Real-time anomaly detection in the steel industry using Python

Case Study

Αλέξανδρος Μπουσδέκης

<u>albous@mail.ntua.gr</u>

Background

Predictive maintenance

 Predictive maintenance uses condition monitoring equipment (e.g. sensors) in order to track the performance of equipment, to detect abnormal behaviour, to predict future failures and to support decision making about proactive actions.

Real-time anomaly detection

Time-domain features (1/2)

DescriptionBrief DefinitionFormulaRMSThe RMS value increase gradually as fault developed. However, RMS is unable to provide the information of incipient fault stage while it increases with the fault development [11].RMS = $\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}$ VarianceVariance measures the dispersion of a signal around their reference mean value.Var = $\frac{\sum_{i=1}^{N}(x_i)-mi^2}{(N-1)e^2}$ SkewnessSkewness quantifies the asymmetry behavior of vibration signal through its probability density function (PDF).Sk = $\frac{\sum_{i=1}^{N}(x_i)-mi^2}{(N-1)e^2}$ KurtosisKurtosis quantifies the peak value of the PDF. The kurtosis value for normal rolling element bearing is well-recognized as 3.Ku = $\frac{\sum_{i=1}^{N}(x_i)-mi^2}{(N-1)e^2}$ Shape factorShape factor is a value that is affected by an object's shape but is independent of its dimensions [12].SF = $\frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}}{\frac{1}{N}\sum_{i=1}^{N}x_i^2}$	mont
Brief DefinitionFormulaRMSThe RMS value increase gradually as fault developed. However, RMS is unable to provide the information of incipient fault stage while it increases with the fault development [11].RMS = $\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}$ VarianceVariance measures the dispersion of a signal around their reference mean value.Var = $\frac{\sum_{i=1}^{N}(x_i - m)^2}{(N-1)c^2}$ SkewnessSkewness quantifies the asymmetry behavior of vibration signal through its probability density function (PDF).Sk = $\frac{\sum_{i=1}^{N}(x_i - m)^2}{(N-1)c^2}$ KurtosisKurtosis quantifies the peak value of the PDF. The kurtosis value for normal rolling element bearing is well-recognized as 3.Ku = $\frac{\sum_{i=1}^{N}(x_i - m)^2}{(N-1)c^4}$ Shape factorShape factor is a value that is affected by an object's shape but is independent of its dimensions [12].SF = $\frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}}{\frac{1}{N}\sum_{i=1}^{N} x_i }$ Creat factor (CF) calculates how much impact occur during the polling elementGragGrag	<u> </u>
RMSThe RMS value increase gradually as fault developed. However, RMS is unable to provide the information of incipient fault stage while it increases with the fault development [11].RMS = $\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}$ VarianceVariance measures the dispersion of a signal around their reference mean value.Var = $\frac{\sum_{i=1}^{N}(x_i - m)^2}{(N-1)c^2}$ SkewnessSkewness quantifies the asymmetry behavior of vibration signal through its probability density function (PDF).Sk = $\frac{\sum_{i=1}^{N}(x_i - m)^2}{(N-1)c^2}$ KurtosisKurtosis quantifies the peak value of the PDF. The kurtosis value for normal rolling element bearing is well-recognized as 3.Ku = $\frac{\sum_{i=1}^{N}(x_i - m)^2}{(N-1)c^4}$ Shape factorShape factor is a value that is affected by an object's shape but is independent of its dimensions [12].SF = $\frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}}{\frac{1}{N}\sum_{i=1}^{N}x_i^2}$	80 100 120 140
VarianceVariance measures the dispersion of a signal around their reference mean value.Var = $\frac{\sum_{i=1}^{N} (x_i - m)^2}{(N-1)\sigma^2}$ NoN	· · · · ·
SkewnessSkewness quantifies the asymmetry behavior of vibration signal through its probability density function (PDF).Sk = $\frac{\sum_{i=1}^{N} (x_i - m)^3}{(N-1)\sigma^3}$ 0	
Kurtosis Kurtosis quantifies the peak value of the PDF. The kurtosis value for normal rolling element bearing is well-recognized as 3. Ku = $\frac{\sum_{i=1}^{N} (x_i - m)^4}{(N-1)\sigma^4}$ Shape factor is a value that is affected by an object's shape but is independent of its dimensions [12]. SF = $\frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N} x_i }}{\frac{1}{N}\sum_{i=1}^{N} x_i }$ Image: the peak value of the PDF. The kurtosis value for normal value for norm	80 100 120 140
Shape factor Shape factor is a value that is affected by an object's shape but is independent of its dimensions [12]. SF = $\frac{\sqrt{\frac{1}{2}\sum_{i=1}^{N} x_i }}{\frac{1}{2}\sum_{i=1}^{N} x_i }$ SF = $\frac{\sqrt{\frac{1}{2}\sum_{i=1}^{N} x_i }}{\frac{1}{2}\sum_{i=1}^{N} x_i }$	Annon
Creet factor (CE) calculates how much impact occur during the rolling element cr. max[1]	~~~
Crest factor Crest factor and raceway contact. CF is appropriate for "spiky signals" [12]. $CF = \frac{1}{\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}} = \frac{2}{0} \frac{1}{20} \frac{1}{20} \frac{1}{100} \frac{1}{10$	80 100 120 140
Entropy, $e(p)$, is a calculation of the uncertainty and randomness of a sampled vibration data. Given a set of probabilities, $(p_1, p_2,, p_n)$, the entropy can be calculated using the formulas as shown in the right column.	· · · · · ·
	<u>hullully</u>

