MANENIZTHMIO MEIPAIQZ
TMHMA NAHPO®OPIKHZ

NMMZ KYBEPNOAZ®AAEIA , , ,
KAI ENIZTHMH AEAOMENQN Awayetplon MeyaAwv Asdopevmwv

MSc CYBERSECURITY
AND DATA SCIENCE

DEPT OF INFORMATICS
UNIVERSITY OF PIRAEUS

Big Data Management

Lecture 4 - NoSQL DBs

George Papastefanatos (gpapas@athenarc.gr)
Principal Researcher @ ATHENA Research Center

ver. 11/2023

mailto:gpapas@athenarc.gr

Lecture Outline

= Motivation
= RDBMS characteristics
= Current trends & RDBMS limitations

= Cap Theorem

= NoSQL databases
= Key-value stores
= Document stores
" Column stores

= Graph stores

= NewSQL DBs

= Qverview of NoSQL Features

Relational databases

Support & Call Center
—
HR ~ Inventory
—
Accounting Suppliers
Sales Marketing

External Sources

Relational databases

Support & Call Center

HR Inventory

Accounting Suppliers

Sales Marketing

External Sources

Relational Databases

= Data model

= Instance > database —> table - row

= Data access

= Selection based on complex conditions, projection, joins, aggregation, derivation of new values,
recursive queries,

= SQL (Structured QuerylLanguage)
SELECT emp.name, dept.name
FROM emp INNER JOIN dept ON dept.id=emp.dept id
WHERE dept.location = ‘Athens’

= Formal: Relational algebra, relational calculi (domain, tuple)

1_[emp.name,dept.name(csdept.location = “Athens” (empmx dept))

Relational Databases - Representatives

ORACLE g
DATABASE §QLserver

PostgreSQL

... and many more

MySQoll.

RDBMs Features — Normal Forms

student

¥

Jia)

F 3

e

dept_nane
tob_cred

department

dept_rame
building
brdget

advisor

5_id

instructor

D
name
dept_nante

salary

takes
n
corse_id
sec id
semester
Hear.
grade
section =
W CoLrse id " Y ourse i
g <pwere: : n title
L semester ™ e
Bosl 3 credits
_ | building titme slot
| | room_no fismid sl i
time_slot_id day
start time
end_time
prereq
ciassroom L ey
Lp| building S
L FoOIm_HO prereq
capacity tedches
D
L | course_id
L | sec id
L | semester
year

Model Constraints

e Functional dependencies, 1NF, 2NF, 3NF, BCNF
(Boyce-Codd normal form)

Objective

e Normalization of database schema to BCNF or 3NF,
via decomposition or synthesis

Motivation

e Diminish data redundancy, prevent update
anomalies

e However:

e Data is scattered into small pieces (high
granularity), and so

e these pieces have to be joined back together
when querying!

RDBMs Features - Transactions

Model

* Transaction = flat sequence of database operations (READ,
WRITE, COMMIT, ABORT)

J O \V/ €

e Enforcement of ACID properties
* Efficient parallel / concurrent execution (slow hard drives, ...)

A - Atomicity
C - Consistency
I - Isolation

D - Durability

ACID prope

e Atomicity — partial execution is not allowed (all or nothing)

e Consistency — transactions turn one valid database state into
another

e |solation — uncommitted effects are concealed among
transactions

e Durability — effects of committed transactions are permanent

Where is Big Data?

= Social media and networks

= ..all of us are generating data

= Scientific instruments and e-Infrastructures

i ummuﬂs

o RATONA
LARGER CONTINUES Sl]l]IAl

ms COMPLEX o

= Mobile devices ANMY“ES

USE

= ...producing all sorts of data, astronomical, biological, etc

=
W —
XY L
=

MANAE[MENT ERABITES 5

: : - - P - pe— Sy =2 PLTIBVTES NCLUE
= ..tracking social activity, mobility HUNDREHﬁ%gn: 5S_s|!sll]nﬁﬂﬁ[
= Internet of Things, sensors and networks o PIRILEL 55 =
?&) GROW
= ..machine-generated, measurements ‘ f .

MPP""-‘ AHILITY

Big Data Characteristics — The basic Vs

Volume (Scale)

e Data volume is increasing
exponentially, not linearly

e Even large amounts of small
data can result into Big Data

and needs to be processed
fast

10

Variety (Complexity)

e Various formats, types, and
structures

o (from semi-structured to
unstructured multimedia)

Veracity (Uncertainty)

e Uncertainty due to
Inconsistency,
incompleteness, latency,
ambiguities, or
approximations

New Trends after 2000’s

 Heterogeneous Data Models
o Streaming Data, fast OLTP
e Distributed Share-nothing systems

e API data access, MapReduce, SPARK and
other programming models

e From Data warehouses to Data Lakes
e Cloud computing & Edge processing
e Large scale machine learning

e Moto: One Size Does not Fit all

11

@ICDE2005

“One Size Fits All”: An Idea Whose Time Has Come and Gone

Michael Stonebraker
Computer Science and Artificial
Intelligence Laboratory, M.IT., and
StreamBase Systems, Ine.
stonebraker(@csail. mit.edu

Abstract

The last 25 years of commercial DBMS development
can be summed up in a single phrase: “One size fits all”.
This phrase refers to the fact that the traditional DEMS
architecture (originally designed and optimized for
business data processing) has been used to support many
data-centric applications with widely varying
characteristics and requirements.

In this paper, we argue that this concept is no longer
applicable to the database market, and that the
commercial world will fracture into a collection of
independent database engines, some of which may be
unified by a common front-end parser. We use examples
from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefly
discuss other markets for which the traditional
architecture is a poor fit and argue for a critical
vethinking of the current factoring of systems services
into products.

1. Introduction

Relational DBMSs arrived on the scene as research
prototypes in the 1970°s, in the form of System R [10]
and INGRES [27]. The main thrust of both prototypes
was to surpass IMS in value to customers on the
applications that IMS was used for, namely “business
data processing™. Hence, both systems were architected
for on-line transaction processing (OLTP) applications,
and their commercial counterparts (ie. DB2 and
INGRES, respectively) found acceptance m this arena m
the 1980°s. Other vendors (e.g., Sybase, Oracle, and
Informix) followed the same basic DBMS model, which
stores relational tables row-by-row, uses B-trees for
ndexing, uses a cost-based optmmzer, and provides
ACID transaction properties.

Since the early 1980°s, the major DBMS vendors have
steadfastly stuck to a “one size fits all” strategy, whereby
they maintain a single code line with all DBMS services.
The reasons for this choice are straightforward — the use

Ugur Cetintemel
Department of Computer Science
Brown University, and
StreamBase Systems, Inc.
ugur@cs.brown.edu

of multiple code lines causes various practical problems,
including:

¢ a cost problem, because maintenance costs increase
at least linearly with the number of code lines;

* a compatibility problem, because all applications
have to run against every code line;

* a sales problem, because salespeople get confused
about which product to try to sell to a customer; and

* a marketing problem, because multiple code lines
need to be positioned correctly in the marketplace.

To avoid these problems, all the major DBMS vendors
have followed the adage “put all wood behmd one
arrowhead”. In this paper we argue that this strategy has
failed already. and will fail more dramatically off into the
future.

