Portfolio Optimization under Different Risk
Measures: A Three-Dimensional Encoding Multi-
objective Evolutionary Algorithm Approach
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Motivation

The mean-variance (M-V) framework is traditionally used for
expressing the compromise between portfolio's expected return and
Its associated risk.

However, the current research indicates that the portfolio's risk is
better quantified with the assistance of alternative risk measures

Moreover, another issue of concern is the amount of processing
time required for the portfolio optimization process.

A common issue with the existing techniques is the excessive
processing time required, especially for large instances of the
portfolio optimization problem.



Research Objectives

* To develop a multi-objective evolutionary algorithm
(MOEA) that its processing time is less susceptible to
the size of the examined test instance.

= To examine different risk measures that present better
properties than the classical mean-variance (M-V)
framework.

* |deally, the proposed algorithm should find useful
application to the solution of other complex problems as
well, beyond the portfolio optimization problem.



Problem Definition

= The portfolio optimization problem is formulated as a bi-
objective  problem f(w)=(f,(w),f,(w)) where two
conflicting objectives f;, f, should be satisfied at any
time.

= The first objective (f,) which is maximized corresponds to
the return of the portfolio and the second objective (t,)
which is minimized corresponds to the risk of the
portfolio.



Bl The Mean - Variance portfolio optimization problem
|
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= The portfolio optimization problem is formulated as a bi-objective
problem f(w)=(f,(w),f,(w)) where two conflicting objectives f, f,
should be satisfied at any time.

N _
= Maximize portfolio return: f,(w)= Z W.r.
i=1

N N
= Minimize portfolio variance: f,(W)= > ZWinGlU Py
]



— Assumptions of the mean-variance portfolio optimization

e framework that have been criticised
—

The financial markets are informationally efficient

= Asset returns are jointly normally distributed variables

= Correlations between assets are fixed and constant

= The Mean-Variance model does not consider taxes or transaction cost

= Any investor can lend and borrow an unlimited amount at the risk free rate of
interest

= All assets are divisible into lots of any size



]
Iy The Mean - Semiariance portfolio optimization problem

= According to the Estrada [1] the portfolio semivariance is
approximated by the following relationship:

N N

= Where SC.., is the sample semicovariance:
ijB

1 I . -
+ 5 [min(®, - B.0)*min(®,, - BO)

[1] Estrada, J. (2007) Mean-Semivariance Optimization: A Heuristic Approach. The Journal of Applied Finance,
Spring / Summer, 57-71.
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e The Mean - Semivariance portfolio optimization problem
—

= Thus, the Mean — Semivariance (M-SV) portfolio optimization
problem is formulated as follows:

N _
= Maximize portfolio return: f,(w)= Z W. T,
i=1

N
= Minimize portfolio semivariance: f,(w)= Z ww . SC..
i=1 j=I
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B The Mean - Value at Risk portfolio optimization problem

Thus, the Mean — Value at Risk (VaR) portfolio optimization problem
is formulated as follows:

N
Maximize portfolio return: f,(w)= Z W. T.
i=1

T
Minimize portfolio VaR: f2(W)= —Inf Zt(W) | Z D. >

t=l1

Where returns z,(w) are placed in an ascending order, i.e.
z(w)<z,(w)<...<z.(w)
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The Mean - Conditional Value at Risk

portfolio optimization problem

= Thus, the Mean — Conditional Value at Risk (CVaR) portfolio
optimization problem is formulated as follows:

N _
= Maximize portfolio return: f,(w)= Z W. T,
i=1

= Min portfolio CVaR: f,(w)= — E{Zt(w) |z, (w) <=VaR, (W)}



The Mean - Mean Absolute Deviation
portfolio optimization problem

= Thus, the Mean — Mean Absolute Deviation (MAD) portfolio
optimization problem is formulated as follows:

N _
= Maximize portfolio return: f,(w)= Z W. T,
i=1

| T
= Min portfolio CVaR: f,(w)= - 21
=

N —
Zl(l”jt_l”j)wj
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Practical constraints imposed to the

portfolio optimization problem

N
Budget constraint Z w, =1

i=1
= Non-negativity constraint: () < w, < 1, i=12,.... N
N
= Cardinality constraint: K . < Zqi <K__,
i=1
where gq,=1 for w;>0 and q,=0 for w;=0
= Floor and ceiling constraint: [ <y, <y., Vi=L2,...N



Previous work

Hybrid representation scheme [2]:

Binary vector: A = {Zl,...,ZN }, zZ. ={0,1}, i=12,... N

1

Real-valued vector: IV = {Wl,..., Wy }, 0<w <1, i=1...N

l

[2] Streichert, F., Ulmer, H. and Zell, A. (2004) Evaluating a hybrid encoding and three crossover
operators on the constrained portfolio selection problem. Proceedings of the Congress on
Evolutionary Computation (CEC 2004 ), Portland, Oregon, (2004), pp. 932-9309.



