Ø Scenario: Count the number of words coming in from the TCP socket.

Ø Import the Spark Streaming classes and some implicit conversion
 import org.apache.spark._
 import org.apache.spark.streaming._
 import org.apache.spark.streaming.StreamingContext._

Ø Create the StreamingContext object
 val ssc = new StreamingContext(sc, Seconds(1))

Ø Create a DStream
 val lines = ssc.socketTextStream(“localhost”,7777)

Ø Split the lines into words
 val words = lines.flatMap(_.split(“ “))

Ø Count the words
 val wordCounts = words.map(word => (word, 1)).reduceByKey(_+_)
 wordCounts.print()

Spark Streaming - Getting Started (cont’d)

7
0

Ø No real processing happens until you tell it
 ssc.start() // Start the computation
 ssc.awaitTermination() // wait for the computation to terminate

Ø The entire code and application can be found in the NetworkWordCount example @github
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/
streaming/NetworkWordCount.scala

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/NetworkWordCount.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/NetworkWordCount.scala

Spark Streaming - Hands on!

7
1

Ø In this Example, taxi trip data will be streamed using a socket connection and then analyzed to
provide a summary of number of passengers by taxi vendor. This will be implemented in the Spark
shell using Scala.

Ø There are two relevant files for this section. The first one is the nyctaxi100.csv which will serve as
the source of the stream. The other file is a python file, taxistreams.py, which will feed the csv file
through a socket connection to simulate a stream.

Ø Turn off logging so that you can see the output of the application and Import the required libraries:
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._

Spark Streaming - Hands on! (cont’d)

7
2

Ø Create the StreamingContext by using the existing SparkContext (sc). It will be using a 1 second
batch interval, which means the stream is divided to 1 sec batches and each batch becomes a RDD

 val ssc = new StreamingContext(sc, Seconds(1))

Ø Create the socket stream that connects to the localhost socket 7777. This matches the port that the
Python script is listening on. Each batch from the Stream be a lines RDD.

 val lines = ssc.socketTextStream("localhost", 7777)

Ø Next, put in the business logic to split up the lines on each comma and mapping pass(15), which is
the vendor, and pass(7), which is the passenger count. Then this is reduced by key resulting in a
summary of number of passengers by vendor.

val pass = lines.map(_.split(","))
 .map(pass=>(pass(15), pass(7).toInt))
 .reduceByKey(_+_)

Ø Print out to console
 pass.print()

Spark Streaming - Hands on! (cont’d)

7
3

Ø The next two line starts the stream.
 ssc.start()
 ssc.awaitTermination()

Ø It will take a few cycles for the connection to be recognized, and then the data is sent. In this case, 2
rows per second of taxi trip data is receive in a 1 second batch interval.

Spark MLlib

7
4

Ø Mllib for machine learning library
q Common algorithms and utilities

• Classification
• Regression
• Clustering
• Collaborative filtering
• Dimensionality reduction

Ø We will have a practical example on next slide

Spark MLlib - Hands on!

7
5

Ø Spark will be used to acquire the K-Means clustering for drop-off latitudes and longitudes of taxis for
3 clusters.

Ø The sample data contains a subset of taxi trips with hack license, medallion, pickup date/time, drop
off date/time, pickup/drop off latitude/longitude, passenger count, trip distance, trip time and other
information. As such, this may give a good indication of where to best to hail a cab.

Ø This is only a subset of the file that you used in a previous example. If you ran this example on the
full dataset, it would take a long time as we are only running on a test environment with limited
resources.
.

Ø Import the needed packages for K-Means algorithm and Vector packages:
 import org.apache.spark.mllib.clustering.KMeans
 import org.apache.spark.mllib.linalg.Vectors

Ø Create an RDD
 val taxiFile = sc.textFile("/labdata/nyctaxisub.csv")

Ø Determine the number of rows in taxiFile.
 taxiFile.count()

Spark MLlib - Hands on! (cont’d)

7
6

Ø Cleanse the data.
 val taxiData=taxiFile.filter(_.contains("2013"))
 .filter(_.split(",")(3)!="") //dropoff_latitude
 .filter(_.split(",")(4)!="") //dropoff_longitude

Ø Do another count to see what was removed.
 taxiData.count()

Ø To fence the area roughly to New York City use this command:
 val taxiFence=taxiData
 .filter(_.split(",")(3).toDouble>40.70)
 .filter(_.split(",")(3).toDouble<40.86)
 .filter(_.split(",")(4).toDouble>(-74.02))
 .filter(_.split(",")(4).toDouble<(-73.93))

The first filter limits the rows to those that
occurred in the year 2013. This will also
remove any header in the file. The third and
fourth columns contain the drop off latitude
and longitude. The transformation will
throw exceptions if these values are
empty.