The rest of the paper is structured as follows. In
Section 2, we briefly indicate why the single code-line
strategy has failed already by citing some of the key
characteristics of the data warehouse market. In Section
3. we discuss stream processing applications and indicate
a particular example where a specialized stream
processing engine outperforms an RDBMS by two orders
of magnitude. Section 4 then turns to the reasons for the
performance difference, and indicates that DBMS
technology 1s not likely to be able to adapt to be
competitive m this market. Hence, we expect stream
processing engines to thrive in the marketplace. In
Section 5, we discuss a collection of other markets where
one size is not likely to fit all, and other specialized
database systems may be feasible. Hence, the
fragmentation of the DBMS market may be fairly
extensive. In Section 6, we offer some comments about
the factoring of system software into products. Finally,
we close the paper with some concluding remarks in
Section 7.

2, Data warehousing

In the early 1990°s, a new trend appeared: Enterprises
wanted to gather together data from multiple operational
databases into a data warehouse for business intelligence

RDBMs Limits

= Need for well-defined schemas

= Need for skilled DBA

= SQL and complex tuning

= Hard to make transactions scalable

12

Big Data on Clouds

= Everything is on the cloud
= SaaS: Software as a Service
= PaaS: Platform as a Service

= |aaS: Infrastructure as a Service

" Processing paradigms
= OLTP: Online Transaction Processing
* OLAP: Online Analytical Processing
= ...but also...

= RTAP: Real-Time Analytic Processing — time to analysis is minimal

13

New Data assumptions

= Data format is becoming unknown or inconsistent (csv, json, text, compressed, ...)
= Data updates are no longer frequent, mostly additions in streams

= Data is expected to be replaced

" Linear growth - unpredictable exponential growth

= Strong consistency is no longer mission-critical

= Read requests prevail write requests

CAP Theorem

14

CAP Theorem

= Any distributed data store can only
provide TWO of the THREE properties

= History

At the PODC 2000 conference, Brewer (UC
Berkeley) conjectures that one can have only
two properties at the same time

In 2002, Gilbert and Lynch (MIT) proved the
conjecture, which becomes a theorem

CAP Theorem: https://people.eecs.berkeley.edu/~brewer/cs262b-
2004/PODC-keynote.pdf

15

Consistency

All clients see the
same view of data,
even right after
update or delete

CA CP

Availability Partitioning

All clients can find a AP
replica of data, even
in case of partial
node failures

The system continues
to work as expected,
even in presence of

partial network failure

Two types of transactions

= Polemical topic

The CAP theorem states that it is impossible to achieve both consistency and availability in a

partition tolerant distributed system (i.e., a system which continues to work in cases of temporary
network loss).

Argument used by NoSQL to justify their lack of ACID properties
But has nothing to do with scalability

= Two different points of view

Relational databases — ACID Transactions

= Consistency is essential

Distributed systems — BASE Transactions

= High availability is essential

16

Strong vs Eventual Consistency

BASICALLY

rATOMIC CONSISTEn AVAILABLE
ACID > BASE

EVENTUALLY
I CONSISTENT

I ISOLATED DURABLE I

= Strong consistency (ACID)

= All nodes see the same data values at the same time

= Eventual consistency (BASE)
= Basic Availability: The database appears to work most of the time.

= Soft-state: Stores don’t have to be write-consistent, nor do different replicas have to be mutually
consistent all the time. Some nodes may see different data values at the same time

= Eventual consistency: Stores exhibit consistency at some later point (e.g., lazily at read time). If we stop
injecting updates, the system reaches strong consistency.

17

Symmetric, Asynchronous Replication

* How do achieve eventual consistency

= After reconnection (and resolution of update conflicts), consistency can be obtained

Client Client

AP ok
C non ok

Node1 < / NOdez

BASE properties

= BASE properties are much looser than ACID guarantees

= A BASE data store
values availability
doesn’t offer guaranteed consistency of replicated data at write time.

Overall, the BASE consistency model provides a less strict assurance than ACID: data will be
consistent in the future, at read time

19

Lecture Outline

= Motivation
= Big Data Characteristics

= Current trends & RDBMS limitations

" NoSQL databases
= Key-value stores
= Document stores
= Column stores

= Graph stores

= NewSQL DBs

20

NoSQL Databases

= What does NoSQL actually mean?

= A bit of history ...
= 1998

= First used for a relational database that omitted usage of SQL for data access.

= 2009

= First used during a conference to advocate non-relational databases
= So?
= Not: no to SQL
= Not: not only SQL

= NoSQL is an accidental term with no precise definition

21

What does NoSQL actually mean?

* NoSQL movement = The whole point of seeking alternatives is that you need to solve
a problem that relational databases are a bad fit for.

= NoSQL DEFINITION: Next Generation Database Management Systems mostly
addressing some of the points: being non-relational, distributed, open-source and
horizontally scalable.

= The original intention has been modern web-scale database management systems.
The movement began early 2009 and is growing rapidly. Often more characteristics
apply such as: schema-free, easy replication support, simple API, eventually
consistent / BASE (not ACID), a huge amount of data and more.

* The misleading term "nosqgl" (the community now translates it mostly with "not only

sql”) should be seen as an alias to something like the definition above.
Source: https://hostingdata.co.uk/nosql-database/

22

NoSQL (Not Only SQL)

= Specialized data model

Key-value, column-based, document, graph
= Query-based and API-based data access & manipulation

= Trade relational DBMS properties
Full SQL, ACID transactions, data independence

" For
Simplicity (schema-free, few or no constraints, basic API)
Scalability and performance — deployed over distributed environment

Flexibility for the programmer (integration with programming language)

NB: SQL is just a language and has nothing to do with the story

23

RDBMS vs NoSQL Overview

Data storage

Schemas and
Flexibility

Scalability

ACID Compliancy

Stored in a relational model, with rows and columns.
Rows contain all of the information about one specific
entry/entity, and columns are all the separate data
points.

Each record conforms to a fixed schema and
integrity constraints, meaning the columns must be
decided and locked before data entry and each row must
contain data for each column. This can be amended, but
it involves altering the whole database and going offline.

Scaling is vertical. In essence, more data means a
bigger server, which can get very expensive. It is possible
to scale an RDBMS across multiple servers, but this is a
difficult and time-consuming process.

The vast majority of relational databases are ACID
compliant.

24

The term “NoSQL"” encompasses a host of databases,
each with different data storage models. The main
ones are: document, graph, key-value and
columnar.

Schemas can be dynamic. Information can be added
on the fly, and each ‘row’ (or equivalent) doesn’t have
to contain data for each ‘column’.,

Scaling is horizontal, meaning across servers.
They can be cheap commaodity hardware or cloud
instances, making it a lot more cost-effective than
vertical scaling. Many NoSQL technologies also
distribute data across servers automatically.

