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What is a Data warehouse

▪ The data warehouse is a huge repository of enterprise data that will be used for 
decision making

▪ Data is collected from multiple data sources, cleansed and organized in data 
warehouses

▪ After data is loaded in the data warehouse, (OnLine Analytical Processing) OLAP cubes
are often pre-summarized across dimensions of interest to drastically improve query 
time 



DW Example – Telecom Co.
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Multidimensional model

Dimensions: Product, Location, Time

Hierarchies

Industry

Category

Product

Country

Region

City

Store

Year

Quarter

Month Week

Day

▪ Analysis of a set of quantitative 
observations (measures)

▪ Sales, cost, stock, population, etc. 

▪ Over a set of context parameters that 
identify each observation (dimensions) 

▪ Date, product, location, sales, person

▪ Each having different levels (hierarchies) of 
details, e.g., date refers to day, month, year; 
a product belongs to a hierarchy of 
categories, etc.

▪ Cubes: combination of dimensions that 
defines a set of measures  

▪ E.g, Sales ($$$) per product, date and 
location 



Multidimensional model → Logical Model 

▪ Dimension tables :   Contains info about a dimension. It identifies a dimension value 
through a unique key as well as (if dimension is hierarchical) with the dimension level. 

▪ Fact table :   The table that implements the cube 

▪ Each record corresponds to a data cell in the cube 

▪ For each dimension value, there is a key to the dimension table 

▪ For each measure there is a single column 

▪ Primary key of the Fact table is the combination of the dimension keys. (Cell coordinates)



Multidimensional Modeling

R. Kimball, A 

Dimensional Modeling 

Manifesto, DBMS 

Magazine, Aug. 1997



Traditional Relational Model of the previous example

R. Kimball, A 

Dimensional Modeling 

Manifesto, DBMS 

Magazine, Aug. 1997



Data Warehouse Environment



Extract-Transform-Load (ETL)

 

Sources

 

Extract Transform 

& Clean

DW

Load

DSA



What is an ETL process?

▪ Initial loading and updating of a data warehouse with data from the sources is done 
with a multi-level ETL workflow (extract, transform & load)

▪ E: export + transfer +

▪ T: transformation + cleaning +

▪ L: data loading in the Data Warehouse.

▪ The standard execution is in the form of a workflow.

▪ Any intermediate data storage to serve the ETL process takes place in a storage area 
called Data Staging Area (DSA).

▪ also serves for temporary (for a short time) storage of source data for reasons of debugging, 
provenance,…



Why we need ETL processes?

▪ Data warehouses contribute to an organization's data architecture by integrating data from various 
internal information systems, but also from external sources.

▪ The goal is to Online Analytical Processing (OLAP), reporting & dashboard applications to be 
implemented over a single, consistent and complete data set with various quality guarantees.

▪ The basic guarantee concerns the elimination of inconsistencies (different values in the data for the 
same thing in the physical world) and errors in the data and is summarized with the term single 
version of the truth

▪ No errors

▪ Data consistency (between different data measuring / representing the same real world entity)

▪ The second guarantee concerns the availability of all data and mainly concerns their completeness and 
freshness.

▪ Completeness (no critical data are missing)

▪ Freshness (as fresh as possible)



70%
of cost / time / …
@build : design and test  
@maintenance: redesign, 
change requests

30%
@execution, monitoring and 
data debugging 



The multi-stage nature of ETL
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ETL is data-intensive workflow

ETL for Big Data is challenging



ETL ingredients

▪ Extract (data from their sources)

▪ find only the data that you need (e.g., only the increments wrt previous refresh)

▪ with minimal overhead for the source systems

▪ as quickly as possible
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ETL ingredients

▪ Extract (data from their sources)

▪ find only the data that you need (e.g., only the increments wrt previous refresh)

▪ with minimal overhead for the source systems

▪ as quickly as possible

▪ Transform (the data to a consistent, DW-compliant format, wrt both schema+values)

▪ Surrogate Keys !!!