40 r

t, days

t, days

Time-domain features (2/2)

- A rolling feature extraction algorithm on the sensor data set creates another time-series data set including the feature values (instead of the raw data).
- Rolling window:

Longer rolling window sizes tend to yield smoother estimates.

Shorter rolling window sizes are more computationally efficient.

Kurtosis in Python:

The example below will show a rolling calculation with a window size of four matching the equivalent function call using *scipy.stats*.

```
>>> arr = [1, 2, 3, 4, 999]
>>> fmt = "{0:.6f}" # limit the printed precision to 6 digits
>>> import scipy.stats
>>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False)))
-1.200000
>>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False)))
3.999946
>>> s = pd.Series(arr)
>>> s.rolling(4).kurt()
          NaN
0
          NaN
          NaN
   -1.200000
    3.999946
dtype: float64
```

Bayesian Online Changepoint Detection (1/2)

- 1. Initialize
 $$\begin{split} P(r_0) &= \tilde{S}(r) \text{ or } P(r_0{=}0) = 1 \\ \nu_1^{(0)} &= \nu_{\text{prior}} \\ \chi_1^{(0)} &= \chi_{\text{prior}} \end{split}$$
- 2. Observe New Datum x_t
- 3. Evaluate Predictive Probability $\pi_t^{(r)} = P(x_t \,|\, \nu_t^{(r)}, \chi_t^{(r)})$
- 4. Calculate Growth Probabilities $P(r_t\!=\!\!r_{t\!-\!1}\!\!+\!\!1,x_{1:t}) = P(r_{t\!-\!1},\!x_{1:t\!-\!1})\pi_t^{(r)}(1\!-\!\!H(r_{t\!-\!1}))$
- 5. Calculate Changepoint Probabilities $P(r_t\!=\!\!0, x_{1:t}) = \sum_{r_{t\!-\!1}} P(r_{t\!-\!1}, x_{1:t\!-\!1}) \pi_t^{(r)} H(r_{t\!-\!1})$
- 6. Calculate Evidence

$$P(x_{1:t}) = \sum_{r_{t}} P(r_{t}, x_{1:t})$$

- 7. Determine Run Length Distribution $P(r_t \,|\, x_{1:t}) = P(r_t, x_{1:t}) / P(x_{1:t})$
- 8. Update Sufficient Statistics

$$\begin{split} \nu_{t+1}^{(0)} &= \nu_{\text{prior}} \\ \chi_{t+1}^{(0)} &= \chi_{\text{prior}} \\ \nu_{t+1}^{(r+1)} &= \nu_t^{(r)} + 1 \\ \chi_{t+1}^{(r+1)} &= \chi_t^{(r)} + u(x_t) \end{split}$$