Varies between technologies, but many NoSQL

solutions sacrifice ACID compliancy for
performance and scalability

Source: https://dataconomy.com/2014/07/sql-vs-nosql-need-know/

NoSQL Approaches

= Core types
= Key-value stores

= Document stores

Wide column (column family, column oriented, ...) stores

Graph databases

Multimodel

= Non-core types

" Object databases Were there much before NoSQL

= Native XML databases Sometimes presented as NoSQL
But not really scalable

* RDF stores

25

KEY-VALUE STORES

Key-Value Stores

= Data model
= The most simple NoSQL database type
= Works as a simple hash table (mapping)
= Key-value pairs
= Key (id, identifier, primary key)
= \Value: binary object, black box for the database system
= Query patterns
= Create, update or remove value for a given key

e Get value for a given key Characteristics

= Simple model = great performance, easily scaled, ...
= Simple model = not for complex queries nor complex data

27

Key-Value Stores

= Suitable use cases
= Session data, user profiles, user preferences, shopping carts, ...
" i.e. when values are only accessed via keys
= When not to use
= Relationships among entities
= Queries requiring access to the content of the value part
= Set operations involving multiple key-value pairs

28

Key-Value Stores

&B redis M =

Amazon DynamoDB

Fast, flexible NoSQL
database service

a hazelcast
I EHCACHE
sriak
Il.:l.'
N8 SimpleDB ORACLE

BERKELEY DB @ Arango DB

29

Redis

Redis 1s not a plain key-value store, supports different kinds of values.

= Key : Redis keys are binary safe, this means that you can use any binary
sequence as a key, from a string like "foo" to the content of a JPEG file

= Very long keys are not a good idea. A key of 1024 bytes is a bad idea not only

memory-wise, but also because the lookup of the key in the dataset may require i A .. .
several costly key-comparisons. Even when the task at hand is to match the existence _,--‘;/“3_—_—_—_—_—_—_—_—_—_—_—_—?c—_'f—_l—_?f?f_?—_l;l—_??—_l—ff?—_?f?—f_?—_l—_?}_?—_—_—_—_—_—_—_—_—_—_r_—_—f
of a large value, hashing it (for example with SHA1) is a better idea, especially from e]
the perspective of memory and bandwidth. e e e

= Very short keys are often not a good idea. There is little point in writing "u1000flw" WY TiamepEr T
as a key if you can instead write "user:1000:followers". ‘

{A:0.1, B: 0.3, C: 100, D: 1337 } i

]] . Lo o . . q {A: (51.5,0.12), B: (32.1, 34.7) }
= Try to stick with a schema. For instance "object-type:id" is a good idea, as in e =
. . . \ 1 00110101 11001110 10101010 .
"user:1000". Dots or dashes are often used for multi-word fields, as in \
; ‘o) Y ter-tmen seqtinsye, e, 2=tz seq2(07abe’)
comment:1234:reply.to" or "comment:1234:reply-to".

30

Redis Basic Commands é redis

SET key to hold the string value. If key already holds a value, it is overwritten, regardless of its type
redis> SET mykey "Hello" > "OK"

GET retrieves the values of the key. If key is nonexisting nil is returned.
redis> GET nonexisting =2 (nil)

redis> SET mykey "Hello" > "OK"

redis> GET mykey > "Hello"

GETDEL gets the value of key and deletes the key.
redis> SET mykey "Hello" -> "OK"

redis> GETDEL mykey > "Hello“

redis> GET mykey =2 (nil)

MSET sets multiple key values.

redis> MSET keyl "Hello" key2 "World“->"OK"“
redis> GET keyl—>"Hello"

redis> GET key2->"World"

31

Redis Partitioning a redis

Range partitioning vs Hash partitioning
= Redis instances RO, R1, R2, R3, and keys representing users like user:1, user:2, ...

= RP: Map ranges of objects into specific Redis instances. Users from ID 0 to ID 10000 will go into
instance RO, while users form ID 10001 to ID 20000 will go into instance R1 and so forth.

= It has the disadvantage of requiring a table that maps ranges to instances. This table needs to be managed
and a table is needed for every kind of object, so therefore range partitioning in Redis is often undesirable
because it is much more inefficient than other alternative partitioning approaches.

= HP: An alternative to range partitioning is hash partitioning. This scheme works with any key,
without requiring a key in the form object_name:<id>

= Take the key name and use a hash function (e.g., the crc32 hash function) to turn it into a number. For
example, if the key is foobar, crc32(foobar) will output something like 93024922.

= Use a modulo operation with this number in order to turn it into a number between 0 and 3, so that this

number can be mapped to one of my four Redis instances. 93024922 modulo 4 equals 2, so | know my key
foobar should be stored into the R2 instance.

32

Amazon DynamoDB

Amazon DynamoDB
Fast, flexible NoSQL

= Major service of AWS for data storage

= E.g. product lists, shopping carts, user preferences

= Data model (key, structured value)

= Partitioning on the key and secondary indices on
attributes

= Simple queries on key and attributes

= Flexible: no schema to be defined (but
automatically inferred)

33

database service

= Consistency
= Eventual consistent reads (default)

= Atomic updates with atomic counters

= High availability and fault-tolerance

= Synchronous replication between data centers
" |ntegration with other AWS services

= |dentity control and access

= MapReduce

= Redshift data warehouse

DynamoDB - data model

= Table (items)

= |tem (key, attributes)
= 2 types of primary (unique) keys
= Hash (1 attribute)
= Hash & range (2 attributes)

= Attributes of the form "name":"value"

= Type of value: scalar, set, or JSON

= API with methods
= Add, update, delete item

Getltem: returns an item by primary key in a table

Scan : returns all items

= Query
= Range on hash & range key

= Access on indexed attribute

34

Table: Forum_Thread

Amazon DynamoDB

Fast, flexible NoSQL
database service

BatchGetltem: returns the items of same primary key in multiple tables

. Date of

Forum Subject st e Tags
“S3” “abc” “2017 ..." “a" "b”
“S3” “acd” “2017 ..." "
“S3” “cbd"” “2017 ..." "d” “e
“RDS" “xyz" | ¥2017 ..." “f
“EC2" “abc” “2017 ..." “a" te”
“EC2" “xyz" “2017 ..." “f

Hash Range

key key

Getltem (Forum="EC2", Subject="xyz")

Query (Forum="S3", Subject > "ac"

DynamoDB - data partitioning

— = ut(c, v
= Consistent hashing: the interval of hash ® O
values is treated as a ring 4(e)
= Advantage: if a node fails, its successor @

takes over its data

= No impact on other nodes
. ©

= Data is replicated on next nodes

Amazon DynamoDB
Fast, flexible NoSQL
database service

Node B is responsible for the hash value interval
(A,B]. Thus, item (c,v) is assigned to node B

35

DOCUMENT STORES

Data Model

= Documents
Hierarchical structure, with nesting of elements
Weak structuring, with "similar" elements
Scalar types (text, integer, real, date) but also maps, lists, sets, nested documents, ...
ldentified by a unique identifier (key, ...)

Documents are organized into collections

= Two main data models
XML (eXtensible Markup Language): W3C standard (1998) for exchanging data on the Web

= Complex and heavy

JSON (JavaScript Object Notation) by Douglas Crockford (2005) for exchanging data JavaScript
= Simple and light

37

Queries in Document Stores

= Query patterns
= Create, update or remove a document
= Retrieve documents according to complex query conditions
= Consider as...
= Extended key-value store where the value part is a document that you can query.