▪ compute any functions, value transformations, KPIs, …

▪ schema restructuring (from source to target schema)

▪ clean!
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ETL ingredients

▪ Extract (data from their sources)

▪ find only the data that you need (e.g., only the increments wrt previous refresh)

▪ with minimal overhead for the source systems

▪ as quickly as possible

▪ Transform (the data to a consistent, DW-compliant format, wrt both schema+values)

▪ Surrogate Keys !!!

▪ compute any functions, value transformations, KPIs, …

▪ schema restructuring (from source to target schema)

▪ clean!

▪ Load (the data)

▪ to the tables of both the DW and the data marts

▪ update indexes and refresh any materialized views

▪ refresh reports, spreadsheets, …

 

Sources

 

Extract Transform 

& Clean

DW

Load

DSA



DW refreshment & Requirements

▪ Operational challenges

▪ Data Quality: users have requirements on the 

▪ completeness, 

▪ correctness (remember: single version of the truth) and 

▪ freshness of DW data

▪ (hard) time constraints:  complete refreshment within a time window 
(e.g., within a couple of hours, such that daily reports are prepared)

▪ The sources must not be overloaded or significantly reconfigured

▪ Resilience & Recovery from failures



Initial build vs DW Refreshment

▪ Initial Build: refers to the bulk loading of data to initiate the contents of a (DW) table. 

▪ Happens once

▪ Serves as an initial feed + initial testing of the ETL flow

▪ ATTN: MUST test ETL adequately before going to production!!

▪ Special care for dimensions (see the “Transformation” part)

▪ DW refreshment: as data change at the sources, the DW needs to be updated. When and 
how? Old dilemma:

▪ On update (whenever a change occurs at the sources)

▪ On demand (whenever a query requests new data)

▪ Periodic (the only viable solution)



Incremental, periodic DW Refreshment

▪ Typically nightly 

▪ as users are more happy, frequency can increase

▪ The goal is to add the new data + sync the DW on any updates & deletions(rare) that took 
place at the sources

▪ Sometimes, the inverse is also part of the goals: as data cleaning happens at the DW, push back clean 
data at the sources to replace erroneous one

▪ Order of execution:

▪ Highly depends on the prioritization of freshness & completeness by the upper management (not all 
tables are equal)

▪ For every “sub-schema”, though: 

▪ Dimensions first (ATTN: handling of keys SUPER IMPORTANT)

▪ Facts later



E FOR EXTRACT



Extract

▪ Goal

▪ find changes in data sources; i.e., new/deleted/updated tuples

▪ fast extract of relevant data

▪ extract from source systems can take a long time

▪ Techniques

▪ use full or differential snapshots of source data

▪ too time consuming to ETL all data at each load

▪ can take days/weeks

▪ drain on the operational systems and DW systems

▪ extract/ETL only changes since last load (delta)

▪ Constraints

▪ limited time window 

▪ minimized overhead on operational (OLTP) systems

▪ minimize changes on the software configuration of the OLTP systems



Transfer

▪ Compression

▪ network bandwidth, stability

▪ Encryption

▪ security



Extract

▪ Where and How we compare the full snapshots?

▪ sources? Data Staging Area (DSA)?

▪ partial file comparisons, hashing?

▪ Differential techniques

▪ Inherent change data capture provided by vendors (recommended)

▪ Based on log sniffing – fast

▪ change data entry programs – risky and costly

▪ use triggers – not very often any more

▪ Heavy use of files with ETL tools (expensive, but more functionality) or house made 
scripts (cheap, but we must implement all operations)



Differentials via snapshot comparison

▪ Assume you keep the snapshot of the source of the previous load Sprev+ 
you have the current snapshot Scurr

▪ The minus operation gives the changes since the last load: 