In this case, if we had used the full set of data,
it would have filtered out a great many more
lines.

Spark MLlib - Hands on! (cont’d)

7
7

Ø Determine how many are left in taxiFence:
 taxiFence.count()

Ø Create Vectors with the latitudes and longitudes that will be used as input to the K-Means algorithm.
 val taxi=taxiFence.map{ line=> Vectors.dense(line.split(',').slice(3,5).map(_ .toDouble))}

 taxi.cache()
 val iterationCount=10
 val clusterCount=3

 val model=KMeans.train(taxi,clusterCount,iterationCount)
 val clusterCenters=model.clusterCenters.map(_.toArray)

 clusterCenters.foreach(lines=>println(lines(0),lines(1)))

 Now we know the map co-ordinates. Try yourself the
printed co-ordinates in google maps and you won’t
be surprised by the results!

Spark GraphX

7
8

Ø GraphX for graph processing
Ø Graphs and graph parallel computation
Ø Social networks and language modeling

Ø We will have a practical exercise on finding attributes associated with top users.

Spark GraphX - Hands on!

7
9

Ø users.txt is a set of users and followers is the relationship between the users. Take a look at the
contents of these two files.

Ø Import the GraphX package:
import org.apache.spark.graphx._

Ø Create the users RDD and parse into tuples of user id and attribute list:
val users = (sc.textFile("/labdata/users.txt").map(line => line.split(",")).map(parts =>
(parts.head.toLong, parts.tail)))

users.take(5)

Ø Parse the edge data, which is already in userId -> userId format:
val followerGraph = GraphLoader.edgeListFile(sc, ("/labdata/followers.txt"))

Users:
1,BarackObama,Barack Obama
2,ladygaga,Goddess of Love
3,jeresig,John Resig

Followers:
2 1
4 1
1 2

Spark GraphX - Hands on! (cont’d)

8
0

Ø Attach the user attributes:
val graph = followerGraph.outerJoinVertices(users) {
 case (uid, deg, Some(attrList)) => attrList
 case (uid, deg, None) => Array.empty[String]
}

Ø Restrict the graph to users with usernames and names:
 val subgraph = graph.subgraph(vpred = (vid, attr) => attr.size == 2)

Ø Compute the PageRank:
 val pagerankGraph = subgraph.pageRank(0.001)

Ø Get the attributes of the top pagerank users:
 val userInfoWithPageRank = subgraph.outerJoinVertices(pagerankGraph.vertices) {
 case (uid, attrList, Some(pr)) => (pr, attrList.toList)
 case (uid, attrList, None) => (0.0, attrList.toList)
 }
Ø Print the line out:
 println(userInfoWithPageRank.vertices.top(5)(Ordering.by(_._2._1)).mkString("\n"))

Spark - Configuration / Monitoring / Tuning

8
1

Brief History of Spark

8
2

Ø Components
• Driver
• Cluster Master
• Executors

Ø Cluster Manager
• Standalone
• Hadoop YARN
• Apache Mesos

Spark Configuration

8
3

Ø Three locations for configuration
• Spark properties
• Environment variables

conf/spark-env.sh
• Logging

log4j.properties

Ø Override default configuration directory (SPARK_HOME/Conf)
• SPARK_CONF_DIR

• spark-defaults.conf
• spark-env.sh
• log4j.properties
• etc

Ø Spark shell verbose
• To view ERRORs only, changed the INFO variable to ERROR in the log4j.properties
 $SPARK_HOME/conf/log4j.properties

Spark Configuration - Spark Properties

8
4

Ø Set application properties via the SparkConf object
val conf = new SparkConf().setMaster(“local”).setAppName(“name”)
.set(“spark.executor.memory”, “1G”)

val sc = new SparkContext(conf)