38

Document Stores

= Suitable use cases

= Event logging, content management systems, blogs, web analytics, e-commerce
applications, Analysis of messages (tweets, etc.) in real time

= |.e. for structured documents with similarschema

= \When not to use

= Set operations involving multiple documents
= Design of document structure is constantly changing

" |.e. when the required level of granularity would outbalance the advantages of
aggregates

39

Document Stores

. mongo Couchbase " RethinkDB
RAVENDE o
o =) CouchDB { }
relax
A

0
® MarkLogic S{rientbs

40

MongoDB ’ mongo

= Objective: performance and scalability

= A document is a collection of (key, typed value) with a unigue key (generated by MongoDB)

= Data model and query language based on JSON
= Binary JSON (BSON): more compact

= No schema, no join, no complex transaction
= Shared-nothing cluster architecture
= Secondary indices

" Integration with MapReduce & Spark

41

A MongoDB Collection (posts)) mongo

_id: Objectld(“abc”) | author: “alex”, title: “No Free Lunch”, text: “Thisis ...",

tags: [“business”, “ramblings”],

comments: [{who:“jane”, what: “| agree.” },{who: “joe”, what:“No ..." }]

_id: Objectld(“abd") | A post by X

_id: Objectld(“acd”) | A post by Y

Unique key generated
by MongoDB

Value = JSON object with nested arrays

42

MongoDB - query language

= Expression of the form

= db.documentType.function (JSON expression)

= Update examples
= db.posts.insert({author:’alex’, title:’'No Free Lunch’})
= db.posts.update({author:’alex’, {Sset:{age:30}})
= db.posts.update({author:’alex’, {Spush:{tags:'music’}})

= Select examples
= db.posts.find({author:"alex"})

= All posts from Alex

= db.posts.find({comments.who:"jane"})

= All posts commented by Jane

43

) mongo

COLUMN STORES

Wide Column Stores

= Data model
Column family (table)
= Table is a collection of similar rows (not necessarily identical)

Row
= Row is a collection of columns
= — Should encompass a group of data that is accessed together

= Associated with a unique row key

Column

= Column consists of a column name and column value
= (and possibly other metadata records)

= Scalar values, but also flat sets, lists or maps may be allowed

45

Wide Column Stores

= Query patterns
Create, update or remove a row within a given column family
e Select rows according to a row key or simple conditions
e Reconstruct a record from columns

46

Wide Column Stores

= Suitable use cases

= Event logging, content management systems, blogs, ...

= |.e. for structured flat data with similar schema
= Queries that involve only a few columns
= Analytical queries: aggregation (SUM, AVG, ...), it allows for fast retrieval of columns of data.

* Column-wise compression

= No suitable for

= OLTP applications that insert records of data

= Need to split records in columns

= Queries against only a few rows — e.g. point queries

47

Row-Oriented vs Column Oriented

Rowl:India, Chocolate,1000;
Row2:India, Ice-cream, 2000;
Row3:Germany, Chocolate, 4000;
Row4 :US, Noodle, 500;

Rows stored sequentially

Riow 1
Riow 2
Row 3

Row 4

Country

Table

Product

Row Stare

Riow 1

Foionaw 2

Roow 3

Rioow 4

Country

Product

Salas

Column Store

India:Rowl, Row2;

Chocolate:Rowl, Row3;

1000:Rowl;

2000:Row2;

Germany: Row3;

Ice-Cream:
4000:Row3;

Column Values Stored sequentially, mapped to a RowID

48

US: Row4;

Row2;
500:

Noodle:
Row4;

Row4;

Column Families

= A column family contains columns of related data.
= a key—value pair, where the key is mapped to a value that is a set of columns.

= |n analogy with relational databases, a standard column family is as a "table", each key—value pair
being a "row".

= A Super Column Family Contains Column Families

Column Family : Super Column Family :
Users Services
Keys | Columns Keys Super Columns
Name Mumber Maobile Phone T Bala
Peter i ype ol
Peter.. | |234786459 | | 994398909 el voice | IS etaul 20
Joseph L) 012D Type Amount
Joseph | (234786459 SMS Default 10
. Type Balance
dasaph Vaica Enterprise 60

49

Wide Column Stores

VERTICA _/»\'*‘M”é% (o A

cassandra

SCCUMULO Google Bigtable

50

GRAPH STORES

Graphs

¥
F

= Very big: billions of nodes and links
= Many: millions of graphs
= Main applications

= Social networks
= Recommendation, sharing, sentiment analysis

= Knowledge Graphs

= Wikipedia, Google Knowledge Graph Openi "
ConceptNet . . .
= Scientific networks o ‘g‘
. . KNOWLEDGE
= Biological networks ~ GRAPH
DB:dla PROSPERA
= Web of Data Fy o
WordNet Metaweb
. Knowledge Vault
= Linked Data ® ° .g

52

Graph Databases

= Data model

Property graphs
= Directed / undirected graphs, i.e. collections
of ...
nodes (vertices) for real-world entities, and

friend

relationships (edges) between these nodes
member-of

= Both the nodes and relationships can be
associated with additional properties

= Types of databases

* Non-transactional = small number of very large
graphs

e Transactional = large number of small graphs

53

Graph Databases

= Query patterns

= Create, update or remove a node / relationship in a graph
= Add Mary as Friend to Peter, Get the address of Mary

= General graph traversals
= Get the Friend of Mary who is married to Anna

= Sub-graph queries

= Get All Friends of Mary who work in the same company with her
= Similarity based queries (approximate matching)
= @Get the Friends of Mary whose names start from ‘P’

= Graph algorithms (shortest paths, spanning trees, ...)

54

Graph Databases

= Suitable use cases

= Social networks, routing, dispatch, and location-based services, recommendation
engines, biological pathways, linguistic trees, ...

= |.e. simply for graph structures
= When not to use

= Extensive batch operations are required
= Multiple nodes / relationships are to be affected

= Only too large graphs to be stored
= Graph distribution is difficult or impossible at all

55

Graph Databases

: A
@DGOAJ < OrientDB
y

@& ArangoDB
.‘- i‘:;::.:A P A C H E .
FLUGIRAPH & INFINITEGRAPH

56

Neo4]

= Direct support of graphs
= Data model, API, query language
" Implemented by linked lists on disk
= Optimized for graph processing
= Transactions
" Implemented on SN cluster
= Asymmetric replication
= Graph partitioning

= Data “Fabrics”

57

Neo4] - data model

m Nodes
m Links between nodes
m Properties on nodes and links

member-of

58

A Neodj transaction

NeoService neo = .. // factory
Transaction tx = neo.beginTx();
Node nl = neo.CreateNode () ;

nl.setProperty ("name"™, "Bob");
nl.setProperty("age", 35);

Node n2 = neo.createNode();
n2.setProperty ("name", "Mary");
n2.setProperty ("age", 29);

n2.setProperty ("job", "engineer");

@DGOA

nl.createRelationshipTo(n2, RelTypes.friend);

tx.Commit () ;

Node n3 = ...

J

Neo4] - Cypher Query Language & NeO)

= Java API (navigational)

= Cypher query language. It is a declarative, SQL-inspired language for describing visual
patterns in graphs

= Queries and updates with graph traversals

= Example Cypher query that returns the (indirect) friends of Bob whose name starts with "M"

MATCH (bob:Person {name = ‘Bob’})-[:friend]-> follower:Person
WHERE follower.name =~ M*’ (or follower.name STARTS WITH ‘M')

RETURN follower.name

= Support of SPARQL for RDF data

59

Graph Partitioning

= Objective: get balanced partitions
= NP-hard problem: no optimal algorithm

= Solutions: approximate, heuristics, based on the graph topology

60

Graph Sharding

= Allows users to break a larger graph down into individual, smaller graphs and store
them in separate databases.