▪ D+ = Scurr - Sprev  

▪ D- = Sprev – Scurr

/*no updates unless you compare entire tuples! */

Customer

CID Name Age

10 Mary 18

20 Jack 4

30 Joe 20

Yesterday

CID Name Age

10 Mary 18

20 Jack 5

40 John 7

Today
Morale (not only for DW): 
+ updates can be treated as sequences of DEL;INS
… but …
- it’s not always equivalent (unless you take care) 
- it’s impossible if you have foreign keys 



Differentials via snapshot comparison

▪ A simple but slow algorithm can extract INS, DEL, UPD by checking the two snapshots 

▪ Think of it as a nested-loops variant – any other join works

▪ Update: the key is the same and we check changes at important attributes

▪ Faster variants by sorting and using window comparisons

▪ Typically, heavy to perform @ source => requires transfer of the source’s snapshot to the DSA 

▪ workable for small sources

▪ impossible for large sources

▪ Remember: you need to do it to ALL the tables you load!

Overall: the minus technique, although simple, is potentially slow and impractical

CHECKLIST
☺ correct deltas 
 limited time window 
 minimize source overhead
☺ minimize configuration changes

CHECKLIST
☺ correct deltas 
 limited time window 
 minimize source overhead
☺ minimize configuration changes



Old tricks (that occasionally worked)

▪ Trick #1: Timestamping the rows of the sources 

▪ Put a timestamp column in each source table

▪ Remember at which timestamp the extraction stopped the last time

▪ Only additions considered- Lose deletions and updates 

▪ Trick #2: Flag the rows of the sources 

▪ Put a “flag” column in each source table: “I-have-changed”

▪ Modify source applications / add triggers to populate flag     

▪ Can complement timestamps for DEL/UPD

CHECKLIST 
 correct deltas 
☺ limited time window 
☺ minimize source overhead
 minimize configuration changes

CHECKLIST 
 correct deltas 
☺ limited time window 
☺ minimize source overhead
 minimize configuration changes

What if we compromise the 
“avoid interfering with 
source configuration” 

constraint?



Old tricks (that occasionally worked)

▪ Trick #3: Triggers (or “why good, sexy ideas often fail”)

▪ Add trigger per monitored source table: on INS/DEL/UPD, trigger copies 
delta to a dedicated table

▪ No modification of source applications, no errors, fast ETL

▪ Extremely painful for source overhead     

▪ Trick #4: Message queues 

▪ Applications do not modify the source db/files; instead, they use 
message queues, which in turn, perform the update at the source AND 
populate the delta-dedicated tables

▪ Modifies apps   ; Painful for source overhead  

TRIGGERS 
☺ correct deltas 
☺ limited time window 
  minimize source overhead
☺ minimize configuration changes

TRIGGERS 
☺ correct deltas 
☺ limited time window 
  minimize source overhead
☺ minimize configuration changes

What if we compromise the 
“avoid interfering with 
source configuration” 

constraint?

MSG QUEUES
☺ correct deltas 
☺ limited time window 
 minimize source overhead
  minimize configuration changes

MSG QUEUES
☺ correct deltas 
☺ limited time window 
 minimize source overhead
  minimize configuration changes



Change Data Capture: Use the Log!

▪ What practically works nowadays 

▪ provided that the source is a relational database with a log file 

▪ not always possible: if not, you ‘re back at the minus method

▪ Sniff the log of the source for changes!

▪ Does not affect applications

▪ Turns out to be both fast and lightweight

▪ No data loss

▪ The big vendors will give you the tools to do it for you; you just have to 
register the source tables that are monitored



Change Data Capture

https://msdn.microsoft.com/en-us/library/cc645937.aspx

CHECKLIST
☺ correct deltas  
☺ limited time window 
 minimize source overhead
☺ minimize configuration changes

CHECKLIST
☺ correct deltas  
☺ limited time window 
 minimize source overhead
☺ minimize configuration changes