9. Perform Prediction

$$P(x_{t+1} \mid x_{1:t}) = \sum_{r_t} P(x_{t+1} \mid x_t^{(r)}, r_t) P(r_t \mid x_{1:t})$$
10. Return to Step 2

def step4(d):

```
n = len(d)
dbar = np.mean(d)
dsbar = np.mean(np.multiply(d,d))
fac = dsbar-np.square(dbar)
summ = 0
summup = []
for z in range(n):
```

```
summ += d[z]
summup.append(summ)
```

y = []


```
mean1 = sum(d[:zz+1])/float(len(d[:zz+1]))
mean2=sum(d[(zz+1):n])/float(n-1-zz)
```

```
return y, zz, mean1, mean2
```


https://arxiv.org/abs/0710.3742

Bayesian Online Changepoint Detection (2/2)

Case study in the steel industry

Datasets with sensor measurements during the whole lifetime of the equipment, i.e. from installation until a failure mode or time-based replacement.

 Bayesian Online Changepoint Detection on raw sensor data

2. Bayesian Online Changepoint Detection on the Kurtosis feature

Steel industry

Roll Mill Stand Back up rolls Work rolls Deforming and Reducing the Grain Size

Raw material

Cold rolling mill

Infrastructure Setup for Sensor Data Collection

Front view of rollers

Rear view of rollers

Sensor infrastructure

	Sensor ID	Measurement point	Sensor direction	Sensor Type
	1	Upper backup roll – DE side	Vertical	Accelerometer
	2	Upper backup roll – DE side	Axial	Accelerometer
¢	3	Upper backup roll – NDE side	Vertical	Accelerometer
	4	Upper working roll – DE side	Reverse horizontal	Accelerometer
	5	Upper working roll – NDE side	Horizontal	Accelerometer
	6	Down working roll – DE side	Reverse horizontal	Accelerometer
	7	Down working roll – NDE side	Horizontal	Accelerometer
	8	Down backup roll – DE side	Vertical	Accelerometer
	9	Down backup roll – DE side	Axial	Accelerometer
	10	Down backup roll – NDE side	Vertical	Accelerometer

Example

Bayesian Online Changepoint Detection on raw sensor data

Log likelihood of changepoint in raw sensor data -872 -874 -876 -878 -880 -882 -895

Bayesian Online Changepoint Detection on the Kurtosis feature

Changepoint detection

Implementation

<u>Test case 1</u>: Bayesian Online Changepoint Detection on raw sensor data

Log likelihood of changepoint in raw sensor data

Explanation of the Python code (1/2)

1	import csv	
2	import numpy as np	
з	import pandas as pd	
4	from matplotlib import pypl	ot as plt
5	import math	

Import the required Python libraries

2

```
7 def changepoint(d):
      n = len(d)
      dbar = np.mean(d)
10
      dsbar = np.mean(np.multiply(d,d))
11
      fac = dsbar-np.square(dbar)
12
      summ = 0
13
      summup = []
14
15
      for z in range(n):
16
           summ+=d[z]
17
          summup.append(summ)
18
19
      y = []
20
21
      for m in range(n-1):
22
           pos=m+1
23
           mscale = 4^{*}(pos)^{*}(n-pos)
24
           Q = summup[m] - (summ - summup[m])
25
          U = -np.square(dbar*(n-2*pos) + Q)/float(mscale) + fac
26
          y.append(-(n/float(2)-1)*math.log(n*U/2) - 0.5*math.log((pos*(n-pos))))
27
28
      z, zz = np.max(y), np.argmax(y)
29
30
      mean1 = sum(d[:zz+1])/float(len(d[:zz+1]))
31
      mean2=sum(d[(zz+1):n])/float(n-1-zz)
32
33
      return y, zz, mean1, mean2
```

Define the function of Bayesian Online Changepoint Detection.

It takes as input a list with numbers (d).

Explanation of the Python code (2/2)

f:

35	#Read the data from csv		
36	<pre>measurements = []</pre>		
37	time = []		
38	i = 3		
39	with open('20_06_2019_09.00_17.15_skasimo_Upper_backup_roll_NDE_side_vertical.c	sv', '	'r') as
40	reader = csv.reader(f)		
41	for row in reader:		
42	<pre>measurements.append(float(row[1]))</pre>		
43	<pre>time.append(i)</pre>		
4.4			

Read the sensor data from the csv file

46 #Plot sensor data

```
47 measurements_series = pd.Series(measurements,index=time)
48 measurements_series.plot(title='Sensor data')
```

Plot the raw sensor data.