= For graphs that are highly-connected, this means some level of data redundancy to
maintain the relationships between entities.

Graph Shard1

[~ '1

; y . \

/ \ b y

IIIIIIIIIII 4] / \ -~
4 Shard2

N 4

o / 9
NodeA

61

Fabric Database

= A virtual database that does not store data, but acts as the entry point into the rest of
the graphs

= Queries coming from users or applications will hit the fabric database first, then get
routed to the instance or instances required to answer the query.

P T

- America_|

() =

& ~ South
= L) _ Ameri 1

o S ~_America_-

| ~
& e

| 1
> b
| (" \;.A-" |

(this DB
contains | :
no data) P

(Australia)
o SE

F Y

X - b /,"" - 1:%_\\
P .,
{ |
K_./I Y b /'l :
(1 N
a9
| @ -
e -

62

@ neoy]

Neo4] - Alternative architectures

A single DBMS for everything Fabric database in separate DBMS Scale out in multiple DBMS

- "N 4
(Neodj DBMS 3 /

63

ARE THERE MORE?

Native XML Databases

= Data model
e XML documents

" Tree structure with nested elements, attributes, and text values (beside other
less important constructs)
= Documents are organized into collections

= Query languages
e XPath: XML Path Language (navigation)
* XQuery: XML Query Language (querying)

65

Native XML Databases

'.MarkLogicm

’

Jamina. oot iostdb

Native XML Database System

66

RDF Stores

= Data model

= Resource Description Framework (RDF) triples
= Components: subject, predicate, andobject
= Each triple represents a statement about a real-world entity
= Triples can be viewed as graphs
= Vertices for subjects and objects
= Edges directly correspond to individual statements
= Query language
= SPARQL: SPARQL Protocol and RDF Query Language

67

RDF Stores

'.MarkLogicm

Voo rdf)

More details in Coming Lecture

Multi - model or Polystores

= Support multiple data models against a single, integrated backend.
= E.g., Document + relational
= Document + graph + key—value

= Document + relational + key—value

= Multi-model support is either within the DB engine (native) or via different
layers on top of the engine (layered architecture).

= E.g., user relational table to store graphs

69

What about NewSQL DBs?

BLOG@CACM

New SQL: An Alternative to NoSQL and Old SQL For New
OLTP Apps

By Michael Stonebraker
lune 16,2011

= NewSQL is a class of relational database
management systems for online

transaction processing (OLTP) workloads.

= online scalability of NoSQL databases
= Support of SQL

= Maintaining the ACID guarantees

= Distributed architectures & distributed
qguery processing.

= Optimized SQL engines with advanced
statistics

" Transparent sharding

70

Comments (11)

VIEWAS: Bl SHARE: =@ & @

Historically, Online Transaction Processing (OLTP) was
performed by customers submitting traditional transactions (order
something, withdraw money, cash a check, ete.) to a relational
DEMS. Large enterprises might have dozens to hundreds of these
systems. Invariably, enterprises wanted to consolidate the
information in these OLTP systems for business analysis, cross
selling, or some other purpose. Hence, Extract-Transform-and-
Load (ETL) products were used to convert OLTP datato a
common format and load it into a data warehouse. Data
warehouse activity rarely shared machine resources with OLTP
because of lock contention in the DBMS and because business
intelligence (BI) queries were so resource-heavy that they got in

tha wav nf fimelr reannnsss tn transactinne

YOLTDB

Amazon Aurora
TIBRCO
ActiveSpaces®

Google Cloud

P PingCAP TiDB
Cloud Spanner

NewSQL

= Pros NoSQL
= Scalability

= Often by relaxing strong consistency
= Performance

= Practical APIs for programming

= Pros Relational
= Strong consistency

= Transactions
= Standard SQL

= Makes it easy for tool vendors (BI, analytics, ...)

= NewSQL = NoSQL/relational hybrid

71

SUMMARY OF FEATURES OF NOSQL
DATABASES

Features of NoSQL Databases

= Data model
= Traditional approach: relationalmodel
= (New) possibilities:
= Key-value, document, wide column, graph
= Object, XML, RDF, ...
= Goal

= Respect the real-world nature of data
= (i.e. data structure and mutual relationships)

73

Features of NoSQL Databases

= Aggregate structure
= Aggregate definition
= Data unit with a complex structure

= Collection of related data pieces we wish to treat as a unit
= (with respect to data manipulation and data consistency)

= Examples

= Value part of key-value pairs in key-value stores
= Document in document stores
= Row of a column family in wide column stores

74

Features of NoSQL Databases

= Aggregate structure

" Types of systems
= Aggregate-ignorant: relational, graph
" |[tis not a bad thing, it is a feature

= Aggregate-oriented: key-value, document, wide column

= Design notes

" No universal strategy how to draw aggregate boundaries

Atomicity of database operations:
just a single aggregate at a time

75

Features of NoSQL Databases

= Elastic scaling
= Traditional approach: scaling-up
= Buying bigger servers as database load increases

= New approach: scaling-out

= Distributing database data across multiple hosts
= — Graph databases (unfortunately): difficult or impossible at all

= Data distribution
= Sharding
= Particular ways how database data is split into separate groups
= Replication
= Maintaining several data copies (performance, recovery)

76

Features of NoSQL Databases

= Automated processes
= Traditional approach
= Expensive and highly trained database administrators
= New approach: automatic recovery, distribution, tuning, ... Relaxed consistency

= Traditional approach
= Strong consistency (ACID properties and transactions)

= New approach

= Eventual consistency only (BASE properties)
= |.e. we have to make trade-offs because of the data distribution

77

Features of NoSQL Databases

= Schemaless-ness

= Relational databases
= Database schema present and strictly enforced

= NoSQL databases
= Heterogeneous, Relaxed schema or completely missing

= Consequences: higherflexibility
= Dealing with non-uniform data

= Structural changes cause no overhead
= However: there is (usually) an implicitschema
= We must know the data structure at the application level anyway

78

Features of NoSQL Databases

= Open source

= Community and enterprise versions (with extended features or extent of support)
= Simple APIs

= State-less application interfaces (HTTP)

79

Which Data Store for What?

Category Requirements
Key-value Access by key
Flexibility (no schema)
Very high scalability and performance
Document Web content management
Flexibility (no schema)
Limited transactions
Column Very big collections
Analytical tasks
Scalability and high availability
Graph Efficient storage and management of large graphs
Multimodel Integrated key-value, document and graph management
NewSQL ACID transactions, flexibility and scalability
SQL and key-value access

82

WHAT IS NEXT?