“The source of change data for change data capture is the SQL 
Server transaction log. As inserts, updates, and deletes are 
applied to tracked source tables, entries that describe those 
changes are added to the log. The log serves as input to 
the capture process. This reads the log and 
adds information about changes to the tracked table’s 
associated change table. Functions are provided to 
enumerate the changes that appear in the change tables over a 
specified range, returning the information in the form of a 
filtered result set. The filtered result set is typically used by an 
application process to update a representation of the source in 
some external environment. “
“The capture job is started immediately. It runs continuously, 
processing a maximum of 1000 transactions per scan cycle with 
a wait of 5 seconds between cycles. “

https://msdn.microsoft.com/en-us/library/cc645937.aspx


T FOR TRANSFORM
… and C for Cleaning …



Transformations overview

• Basic transformations:

• Cleaning: Mapping NULL to 0 or "Male" to "M" and "Female" to "F," date format consistency, etc.

• Deduplication: Identifying and removing duplicate records

• Format revision: Character set conversion, unit of measurement conversion, date/time conversion, 
etc.

• Surrogate keys : Establishing key relationships across tables



Transformations overview

• Advanced transformations:

• Derivation Applying business rules to your data that derive new calculated values from existing data – for 
example, creating a revenue metric that subtracts taxes

• Filtering: Selecting only certain rows and/or columns

• Joining: Linking data from multiple sources

• Splitting \ Forking: Splitting a single column into multiple columns 

• Merging: Merging multiple columns data into a single one 

• Data validation: Simple or complex data validation – for example, if the first three columns in a row are empty 
then reject the row from processing

• Summarization: Values are summarized (sum, avg, min, max, etc) to obtain total figures  



Surrogate Keys

▪ Source keys are usually called production keys or natural keys.

▪ The new, homogenized keys, are called surrogate keys

▪ There are special techniques for how to change the keys in the 
Data Warehouse, if you change a key in a source ... 



Surrogate Keys

ID Descr

10 Coca

20 Pepsi

R1

ID Descr

10 Pepsi

20 HBH

R2

ID Descr

?? ??

?? ???

DW.R

Two kinds of conflicts:
(1) Keys 10 and 20 in 

the two sources 
correspond to 
different products

(2) The same product 
(here: Pepsi) has 
different keys in 
the two sources

Two kinds of conflicts:
(1) Keys 10 and 20 in 

the two sources 
correspond to 
different products

(2) The same product 
(here: Pepsi) has 
different keys in 
the two sources



Surrogate Keys

ID Descr

10 Coca

20 Pepsi

Source 

ID

Sour

ce

Surrogate 

Key

10 R1 100

20 R1 110

10 R2 110

20 R2 120

R1

ID Descr

10 Pepsi

20 HBH

R2

ID Descr

100 Coca

110 Pepsi

120 HBHDW.R

Lookup

+

+



ALWAYS

USE

SURROGATE KEYS



More transformations

▪ Schema modification

▪ DW schemas are typically different than sources schemas

▪ e.g., source data may be unstructured

▪ Value change/computation

▪ source tuples may have different format, type, value

▪ integer→ real

▪ euro→ dollar

▪ new values may need to be created

▪ date of birth→ age



More transformations

▪ Data type conversions

▪ EBCDIC → ASCII/Unicode

▪ String manipulations , e.g., Name → lastname , firstname

▪ Date/time format conversions

▪ E.g., Unix time 1201928400 = what time?

▪ Normalization/denormalization

▪ To the desired DW format

▪ Depending on source format

▪ Building keys

▪ Table matches production keys to surrogate DW keys

▪ Correct handling of history - especially for total reload



Denormalization

EMP
INCOME

IL_ID Descr

10 Salary

20 Bonus

30 Tax

... ...

Income 
Lookup

EMP ID IL_ID Amount

110 10 1500

110 30 300

EMP

EMP 

ID

Name Age

110 Bob 30

120 Rob 48

130 Ron 29

DW.EMP

DW

?