Ø Dynamically setting Spark properties
• Create a SparkContext with an empty conf
val sc = new SparkContext(new SparkConf())

• Supply the configuration values during runtime
 spark-submit --name “My app” --master yarn --deploy-mode client --conf
 “spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps” myApp.jar

• conf/spark-defaults.conf

Ø Application web UI
 http://<driver>:4040 // In YARN cluster -> http://<master>:8088

Spark Monitoring - Web UI / History Server

8
5

Ø Port 4040 // in our case: 18088

Ø Shows current application

Ø Contains
• A list of scheduler stages and tasks
• A summary of RDD sizes and memory usage
• Environmental information
• Information about the running executors

Ø Configure the history server to set
• Memory allocated
• JVM options
• Public address for the server
• Various properties

Spark Tuning

8
6

Ø Data serialization
• Java serialization
• Kryo serialization

conf.set(”spark.serializer”, “org.apache.spark.serializer.KryoSerializer”)

Ø Memory tuning
q Amount of memory used by the objects

• Avoid Java features that add overhead
• Go with arrays or primitive types
• Avoid nested structures when possible

q Cost of accessing those objects
• Serialized RDD storage

q Overhead of garbage collection
• Analyze the garbage collection
• SPARK_JAVA_OPTS

-verbose:gc -XX:+PrintGCDetails -XX:PrintGCTimeStamps to your SPARK_JAVA_OPTS

Spark Tuning - Other Considerations

8
7

Ø Level of parallelism
• Automatically set according to the file size
• Optional parameters such as SparkContext.textFile
• 2-3 tasks per CPU core in the cluster
• spark.default.parallelism

Ø Memory usage of reduce tasks
q OutOfMemoryError can be resolved by increasing the level of parallelismCost of accessing

those objects
Ø Broadcasting large variable

Ø Serialized size of each tasks are located on the master
q Tasks > 20KB worth optimizing

RDD Architecture

8
8

Review of RDD

8
9

Ø Resilient Distributed Dataset Collection of Elements partitioned across the nodes of the cluster
that can be operated on in parallel.

Ø Maintains a list of dependencies (previous RDDs in its graph)

How an RDD is Generated

9
0

Ø Uses Hadoop InputFormat APIs to input data
q support for many data stores
q Not just HDFS

• Local file systems
• Cloud storage(Google, AWS, Azure, etc)
• Hbase, Cassandra, MongoDB
• Custom InputFormats

Ø InputFormat specifies splits and locality
q Spark partitions correlate to HDFS splits
q Observes data locality when possible
q Optionally specify minimum partitioning

Ø Partitions Impact Parallelism
q A task executes against a partition

Example: RDD from a Text File

9
1

Partitions are inherited from Parent RDDTextFile API

Partitioning Considerations

9
2

Ø Evenly distributed data
Ø Preferred locations

• On systems like Hadoop and Cassandra, partitions should align with cores
Ø Number of CPU cores

Ø How long it takes to run a task
Ø Avoid Shuffling

• Movement of data between nodes
• Very Expensive
• OOM errors

Ø It all depends on your data and the type of operations that you will perform

Partitioning Example

9
3

Factors that Affect Partitioning

9
4

Ø Default partitioning is defined by input format
• E.g. on Hadoop splits by HDFS cores

Ø Repartition: increase partitions
• Rebalancing partitions after filter
• Increase parallelism

.repartition(numPartitions : Int)

Ø Coalesce: decrease partitions WITHOUT shuffle
• Consolidate before outputting to HDFS/external

coalesce(numPartitionsL Int, shuffle: Boolean = false)

Partitioners for Key/Value RDDs

9
5

Ø Adding a key to an RDD does not change the partitioning
Ø Pairs with same key may not be in same partition (Co-located)
Ø co-location beneficial for many operations

Ø We can partition records by their keys

Ø RangePartitioner
Ø HashPartitioner

• Ensures all pairs with the same key are co-located
• Partition = key % numPartitions

Ø partitionBy causes a shuffle

Partitioners for Key/Value RDDs

9
6

rdd.partitionBy(new HashPartitioner(2))

Partitioners for Key/Value RDDs

9
7

rdd.partitionBy(new HashPartitioner(2))