The evolving database landscape

Research

‘Analytic
Hadoop

Non-relational

N ,/E;Iaﬁunal

Teradata Aster IBM Netezza ParAccel yoonitip SAP Sybase 10

Hadapt Infobright EMC Greenplum IBM InfoSphere
HPCC RainStor Teradata Calpont Actian VectorWise HP Vertica

Ficcolo

Operational

Starcounter

InterSystems

e No “I SAP HAMA, IBM Informix
DataStax Enterprise B Oracle Percona |BM DB2 MariaDB \
i Neod)
MarkLogic | Castle Acunu SkySOL MySQL postgreSQL SQL Server
Citrusleaf Hypertable 1 Graph
Versant | BerkeleyDB Cassandra HBase "g"f'"etir:ph et ;:::;;:E Fi:.m aeianingres
rien -
Oracle NosQL | Big tables By Postgres Plus Cloud ¢jaarDB EnterpriseDB
RethinkDB App Engine _/ Wiy Rackspace MySQL Cloud
HandlerSocket*® Datastore bliiclos Google Cloud SQL SQL Azure SAP Sybase ASE
Mbe’ECT. Rlak REdiE—tD—Eﬂ M&Iﬂ
SimpleDB / NewSQL
LevelDB D?HHmHDB d
Progress Redis \J . NuoD8 VoltDE New databases
Membrain Jris Mongo Mongo ey ,qane © || -as-a-Service | MemsaL JustOneDB SQLFire
Voldemort "Couchlab HQ StormDB Drizzle Akiban Translattice
Couchbase RavenDB Jeeround Ceniepp ™ SchoonerSQLmClustri
MongoDB CouchDB Tokutek C ScaleArc ParElastic
Objectivity s ScaleDB Zimory Scale Continuent
BE iysaL Cluster Galera coderutures
Lotus Notes Document