Denormalization

EMP ID Name Age Salary Tax Bonus

110 Bob 30 1500 300 NULL

… … …

DW.EMP

• Flat tables not so easily evolvable

• add new income category => new column

• Fast to answer queries

• for a single question we save 2 joins

• The opposite (normalization) may be used too



Data Validation

▪ Data violating DB rules

▪ duplicates, primary/foreign key violations, out-of-range values, …

▪ logical rule violations

 IF (SEX='F' AND ILLNESS='PROSTATE') 
 THEN (ALERT ERROR MESSAGE)

▪ Homonyms and conflicts

▪ Missing data

▪ Renicing

▪ e.g., strings like addresses



Data cleansing

Source Value DW value

HP HP

H.P. HP

H-P HP

Hewlett-Packard HP

Hioulet-Pakard HP

DEC DEC

Digital Co. DEC

… …

▪ Synonym table

▪ addresses 

▪ ave, st, blvd, …

▪ names

▪ Mr John Doe / Dr John Doe / J. 
Doe

▪ Regular expressions

▪ e.g., perl



Data cleansing

▪ Do not use “special” values (e.g., 0, -1, 999) in your DW 

▪ They are hard to understand in query/analysis operations

▪ Annotate facts with Data Status dimension

▪ Normal, abnormal, outside bounds, impossible,…

▪ Facts can be taken in/out of analyses

▪ Uniform treatment of NULL

▪ Use NULLs only for measure values (estimates instead?)

▪ Use special dimension key (i.e., surrogate key value) for NULL dimension values

▪ E.g., for the time dimension, instead of NULL, use special key values to represent “Date not 
known”, “Soon to happen”

▪ Avoids problems in joins, since NULL is not equal to NULL

Sales SID …

10 1 …

20 1 …

10000 2 …

-1 3 …

Sales fact table

SID Status

1 Normal

2 Abnormal

3 Out of bounds

… …

Data Status 

Dimension



CHANGING DIMENSIONS

Mostly: Slowly

but also: Rapidly

... and why Surrogate Keys are SUPER IMPORTANT …

Several figures taken from

https://en.wikipedia.org/wiki/Slowly_changing_dimension

https://en.wikipedia.org/wiki/Slowly_changing_dimension


The problem

▪ Dimensions are used to form a dimension bus, over which fact tables are “glued” (via 
FK’s) 

▪ At the initial DW built/loading, both the dimension data and the factual data are 
snapshot.

▪ But then, data change. Let’s start with the dimensions first:

▪ new dimension values are added, some of them are updated and maybe, some are deleted.

▪ How do we handle change of the dimensions?

▪ MUST read: R. Kimball et al., the DW toolkit



Assume a simple update

@ 
Source



… well it’s not so simple…

SuppK ProdK Date Amt ...

123 100 160303 100

123 200 160303 20

Fact Table: Supplies

SuppK Code Name State

121 AAA X CA

122 BBB Y NY

123 ABC Z CA

...

123 Abc Z IL SuppK ProdK Date Amt ...

123 100 160304 30

123 200 160304 10

Dim Table: Supplier

16-03-04 comes and the supplier changes State
+
New data arrive for this supplier



… and assume this state…

SuppK ProdK Date Amt ...

123 100 160303 100

123 200 160303 20

123 100 160304 30

123 200 160304 10

Fact Table: Supplies

SuppK Code Name State

121 AAA X CA

122 BBB Y NY

123 ABC Z IL

...

Dim Table: Supplier

We successfully 
updated the 
dimension table’s row 
…

… retained the same 
Surrogate Key …

… and appended the 
new data…



… and assume this state…

SuppK ProdK Date Amt ...

123 100 160303 100

123 200 160303 20

123 100 160304 30

123 200 160304 10

Fact Table: Supplies

SuppK Code Name State

121 AAA X CA

122 BBB Y NY

123 ABC Z IL

...