The proposed encoding scheme

The proposed three-dimensional encoding scheme:

Integer-valued vector: A= {al o O } jellwNj, A=K pa

Real-valued vector: JJ/ = {Wp---:w }, 0<w. <1, i=1..,K

I

Binary-valued vector: A — {Zl,m,zi }, z. = {O,l}, i=12,..,K

Kmax

where Zwi =1 and ‘W‘ =K_..
i=1

A=K

max
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The proposed mutation operator

= \We apply polynomial mutation (PLM) for mutating the real-valued
vector (W)

= \We apply bit-flip (BF) mutation operator for mutating the binary-
valued solution vector (A)

= Because the integer-valued vector (A) of the proposed representa-
tion scheme is restricted by the maximum cardinality (K __ ) we
need to incorporate into the proposed genetic operators an efficient
alteration mechanism that will contribute to the updating process of
the assets' solution vector



The proposed mutation operator

Begin
fori=0to P; // where P is the population size
forz=0 to K .x; // where K a is the maximum cardinality
rand —> [0, 1];
if (rand <= £,) then

rand_asset —> [1, N]; //where N is the available pool of assets, e.g. for ports, N = 225

Ac =Ap .setValue(z, rand_asset); // Ac is the child integer-valued vector
// 4, is the parent integer-valued vector

endif
endfor
endfor

Explanation of symbols
P, is a user-specified parameter named mutation probability




The proposed recombination operator

= \We apply simulated binary crossover (SBX) for crossing the real-
valued vector (W)

= \We apply single point crossover (SPX) for crossing the binary-
valued solution vector (A)

= For the integer-valued (A) vector, due to its special role to the
updating process of the assets' solution vector we had to introduce
a specially designed recombination operator for facilitating this
process.



e proposed recombination operator
.
|

Begin
for i=0to P; // where P is the population size
for z=0 to Ko 5 // where K is the maximum cardinality
X max

rand—> [0, 1];

if (rand <= f)c) then
@ .
A, =ara»—ag )

(2) _ ( ).
AP - al,a2,...,aKmaX ’
cross_point —> [0, g _11;
for g = cross_point to g ;
max
@

(2)
a, — A » -getValue(q);

o _ M (2)
A. _Ap setValue(q, (], )

oW
a, = Ap .getValue(q);

1
AZZ) = A;z).setValue(q, a(ps;

endfor

endif
endfor
endfor

Explanation of symbols M o
A(l) is the parent integer-valued vector 1. a is the integer-valued parent decision variable that corresponds to A
P

P P




The test problems

Problem Problem Stock Market Assets Source
Formulation Name Index
Mean-Variance ports Nikkei 225 225 OR-Library
Mean-Variance port6 S&P 500 457 OR-Library
Mean-Variance port7 Russell 2000 1317 OR-Library
Mean -Semivariance FTSE-100 FTSE 100 92 our own dataset
Mean -VaR SP500 S&P 500 442 Data in Brief
Mean -CVaR SP500 S&P 500 442 Data in Brief
Mean-MAD SP500 S&P 500 442 Data in Brief
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Configuration and control parameters

of the examined algorithms

In all tests with the examined algorithms we use binary tournament as selection
operator.

For the real valued (W) solution vector of the Three-Dimensional Encoding Multi-
objective Evolutionary Algorithm (TDMEA) we use, simulated binary crossover (SBX)
and polynomial mutation (PLM), as crossover and mutation operator, respectively.

For the binary-valued (A) solution vector of TDMEA we use single-point crossover
(SPX) and bit-flip (BF) mutation operator, as recombination and mutation operator
respectively.

Finally for mutating and crossing the integer-valued (A) solution vector of TDMEA we
use the proposed mutation and recombination operators as appear in slide 17 and 19
respectively.
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Configuration and control parameters
of the examined algorithms

= For the Non-nominated Sorting Genetic Algorithm |l (NSGAIl) we used its typical
configuration with simulated binary crossover (SBX) and polynomial mutation (PLM)
for the real-valued solution vector and single-point crossover (SPX) and bit-flip (BF)
mutation operator, for the binary-valued solution vector respectively.

= The settings for the Strength Pareto Evolutionary Algorithm 2 (SPEA2) are the
following: simulated binary crossover (SBX) and polynomial mutation (PLM) as
recombination and mutation operator respectively of the real-valued solution vector
and single-point crossover (SPX) and bit-flip (BF) mutation operator as recombination
and mutation operator respectively of the binary-valued solution vector.

= All algorithms have been programmed in Java and run on a 3.30 GHz, Intel Core
(TM) i5-4590 CPU machine, Windows 10 Pro with 4 GB RAM.