=

J ScaleBase W

0 2012 by The 451 Groug. All rights resarved

For a ranked list of DB engines: https://db-engines.com/en/ranking/

84

https://db-engines.com/en/ranking/

MACHINE LEARNING, ARTIFICIAL INTELLIGENCE, AND DATA (MAD) LANDSCAPE 2021

INFRASTRUCTURE ANALYTICS MACHINE LEARNING & ARTIFICIAL INTELLIGENCE APPLICATIONS - ENTERPRISE
STORAGE HADOOP DATA LAKES DATA [Bl PLATFORMS VISUALIZATION DATA SCIENCE DATA SCIENCE ML PLATFORMS SALES MARKETING -—7 MARKETING - B2C CUSTOMER EXPERIENCE / SERVICE HUMAN CAPITAL
) 'WAREHOUSES IN-MEMORY o _ NOTEBOOKS PLATFORMS o, B2B = s -
.ggllﬂl A2, | croupzra @i | databricks bl & i lobker g admm, | i tablesu i N el concie | ®databricks wDatarobot og::n z) Ao preaass ACTIONG QRS Moy Qg @CLARABRIDCE | five Sy
— o= 4 A nﬁ'.l'.. @ Ll T S e Slilsday calgh | v SRR z [T R v— it Sgment rEponel (@ amplitude WDy Selel QRGN e il
- . E S i Y @ B =osanmem DOMO) T thoughtseat. ;:-": =t By o= m— (Wepkmne O Palantc {:““MM: H 0.0l B+ sorsioes Azase peoplea Sonnes =Simon onpate) ssmrisnins e goenda TwEae
= ‘dremio = =2 g R s = -~ PR TS jrese mya ¢ &=
M RS ?’ G G Grucabicd = i °zun] oo B 2 Gsas TiECE A fasacus.a ZILLIZ ﬁ IR St tactal 9 Amperity @ fPnomimscn R i =
s T s smesour smam ATICALE OIK@ platty N . 3 Desprote . L Z z o ety ASAPR Qada ahmitl el oo Qe | 0ViedeBandy
pethre T CoudPattamm | ot} et Mrazeicas b Bl Matnriian F Fy iz colpotiva[f] s > 208 o P e
- CoHEsTY i ' e i Poiircs O OBservible Vol B ceurt () cOCRAC Q. P s - A ot e) tutulor W Bluecors wvoca” b ok talla® BymCl CRESTA
Bann vasr genc | DS OrM Power Syams Pkl nfoworks | geieen W merciva [rst ARACONDS 12 Pachyderm | GctoMl I-igu straigl anigma weaosr | - i s w NEI S
Qi e N . "R — L - Mrabwategy i Ko 15 W GRD Dt Sarmon Wrtar v goswes | Bdotlols datme §eomi 5000 chieuslyai — e — PR —— S—
RDBMS — NoSOL DATABASES NewSOL DATABASES REALTIME — GRAPH D DATA ANALYST PLATFORMS DATA GENERATION MODEL BUILDING FEATURE STORE pepigy- —| | FauEl waninco | COMPLBMEE | smwin mois | i i Gl | i @iaias | om0
=] DATABASES & LABELLING MENT & PRO- Ommarntr Okira | @go L ST
e Dage . et Fiy pane W . T st ooy Amazon Mepune B® Microsott @pu—vlnhn alteryx =' : ; Gilive Weights & Biuses TECTON @ worswonns | DUCTION & S (e mAgESHIT @ B G | FeRTER gif nesdfed jeedzal B DATAVISOR
il Ve ; - 2o mectericalurk P Ehiisin ot o400 evmans st | g ot R
i B S ORACLE Wemongons | voien @ phocal | @imply Mrooe Dstameer <=8t | () anott -outier scale upwork soppen | 51 e BRIOM | O GoogeCeud Arthur e BoETE | o o EYON
» 7 P | [Roesen ORACLE -Crentis = Verta PARTNERSHIPS —— X anemn & i W A Tclies WUECTRA s e
- " SIS, D i] : . . i ! S T
o MarkLogic (8 Couchbase prmmrrh e voure R s - Rk ENDOR W men aTTiVIG narralive @science Quolly LIONBRIDGE Labelbax | G fiddler 5 Cwemmed 4 arasco O w Soamee DR @ erss :_"::.P“ s S 3 s | i Wsersnek o e P
| EEEEEEE @ scviia Bt Prnaien a incorta. QUAVUS MR | gracer macheyel ALYEVERIT ﬁi & oo | @eess pgm popeis | 0F FeasT NN S o inemauy Escuma | @ rgnen Wi AR Whionbvem | Wirmin W oo @ imian Aiatiioge [Coteaa’ ik
b . o= P— - #, Tonach ;
1 Aty Ot _ i
. B ArngiDB ol ENATE.ID e . - swibchboard obvieusly.al ¥ Aitoble | cir ol pnii (e & e | Bpins #hqueiin @macer | Gfma, S e APPLICATIONS = INDUSTRY.
MPPDBs — ETL/ELT/ REVERSE ETL DATA INTEGRATION DATA GOVERNANCE — DATA CATALOG METRICS LOG ANALYTICS COMPUTER VISION SPEECH NLP SYNTHETIC MEDIA ——— ADVERTISING EDUCATION = REALESTATE 5 GOVT& COMMERCE FINANCE - LENDING INSURANCE ———
DATA TRANSFORMATION &ACCESS AND DISCOVERY | STORE INTELLIGENCE B
TeranaTa Census RN o W % : B crmon ace G S5 Sl Qe | EER T e) i REDEW
= Mobt talend alteryx i S ol G s asariee || b metaphor | g oo splunk f;? bt © 50 exandr vedobtn | Bt | U e Qo | SHEW baike A Moo | ROOT urumss
i i Lhus zESTE Sl hvoisinivg
VERTICA, g W SR hightouch @ oo JTEAUM snaplogic IEM 2ot Alatier, atlan = er-:»— Bsuriologi: ‘E‘ B @ S % i J:ﬂpt riie. . 1ASm - F L1 S e—— o W ess: ransant : ZEST G
o = |,-'9l’ thesia == das s L EALBANC T
- Dpeths Qe epme | oo EEL - 2 dataworid faee - - W it RN | i e | argre o PRIMER) senewton | Orehand e) SR i
g EIETEETES Prrayie xmuy s L hbana J—— L T rafoca RLE gEm o | meuon: Qut AUpstart 100Credit A acws
Bcvon | @ o B | S e (iremic B S—— & Superg) e T et | Gt [EE T aninG n asie Geclara FINANCE - INVESTING P -
; i Tiogzia ([§odna Venv trat Breosapience i ey : o v [EEEmm
: k - O it | SAUNTY ZALSNL importde | OKERA S| SELEET &1, o transform - seopne Ol 0G - sama i albert gumguny maai Fizcallicte - FRIMER | AYASD| KENSHC i %
(Rpgnitio B nin o Hae Gamwd atlan RsLeeT mn @ carsiops HLogRhythm Benacrs fonfide EEEYR hid b e supertone @ Fmoodure Al & arncemanes @ Mneen SoFiER - -'I
. T " o - SETLIHE 5 s o
Exagol | bametao: Winmas: WEimer e o S | e e wenr | XQL TusERVE i ciarimn . WO sia 23 oo Brommimn @mts | fpdpiensen |V voLasn Cipier vt BGEoPHY : Aasooern [Tz o
PRIVACY & ——— DATA OBSERVABILITY —— MGMT/ SERVER- — CLUSTER SVCS QUERY —— SEARCH HORIZONTAL A GPUDBS & CLOUD = Al HARDWARE HEALTHCARE LIFE SCIENCES TRANSPORTATION ——— AGRICULTURE - INDUSTRIAL OTHER —
SECURITY LESS ENGINE - - - z =
Gvemonmseny | A0 Buoncmo |) won | o ewrie B gt | Qs [IEM e R ORACLE QML | | @iiwasn @OpenAl ©oesping | KINEiCO Google TPU QXM (sl Py tniron TS Buinnon | 2omm Pac Yo | UBER TERLR W | gy o | A0 siEmEs - S
[Lo T ruise CARTIV
dremio © nurs. L . | stem
PRIVAGERA | #wm - Cotba) ARFDYMAMICS ¢ rubrk getyrae Qs 1 2 (s > - © Faperspace oo [P aRaFHCORS Weodn | g Qe TS T S
4 N \ : 6D e @algolia coveo siEaUA = Voyagerw W vicoriaus PO : o [l oo
ol oy | Rt e G T - Ly g Starbiret e mdllin Vs g5 P Quom 5, arnces | K3 oramadar
. i SruMumenta E] ey i ; e - R e 67) mame &SRS
G Gt | DATA QUALTY BCribl uoopar @eonoszree | @ ¢ fshars | B Luddworks @swiflype ATTIVIO < i wenon ot | Belome Gewe HAILG ke M L m .
o 08 ot ana - k o | e 3k Wmoot | sy s
e talend SODA.) Booe 3 g SARO 4 Hiw i ey | G B st serel b i F=
sloflow oz i ot Owem PRl geate B | nudio S Gaee bl gz 75 ExALenD alphasense omMNi:Us sy OMEED oS 1) Affectiva s MYTHIE Moidus™ S ims, pe g i 8 Boo Mo i | I s
O wiveeyDynanies | B suresconnucnve & casrs 3 Zaabeo Dot Maman pary Lok
T sureRca ismeage Mwacmuor WEEAN e - i - = Finkin cP n ") s ke B e B i VS | il N 2 semi v B et |y s
© Kt pEESEEE I | S L =210 VARADA % QUICKWIT CHAGSSEARC Pagay Frlt URRE | manene oo s T B B dleniess @ nrcsticey % | Bt Ovo ol i
J J
GokT@Om#datam /
FRAMEWODRKS QUERY | DATA FLOW DATA . : T IS i " HEne LACH LOGGING & COLLABORATION SECURITY ———
oadboihUELIECEH Roinitdll P L § & ﬁfss B il Vo S Voo of e "_:Em:':f 3 :nr.unsss o 4 i weste | Frevcrtos WEE @ Toratormers ooy IE @, ke BERT Gt Caffe | € oo | LS., K mEEE W 0w e PR
: uuteck | (3 influwan W Tlaud) venasernd Ak Mo Ll Bioe BH % e 3 3
@rick RN I O hbemetn | o s | & T influst peasta s () barase e F Fiyte R e [- 1 g | == W @opentl @iy theana [RENEREN -@ew DwsuM PSSO VEES | Mucens PSRN | L O W . o @ | e
Ly @re @esn cooRe | @ Woogda, | dscon [Gk @ M ok | Swwaow e 2 eoen) TS D gmmear = | i e Y DEEEEE G0N e R L) e oo I - - - SEECEET @ 7 Whinw Do VTG '
i Hy — g £ o W : ¢
A rednint [HELD i | B Bk * ckan - cctns §pinat !mlu P | L PRI 17 W il e . M riodech BPACY e Ao 5 [o = E ¥ e Gubert bitkahy @ ARACONDW oo
DATA SOURCES & APIs DATA RESOURCES
DATA MARKETPLACES FINANCIAL & ECONOMIC DATA AIR / SPACE / SEA PEOPLE / ENTITIES LOCATION INTELLIGENCE OTHER DATA SERVICES INCUBATORS & SCHOOLS RESEARCH
:fimmv R Bloomberg | | runsaureutess [| DOW JONES Omu: P () owirmen AmEBGTICE G5pire Btz Zzomino acxiem thpein | FOURSQUARE (D mopbox Cww: [ENEEEER | meoves Dewi. IMAGENET Labéig Oouwrueses @ Bosz| Alen | Heminon @oision @ @ osacin @ OpendI GoogleResearch facebook research
- o DAWEX o] ==
T B " e BT P D Y et o] mmeteview @ | o . 4\, Moplliary = TN
Borcew 5 deenis i e WINDWARD B saratramsc T TR acsll) @ esri BN 4 oder BN EEEEER CRUX kaggle Electrifs fractabes NEXL 24 patatiite galvanize @--m MEIGHT | - o Ve
Mroroties 1, 5TE, s = wSxolebs QA8 Sommoe | Dems melissa Yeg @oueda i cpmsmeiie \uemoee T comseare Dtk A T Az i AnTHROPc Salk ETL
: 5 FIRSTMARK
Version 2.0 - October 2021 ©® Matt Turck (@mattturck), John Wu (@john_d_wu) & FirstMark (@firstmarkcap) mattturck.com/data2021 EARLY STAGE VENTURE CAPITAL

85

https://mattturck.com/data2021/

Things to study

= CAP Theorem: https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-
keynote.pdf

= M. Stonebraker and U. Cetintemel, ""One size fits all": an idea whose time has come
and gone," 21st International Conference on Data Engineering (ICDE'05), 2005, pp. 2-
11, doi: 10.1109/ICDE.2005.1.