Dim Table: Supplier

… and someone 
asks: “how many 
shipments did we 
have from CA this 
month?”

Remember: this 
IL used to be CA!

The correct answer 
should be 120!

Now, we are going to 
answer: 0!



What do we do?

▪ Slowly Changing Dimensions:

▪ The dimension values, change…

▪ … but not too often – certainly, much more rare than factual data do

▪ … and we need to handle change in dimensions, in the presence of factual foreign keys

▪ Several solutions, all known as SCD Type X, with X ranging from 0 to (hmm, at least)  7

▪ Basically, SCD type 1,2,3 are the most important



SCD Type 1

▪ Type 1: Simply replace the old value with the new one! 

▪ Issues:

▪ Keep the same surrogate key!

▪ How to detect change? 

▪ If the Production Key exists, assign the same SK, … and…

▪ overwrite!

▪ Easy 

▪ Fast 

▪ Does not augment the dimension table

▪ Misses the previous value => historical queries to the facts & dimensions are incorrect!



SCD Type 3

@ 
Source

@ DW

• SCD Type 3: extra attribute in the dimension 
row with the previous value

• Almost Type 1 with little more info

• Same SK, fact data refer to the correct SK

• Must take special care for historical queries 
(doable but hard  )



SCD Type 2

(a)

(b)

@ 
Source

@ DW

Alternatives



SCD Type 2

▪ SCD Type 2: new variant of the dimension row

▪ New record at the dimension table; 

▪ SAME Production Key, NEW Surrogate Key

▪ Variants: (a) version number / (b) valid time timestamps  

▪ Can have status columns  to indicate which row is current (see SCD 
Type 6) 

▪ Fact data refer to the correct SK

@ DW

• NOT Easy 
• NOT (so) Fast 
• Augments the dimension 

table
• Correctly answers historical 

queries



Type 2 answers historical queries, …but… mind your 
groupings!

SuppK ProdK Date Amt ...

123 100 160303 100

123 200 160303 20

124 100 160304 30

124 200 160304 10

Fact Table: Supplies

SuppK Code Name State Vid

121 AAA X CA 0

122 BBB Y NY 0

123 ABC Z CA 0

124 ABC Z IL 1

Dim Table: Supplier

If someone asks: 
“how many 
shipments did we 
have from CA this 
month?”
We can join fact and 
dim and group by 
State

If someone asks: 
“how many 
shipments did we 
have from ABC?”
We MUST join fact 
and dim and group 
by Code!

i.e., the SK CANNOT 
help with counting 
unique dim objects!
(and we must pay the 
price of joining too)



SCD Type 6
@ 
Source

@ DW

• SCD Type 6: Type 2 +
– status columns  (Flag + dates) to indicate which row is 

current

• Fact data refer to the correct SK

• Hard to implement

• All version info is available; most complete solution

Here: a 3rd 
change 
too:
IL->NY



SCD – Type 6 (1+2+3)

Type 6

for each fact record, find the current 
supplier state and the state the 

supplier was located in at the time 
of the delivery

ensure a single supplier record is 
retrieved for each transaction

how a specific date can be used
OR



Dimension Table Growth

▪ The problem at hand: if Type 2 or 6, the dim-table can grow too large -- esp., if 

▪ too many attributes are monitored

▪ some attributes change fast (e.g., age)

▪ So occasionally, Types 2 & 6 are not really feasible

▪ Remember: some dimension table are too big on their own (e.g., Customer)

▪ Big dimension tables means that they do not fit in main memory and joins with them 
become slow

▪ So, we need to battle dimension table scale up!