Configuration and control parameters
of the examined algorithms

We set crossover probability to P, = 0.9 and mutation probability to P, = 0.1 as
control parameters for both the real and the binary solutions vectors of all examined
algorithms.

We set P, = 0.9 and P,, = 0.1 as control parameters for the integer solution vector of
TDMEA.

We set the distribution index for the crossover operator to n, = 20 and respectively for
the mutation operator to n,, = 20 for all examined algorithms. The aforementioned
values for the control parameters resulted after the required fine tuning of the
examined algorithms.

Finally, we employ a population size of 100 individuals and a maximum of 100,000
function evaluations with 20 runs for all examined algorithms.



'mmmm |ndicators for evaluating algorithms’ performance
]

Hypervolume indicator (HV)

Hypervolume can be described as the n-dimensional space that is contained by a solution set, relative to some
reference point. As reference point is taken the worst known value in each objective. Hypervolume (HV)
summarize in a single unary value information regarding the spread of the solutions along the Pareto front and the
distance of the set from the Pareto-optimal front. Hypervolume indicator is maximized if the set of solutions
contains all Pareto optimal points of the examined multi-objective optimization problem. Hypervolume (HV) is said
to be Pareto compliant meaning that the hierarchy it provides between the candidate approximate solutions

complies with the Pareto optimality conditions.

f, .
® Ref. point

fi

Hypervolume of a bi-objective minimization problem
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'mmmm |ndicators for evaluating algorithms’ performance

Inverted Generational Distance (IGD)

Inverted Generational Distance (IGD) measures the closeness of the obtained solution set to the true Pareto
optimal set and is given by the following relationship:

/
(2@16{?)1 !
| P|

IGD(P,S) =

where d, is the minimum Euclidean distance between an approximate solution (s € S ) to the closest solution in
the true Pareto optimal Frontier (P). The IGD metric is able to provide a measure for both convergence and
diversity and takes a zero value when all the generated solutions are in the Pareto front.




RRRRNRNRRRNNRRREN

'mmmm |ndicators for evaluating algorithms’ performance
]

= Epsilon additive Indicator (I..,)

The epsilon additive indicator of an approximation set A (l.,) provides the minimum factor € by which each point in
the real front R can be added such that the resulting transformed approximation set is dominated by A.

The additive epsilon indicator between two approximations A and B of the Pareto set can be described as the
smallest epsilon value that allows all the solutions in B to be e-dominated by at least one solution in A:

[c+(AB)=minVyeB 31 xed|x< _ y

cept

The smaller the epsilon value the better the examined solution.



Experimental Results

= The Table below presents the results for the cardinality constrained portfolio optimization problem under different risk measures.
Specifically, it presents the mean, standard deviation (STD), median and interquartile range (IQR) of all the independent runs carried out
for Hypervolume (HV), Inverted Generalization Distance (IGD) and Epsilon indicator respectively.

Problem: Port5
Mean—V arian ce

Problem: Port6
Mean-V arian ce

TDMEA

NSGAII

SPEA2

TDMEA

NSGAII

SPEA2

HV. Mean and Std

7.85e-01 9.7e-03

7.21e-01 17e-02

7.28e-01 2.6e-02

7.11e-01 59e-03

6.47e-01 3.0e-02

6.63e-01 166-02

HV. Median and IQR

7.85e-01 1.2e-02

7.23e-01 25e-02

7.36e-01 2.5e-02

7.10e-01 5.0e-03

6.49e-01 54¢.02

6.66e-0121c.02

IGD. Meanand Std 3.11e-04 40e.05 1.27€-02 39¢.03 1.25e-02 32603 5.84e-04 59¢.05 2.18e-02 46003 1.81€-02 47¢.03
IGD. Median and IQR 3.09e-04 4.0e-05 1.32e-02 6.1e-03 1.26e-02 4.0e-03 5.83e-04 2.1e-05 2.24e-02 46e-03 1.85e-02 54e-03
EPSILON. Mean and Std 1.37e-04 25e-05 5.17e-04 8.2e-05 4.89e-04 1.2e-04 1.21e-03 11e-04 417e-03 1.1e-03 3.65e-03 73e-04
EPSILON. Median and QR 1.35e-04 3.5e-05 4.81e-04 14e-04 4.57e-04 1.5e-04 1.21e-03 13e-04 4.23e-03 15e-03 3.76e-03 11e-03