= New SQL: An Alternative to NoSQL and Old SQL For New OLTP Apps By Michael
Stonebraker (June 16, 2011) https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-
an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

= For a ranked list of all DB engines: https://db-engines.com/en/ranking/

= Principles of Distributed Database Systems. M. Tamer Ozsu, Patrick Valduriez,
https://cs.uwaterloo.ca/~ddbook/

= Chapterll: NoSQL, NewSQL and Polystores

86

https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://db-engines.com/en/ranking/
https://cs.uwaterloo.ca/~ddbook/

Thank you

GUNET-2

TphAua NAnaadanukhe
GUMet2 eClass - Turjpa NAnpodopukre

Apxikr ZgAida » CD5110- Big Data Management = ZUvScopol

GUNET-2

Tuhua NAnpodpopuxriq

Npoowmkd Xapropuidkio » Big Data Management » Tautétnra MaBhiparog

Evepyd epyaleia

0 Avakowaaoeig

Arléva

Yypaga

% MAnpogpopizc MaBrpatog

@ Tovdeopol
Avevepyd epyalsia
[[® Avearhayn Mnvupdrwy

& Aowknozig

@ Nwooapo

08 rpapp padnone

w Epyacicg

Epwrnuatodyia

Hizktpovikd Bibhio

& Ouadec Xpnotow

@ Neproxig Zuntiozwy

@:{ MNoAupioa

W| Zuompa Wik

@ Tnhzouve pyacia
Epyahsia daxsipiong

%{ Maxeipion Mabrpartog

@ Maxzipon Xpnotiw

#* Evzpyonoinon Epyadzivv

i,h Tranotkd XpAong

Big Data Management

Neprypagpr B Tavrétnra Mabripatog

Introduction - review of relational and object-relational databases. Modern trends in database ” KuBiroe: C'DSMG)
design. Mon-traditional data types (text, multimedia, spatial information). Mon-traditional » Exnmdeurég: N. Mehéxrg, T.
database architecture (sensor networks, data streams, distributed, in the doud). The “big : ’
data” era (MapReduce architecture, etc.). Lab hours with MongoDB, Spark (Batch Processing, T- ANegiou, Z. MopoUAng
Streaming, MLib). » IxoAn - Tufpa:
METaNTUXIOKRG
"KuBepvoaopdhea kat
Emartipn Azdopéven”
» TOMOG: METANTUXIOKG
» NpooBacn oto paenua:
EhziiBiepn (xaplc syvpaor)
» Xpoteg: 54 syyeypappivol

Namaotegavdros. Epy. BonBoi:

» BiBMoypapua| avagopd
padrpatog

Epyahcia

Bepankég Evornteg Mabnparog: -

(&

n Mveuparikey ARauopdtay POWERED BY

OPENECLASS

87

EmAoyég MaBriparog
@ AVAKOIVITELS
[Acurioeg
Atlévra
Eyypagpa

@ NAnpopopiec MaBnipatog
@ Tovdeopol

CDS110- Big Data Management

Z0vdeopor

Fevikoi oUvdeopol

» | lotooehida Data Science Lab. (DataStories)

Katnyoplomoinpévol ouvaeopol

Books
» | Bailis P, et al. (eds.) (2015) Readings in Database Systems
» | Codd EF (1990) The relational model for database management: version 2

» | Liu L, Gzsu MT {eds.) {2009) Encyclopedia of Database Systems

Papers

» | Abadi D, et al. (2013) The Beckman report on database research

» | Abadi D, et al. (2018) The Seattle report on database research

» | Abiteboul 5, et al. (2003) The Lowell database research self assessment
» | Agrawal R, et al. (2008) The Claremont report on database research

» | Codd EF (1970) A relational model of data for large shared data banks

Posts
» | Big Data Architecture: A Complete and Detailed Overview

» HPI Genealogy of Relational Database Management Systems

Videos, Tutorials etc.
» | Learn PostgreSQL Tutorial - Full Course for Beginners

» | History of Databases

	Slide 1: Διαχείριση Μεγάλων Δεδομένων Big Data Management
	Slide 2: Lecture Outline
	Slide 3: Relational databases
	Slide 4: Relational databases
	Slide 5: Relational Databases
	Slide 6: Relational Databases - Representatives
	Slide 7: RDBMs Features – Normal Forms
	Slide 8: RDBMs Features – Transactions
	Slide 9: Where is Big Data?
	Slide 10: Big Data Characteristics – The basic Vs
	Slide 11: New Trends after 2000’s
	Slide 12: RDBMs Limits
	Slide 13: Big Data on Clouds
	Slide 14: New Data assumptions
	Slide 15: CAP Theorem
	Slide 16: Two types of transactions
	Slide 17: Strong vs Eventual Consistency
	Slide 18: Symmetric, Asynchronous Replication
	Slide 19: BASE properties
	Slide 20: Lecture Outline
	Slide 21: NoSQL Databases
	Slide 22: What does NoSQL actually mean?
	Slide 23: NoSQL (Not Only SQL)
	Slide 24: RDBMS vs NoSQL Overview
	Slide 25: NoSQL Approaches
	Slide 26: Key-Value Stores
	Slide 27: Key-Value Stores
	Slide 28: Key-Value Stores
	Slide 29: Key-Value Stores
	Slide 30: Redis
	Slide 31: Redis Basic Commands
	Slide 32: Redis Partitioning
	Slide 33: Amazon DynamoDB
	Slide 34: DynamoDB – data model
	Slide 35: DynamoDB - data partitioning
	Slide 36: Document stores
	Slide 37: Data Model
	Slide 38: Queries in Document Stores
	Slide 39: Document Stores
	Slide 40: Document Stores
	Slide 41: MongoDB
	Slide 42: A MongoDB Collection (posts)
	Slide 43: MongoDB – query language
	Slide 44: Column stores
	Slide 45: Wide Column Stores
	Slide 46: Wide Column Stores
	Slide 47: Wide Column Stores
	Slide 48: Row-Oriented vs Column Oriented
	Slide 49: Column Families
	Slide 50: Wide Column Stores
	Slide 51: Graph stores
	Slide 52: Graphs
	Slide 53: Graph Databases
	Slide 54: Graph Databases
	Slide 55: Graph Databases
	Slide 56: Graph Databases
	Slide 57: Neo4J
	Slide 58: Neo4J – data model
	Slide 59: Neo4J - Cypher Query Language
	Slide 60: Graph Partitioning
	Slide 61: Graph Sharding
	Slide 62: Fabric Database
	Slide 63: Neo4J – Alternative architectures
	Slide 64: Are there More?
	Slide 65: Native XML Databases
	Slide 66: Native XML Databases
	Slide 67: RDF Stores
	Slide 68: RDF Stores
	Slide 69: Multi – model or Polystores
	Slide 70: What about NewSQL DBs?
	Slide 71: NewSQL
	Slide 72: Summary of Features of NoSQL Databases
	Slide 73: Features of NoSQL Databases
	Slide 74: Features of NoSQL Databases
	Slide 75: Features of NoSQL Databases
	Slide 76: Features of NoSQL Databases
	Slide 77: Features of NoSQL Databases
	Slide 78: Features of NoSQL Databases
	Slide 79: Features of NoSQL Databases
	Slide 82: Which Data Store for What?
	Slide 83: What is next?
	Slide 84
	Slide 85
	Slide 86: Things to study
	Slide 87: Thank you