Slowly Changing Dimensions

▪ Type 4: definitions vary

▪ History Table: split type-2 table in two tables, subsets of the data set: the historical 
one and the current one (single row)

▪ Kimball’s Mini-dimensions (see next): if some attributes of the dimension change 
frequently, 

▪ export a new table (called “mini-dimension”)  just for them; 

▪ facts have two FK’s for the dimension, one for the dim table and another for the profile table



SCD Type 4

@ 
Source

@ DW

• SCD Type 4: two tables
– A current + a historical one

– SAME Production Key, SAME 
Surrogate Key

– Time timestamps  at history

• Fact data refer to the same SK

• One has to do complicated 
queries to handle historical 
values (yet, doable)



Rapidly Changing Dimensions

▪ (Kimball’s) SCD Type 4: 

▪ split off frequently changing attributes of 
a dimension into a separate mini-
dimension. 

▪ assign SK to the new mini-dim table too

▪ If the dim table is too large, one can 
use mini-dimensions as a trick to 
have a smaller dimension table for 
frequently used attributes too

Several other tricks to 
combat dimension-table 
augmentation over time:
• Group attribute values in 

group (e.g., instead of 
age,  age band)

•  further split the mini-
dimension too, if 
necessary



L FOR LOAD



Load

▪ Goal: fast loading into DW

▪ loading deltas is much faster than total load

▪ Issues

▪ lots of data & short time window

▪ freshness

▪ table updates, but also indices, views, etc.

▪ preserve data integrity after a failure

▪ Sometimes extra care is needed

▪ sort / aggregation



Load

▪ Load techniques

▪ SQL is not a good choice

▪ slow: tuple-by-tuple

▪ slow: random disk i/o

▪ overflow of rollback segment / log file  (might create zombie processes)

▪ batch loading tools

▪ DB load tools are much faster



Load

▪ Load techniques (cntd)

▪ index on tables slows load a lot

▪ drop index and rebuild after load

▪ can be done per index partition

▪ disable logging & locking

▪ risky for load failures

▪ sort tuple on a clustering key (esp. if the table is clustered too)

▪ prefer sequential i/o than random i/o



Load

▪ Load techniques (cntd)

▪ parallelize, parallelize, parallelize…

▪ dimensions can be loaded concurrently

▪ fact tables can be loaded concurrently

▪ partitions can be loaded concurrently

▪ aggregates

▪ can be built and loaded at the same time as the detail data



DESIGN & OPTIMIZATION 

- Design

- Optimization

- …



Issues

▪ Use ETL tool or write ETL code?

▪ Code: easy start, co-existence with IT infrastructure, maybe the only possibility

▪ Tool: better productivity on subsequent projects, “self-documenting”

▪ Load frequency

▪ ETL time dependent of data volumes

▪ Frequency & Prioritization of flows is dictated by user req’s, data volumes, strength of 
source servers, …

▪ Daily load is much faster than monthly

▪ Applies to all steps in the ETL process

▪ Files versus streams/pipes

▪ Streams/pipes: no disk overhead, fast throughput

▪ Files: easier restart, often the only possibility

Pipes: Redirect output from one process to input of another process
cat payments.dat | grep 'payment' | sort –r | uniq -u



Test Test Test 

▪ For each flow, esp., at initial build:

▪ per step: ensure that result is as expected

▪ overall: ensure that result is as expected

▪ Often, this requires intermediate storage and debugging

▪ Unknown data errors often hidden in the sources

▪ SQL/… statements of the ETL process buggy

▪ Do not skip this part; DW is expected to hold the single version of the truth for its 
data; otherwise it serves no purpose



How to design?

▪ Early stage requirements: the hardest part

▪ Source data must be mapped to the DW format

▪ DON’T FORGET THE DIMENSIONS!

▪ They must be profiled for errors and cleaning actions have to be taken

▪ Target aggregates/reports/cubes to be delivered must be identified and prioritized

▪ ETL design research efforts mainly focused here



Conceptual Modeling for  (early stage) ETL Processes
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The UML Data Mapping Diagram
S. Lujan-Mora, P. Vassiliadis, J. Trujillo, ER 2004



The UML Data Mapping Diagram
S. Lujan-Mora, P. Vassiliadis, J. Trujillo, ER 2004

Aggregating computes 
the quarterly sales for 

each product.