Partitioners for Key/Value RDDs

9
8

HashPartitioner with 3
partitions

Both RDDs are shuffled

Optimizing Joins with a Partitioner

9
9

Already Partitioned

Optimizing Joins by Co-Partitioning

1
0

Similar keys, same partitioner,
same # of partitions

Resilience

1
0

Ø RDD lineage makes it resilient
Ø Re-compute results from root / persisted RDD

Re-execute transformations on
recovered partitions

Executing Jobs

1
0

Ø Job: sequence of transformations initiated by an action
• collect, reduce, first, take, foreach etc

Ø Job -> Stages -> Tasks
Ø DAG Scheduler analyzes RDD to generate stages and tasks

• Stage boundaries are defined by shuffle dependencies (AKA wide dependency)

Ø Tasks are serialized and distributed to executors

Tasks

1
0

Ø Task: operation defined in driver for an RDD

Ø Closure (AKA lambda) is serialized and deployed to each executor
Ø Must be serializable
Ø Including any references

Ø Be careful of large tasks
Ø Serialization cost
Ø Network I/O cost

Troubleshooting “Task Not Serializable”

1
0

Class MyHelper {

 def doSomething(input : String) : String = input

}

val helper = new MyHelper()

val output = input1.map(helper.doSomething(_))

Troubleshooting “Task Not Serializable”

1
0

Class MyHelper extends Serializable {

 val inner = new ExternalClass()

 def doSomething(input : String) : String = inner.doStuff(input)

}

val helper = new MyHelper()

val output = input1.map(helper.doSomething(_))

Does not extend Serializable

Even if we could modify it,
costly to serialize and send
entire object

Troubleshooting “Task Not Serializable”

1
0

Class MyHelper extends Serializable {

 @transient lazy val inner = new ExternalClass()

 def doSomething(input : String) : String = inner.doStuff(input)

}

val helper = new MyHelper()

val output = input1.map(helper.doSomething(_))

Instantiated locally in
each task

Be Careful what you Serialize

1
0

Class MyOtherHelper extends Serializable {
 def doSomething(input : Int) = input
}

object MySparkApp {
 val helper1 = new MyOtherHelper

 def main (args: Array[String]) {
 val sc = new SparkContext(new SparkConf())
 val input = sc.parallelize(1 to 1000)

 val output = input1.map(helper1.doSomething(_))
 output.collect()
 }
}

Member variable of
MySparkApp

Spark tries to serialize
MySparkApp

Serializing would send
entire app to every
worker

Be Careful what you Serialize

1
0

Class MyOtherHelper extends Serializable {
 def doSomething(input : Int) = input
}

object MySparkApp {
 val helper1 = new MyOtherHelper

 def main (args: Array[String]) {
 val sc = new SparkContext(new SparkConf())
 val input = sc.parallelize(1 to 1000)

 val localHelper = helper1
 val output = input1.map(localHelper.doSomething(_))
 output.collect()
 }
}

Member variable of
MySparkApp

Spark tries to serialize
MySparkApp

Serializing would send
entire app to every
worker

Solution: local
reference to helper1

Identifying Stages

Handling Stragglers and Failures

1
1

Ø Speculative execution
• Slow running tasks in stage are re-launched
• spark.speculation = true (default = false)

Ø “Slow” is defined by spark speculation multiplier (default=1.5)
• How many times slower a task is than the median

Ø Task failures due to memory issues, hardware, network, etc.
Ø spark.task.maxFailures (default=4)

Ø May want to fail fast vs. running long task multiple times

Ø Be aware of side-effects
• e.g. output to external system
• if task fails and re-runs it might output same data again
• Need to write custom code to be idempotent

Using Fair Scheduler Pools

1
1

Concurrent Jobs

1
1

Ø Default First-In-First-Out (FIFO) Scheduler
§ Fine for single-user apps
§ Each Job gets as many resources it needs
§ Jobs from multiple threads can run in parallel if resources allow
§ But one large task will back things up

Ø Fair Scheduler is more appropriate for multi-user
§ spark.scheduler.mode = FAIR (default FIFO)
§ Resources allocated equally across jobs
§ Can define pools with weights / minimum share of resources

• Pools can have theor own scheduler (default FIFO)
• Useful for priority queues
• e.g. Zeppelin gives each user a pool