5

50 #Anomaly detection with online Bayesian changepoint detection

51 step_like = changepoint(measurements)

53 plt.figure();

54 step_series.plot(title='Log likelihood of changepoint in raw sensor data')

Apply the Bayesian Online Changepoint Detection function (**changepoint**) and plot the results.

The input is the raw sensor measurements (*measurements*).

<u>Test case 2</u>: Bayesian Online Changepoint Detection on the Kurtosis feature

Explanation of the Python code (1/3)

1	import csv
2	import numpy as np
З	import pandas as pd
4	<pre>from matplotlib import pyplot as</pre>
5	import math

Import the required Python libraries

```
7 def changepoint(d):
      n = len(d)
 9
      dbar = np.mean(d)
10
      dsbar = np.mean(np.multiply(d,d))
11
      fac = dsbar-np.square(dbar)
12
      summ = 0
13
      summup = []
14
15
      for z in range(n):
16
          summ+=d[z]
17
          summup.append(summ)
18
19
      y = []
20
21
      for m in range(n-1):
22
          pos=m+1
23
          mscale = 4*(pos)*(n-pos)
24
          Q = summup[m] - (summ - summup[m])
25
          U = -np.square(dbar*(n-2*pos) + Q)/float(mscale) + fac
26
          y.append(-(n/float(2)-1)*math.log(n*U/2) - 0.5*math.log((pos*(n-pos))))
27
28
      z, zz = np.max(y), np.argmax(y)
29
30
      mean1 = sum(d[:zz+1])/float(len(d[:zz+1]))
31
      mean2=sum(d[(zz+1):n])/float(n-1-zz)
32
33
      return y, zz, mean1, mean2
```

plt

Define the function of Bayesian Online Changepoint Detection.

It takes as input a list with numbers (d).

Explanation of the Python code (2/3)

36 #Read the data from csv 37 measurements = [] 38 time = [] 39 i = 3 40 with open('20_06_2019_09.00_17.15_skasimo_Upper_backup_roll_NDE_side_vertical.csv', 'r') as f: 41 reader = csv.reader(f) 42 for row in reader: 43 measurements.append(float(row[1])) 44 time.append(i)

Read the sensor data from the csv file

45

47 #PLot sensor data
48 plt.plot(measurements)
49 #plt.ylabel('Upper_backup_roll_NDE_side_vertical')
50 plt.title('Sensor data')
51 plt.show()

Plot the raw sensor data.

53 window = 4 54 #Calculate kurtosis 55 s = pd.Series(measurements) 56 kur = s.rolling(window).kurt() 57 58 #Remove null values 59 k = [] 60 for x in range(len(kur)): 61 if x > window - 2 : 62 k.append(kur[x])

i = i + 1

```
63 if x < window - 1 :
64 kur[x] = 0
65 k.append(kur[x])
66
```

Define the window size of the rolling kurtosis (window).

Derive kurtosis dataset.

Remove the null values.

Explanation of the Python code (3/3)

56 #Anomaly detection with online Bayesian changepoint detection 57 k_series = pd.Series(k, index=time) 58 k_series.plot(title='Kurtosis')

70 step_series = pd.Series(step_like[0], index=time[1:])

72 step_series.plot(title='Log likelihood of changepoint in Kurtosis')

Plot the kurtosis data.

Apply the Bayesian Online Changepoint Detection function (changepoint) and plot the results.

The input is the kurtosis data (**k**).

//3
74 #Generate warning
75 a, time, b, c = changepoint(k)
76 anomaly_time = time
77 print('Alert at time:', anomaly_time)

69 step_like = changepoint(k)

71 plt.figure();

Estimate the time of changepoint.

Experiments

Experiments for the exercise

 Execute test cases 1 & 2 for different datasets (i.e. corresponding to different failure modes)

- For each dataset, execute test case 2 for different kurtosis windows
 - 53 window = 454 #Calculate kurtosis 55 s = pd.Series(measurements) 56 kur = s.rolling(window).kurt() 57 58 #Remove null values 59 k = [] 60 for x in range(len(kur)): 61 if x > window - 2: 62 k.append(kur[x]) 63 if x < window - 1: 64 kur[x] = 065 k.append(kur[x]) 66
- Compare and discuss the results

Thank you