Problem: Port7 Problem: FTSE-100

Mean—Varian ce Mean - Semivarian ce

TDMEA NSGAII SPEA2 TDMEA NSGAII SPEA2

HV. Mean and Std 6.94e-01 6.1€-03 5.60e-01 42e-02 5.18e-01 4.7e-02 6.16e-01 2.8e-03 5.96e-01 72e-03 5.90e-01 8.0e-03
HV. Medianand IQR 6.93e-01 9.0e-03 5.66e-01 836-02 5.22e-01 826-02 6.17e-01 456-03 5.95e-01 1.1e-02 5.91e-01 826-03
IGD. Mean and Std 7.71e-04 1.3e-04 2.30e-02 58e-03 2.82e-02 34e-03 4.73e-04 33e-05 2.09e-03 47e-04 1.99-03 53e-04
IGD. Median and IQR 7.68e-04 3.0e-04 2.41e-02 1.36-02 2.77e-02 476-03 4.69e-04 46e-05 1.93e-03 56e-04 1.99e-03 476-04
EPSILON. Mean and Std 5.10e-03 1.0e-03 1.85e-02 46e-03 2.27e-02 35e-03 5.11e-05 7.8¢-06 3.36e-04 9.3e-05 3.11e-04 96e-05
EPSILON. Median and QR 5.34e-03 1 7¢.03 1.91€-02 1 9e-02 2.256-02 54003 5.20e-05 ge-05 3.32e-04 17604 3.11e-04 1 4004




Experimental Results

Problem: SP500

Problem: SP500

Mean — VaR Mean —CVaR
TDMEA NSGAII SPEA2 TDMEA NSGAII SPEA2
HV. Mean and Std 6.28e-01 37¢.02 3.79e-01 77¢-02 3.23e-01 966.02 5.80e-01 26e-02 4.38e-01 38¢-02 4.376-01 346-02
HV. Median and IQR 6.24e-01 23e-02 3.79%-01 8.3e-02 2.99%-01 1.4e-01 5.81e-01 46e-02 421e-01 70e-02 4.42e-01 43e-02

IGD. Meanand Std 1.08e-03 1 66.04 2.74e-02 59¢-03 2.44e-02 57¢.03 1.06e-03 ;604 1.30e-02 ; 4603 1.52e-02 48603
IGD. Median and IQR 1.06e-03 1 7¢.04 2.67e-02 g2¢.03 2.356-02 12¢.02 1.10e-03 3.9¢.04 1.28e-02 156-03 1.48e-02 57603
EPSILON. Mean and Std 6.68e-03 1 0e.03 8.44e-03 90e-04 9.38e-03 1 8¢.03 5.23e-03 13¢.03 8.79e-03 57¢.04 8.87e-03 1 4c.03
EPSILON. Median and QR 6.66e-03 1.8e-03 8.66e-03 13e-03 9.66e-03 24e-03 5.05e-03 18e-03 8.89e-03 14e-03 8.45e-03 18e-03
Problem: SP500
Mean — M AD
TDMEA NSGAII SPE A2
HV. Mean and Std 6.90e-01 37e-03 5.91e-01 1.4e-02 5.85e-01 1.3e-02
HV. Median and IQR 6.90e-01 6.0e-03 5.88e-01 1.8e-02 5.93e-01 21e-02
IGD. Mean and Std 5.95e-04 40c-05 7.876-03 15c-03 8.54e-03 1 ge-03
IGD. Median and IQR 5.98e-04 ¢ pe-05 7.486-03 38¢.03 8.50e-03 34¢.03
EPSILON. Mean and Std 3.01e-0363¢-04 9.69e-0352¢.03 1.02e-02 1 7¢.03

EPSILON. Median and [QR

3.25e-03 11e-03

1.01e-02 42e-03

1.00e-02 1.3e-03




Experimental Results

= The Table below use boxplots to visualize the performance of the proposed three-dimensional encoding multiobjective evolutionary
algorithm (TDMEA) against two well-known MOEAs, namely NSGAIl and SPEA2, for HV, IGD and Epsilon performance indicators.
Boxplots provide a simple graphical mean for comparing data sets that present information from a five number summary: minimum,
maximum, median, first quartile and third quartile.
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Experimental Results

Problem: Port6
Mean—Variance
HV 1GD EPSILON
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Problem: FTSE-100
Mean - Semivariance
HV IGD EPSILON
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'mmmm The Mean - MAD efficient frontier for the SP500 problem
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Evolution trace of HV metric for port5 problem
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Mean total CPU times (in seconds) for solving the cardinality
Immmm constrained portfolio optimization problem under different
= risk measures for 100,000 functions evaluations

|| Time in seconds
Problem

TDMEA NSGAII SPEA2
port5 (Mean — Variance) 3.041 167.372 171.409
ports (Mean — Variance) 3.047 575.877 585.343
port7 (Mean — Variance) 4.922 4573.807 | 4635.934
FTSE-100 (Mean-Semivariance) 2.897 38.384 40.811
SP500 (Mean —VaR) 2.838 546.725 552.157
SP500 (Mean — CVaR) 2.956 578.541 585.983
SP500 (Mean — MAD) 2.844 539.434 546.293




Mean total CPU times (in seconds) for solving the cardinality
Immmm constrained portfolio optimization problem under different
= risk measures for 100,000 functions evaluations
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