How to design?

▪ Later stage: a flow must be

▪ designed & built 

▪ tested & debugged, 

▪ documented,

▪ executed =>initial load of the DW, 

▪ Moreover, incremental updates must be

▪ designed & built

▪ tested tested tested 

▪ documented,

▪ deployed at production

The tools 
help a 
lot!

You need to do 
data profiling 
(tools can help)



ADVANCED TRENDS



Data Lakes / Data Vaults / ETLT-ELT

▪ Typically, ETL is a principled process, with a lot of a priori design both of the schemata 
and the data flows

▪ Data Lakes (aka Data vaults): keep any data you find in a DSA, typically in an 
unstructured or loosely structured format, and if you need it later, you do your best 
to exploit it

▪ ELT & ETLT: load first & then we see what we do with the acquired data

▪ Many issues:

▪ Provenance & metadata

▪ Data quality

▪ Timeliness of data & purging of expired data sets

▪ Integration

▪ Scale of the number of sources and acquired data sets



ETL on the cloud

▪ Both for traditional & novel architectures

▪ HDFS for the files of the DSA 

▪ any HDFS-based data management system for loosely structuring DSA data 

▪ Graph DBMS for graph data

▪ Text DBMS for textual /json data

▪ Column-family DBMS for loosely structured tabular data

▪ …

▪ Spark, Hadoop based ETL tool / set of scripts to gracefully scale-out



(Near) Real Time ETL

▪ What timeliness/latency is acceptable?

▪ Yesterday’s data?

▪ 1 hour-old data? 

▪ 15’?

▪ 15”?

▪ …

▪ Latency of what?

▪ End to end? (from data production to the OLAP server)

▪ Data Load?

▪ …

▪ How to tune and schedule the simultaneous loading and querying?

▪ Remember: one of the original motivations for separating OLTP & BI was exactly the impossibility of handling both 
tasks at the same server



Super scale ETL

▪ Internet of Things with thousands/millions of sources

▪ Sometimes sensor sources have unique requirements/capabilities

▪ Issues:

▪ Data transfer & retention policy

▪ Bandwidth

▪ Handling a huge number of sources (occasionally antagonizing for the same time slot) 

▪ No time for transformations, if completeness is a goal

▪ Error handling & data correction /interpolation  for collected/missing data



Big
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Tools



ETL COMMERCIAL TOOLS



Actian DataConnect StreamSets Data Collector

Adeptia Integration Suite Syncsort DMX

Alteryx Talend

ApatarForge Etlworks

Astera Centerprise Singer

Attunity Compose Alooma

Bryte Systems BryteFlow Blendo

Bubbles Built.io Flow

CloverETL DataVirtuality

Elixir Repertoire Data ETL Dell Boomi

FlyData Eight Wire Conductor

IBI iWay Data Migrator Etleap

IBM InfoSphere DataStage Fivetran

Microsoft (SQL Server Integration) Improvado

OpenText Integration Center Informatica

Oracle Data Integrator Matillion

Pentaho Data Integration (Kettle) OpenBridge

Pervasive Data Integrator Paxata

Petl Rivery

pygrametl Segment

Relational Junction ETL Manager SnapLogic Elastic Integration Platform

Sagent Data Flow Stitch

SAP BusinessObjects Data Services Textur

SAS Data Management Treasure Data

Scriptella Xplenty
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SQL Server Integration Services



Pentaho



Oracle Data Integrator ODI



ETL IN ACTION
… how ETL works in production? 



ETL for Loading Customers in DW

Linear flow containing 
multiple sub Flows



Sub Flow for EXTRACT_UCM operation

Different sources
• Contact Type
• Company Type
• Customer Profession

mapped and loaded to the 
DW in parallel



Cyclic flow that runs every 20min for near real-time 
reporting 

Scans source tables for 
updates
Deletes previous loaded data 
and loads the fresh ones



Thank you
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