
Adaptive Shivers Sort: An Alternative Sorting Algorithm

VINCENT JUGÉ, LIGM (UMR 8049), CNRS, Université Gustave Eiffel, Marne-la-Vallée, France

We present a new sorting algorithm, called adaptive ShiversSort, that exploits the existence of monotonic runs
for sorting efficiently partially sorted data. This algorithm is a variant of the well-known algorithm TimSort,
which is the sorting algorithm used in standard libraries of programming languages, such as Python or Java
(for non-primitive types). More precisely, adaptive ShiversSort is a so-called :-aware merge-sort algorithm, a
class that captures ‘TimSort-like’ algorithms and that was introduced by Buss and Knop.

In this article, we prove that, although adaptive ShiversSort is simple to implement and differs only slightly
from TimSort, its computational cost, in number of comparisons performed, is optimal within the class of
natural merge-sort algorithms, up to a small additive linear term. This makes adaptive ShiversSort the first
:-aware algorithm to benefit from this property, which is also a 33% improvement over TimSort’s worst-case.
This suggests that adaptive ShiversSort could be a strong contender for being used instead of TimSort.

Then, we investigate the optimality of :-aware algorithms. We give lower and upper bounds on the best
approximation factors of such algorithms, compared to optimal stable natural merge-sort algorithms. In
particular, we design generalisations of adaptive ShiversSort whose computational costs are optimal up to
arbitrarily small multiplicative factors.

CCS Concepts: • Theory of computation→ Sorting and searching;

Additional Key Words and Phrases: Sorting algorithms, merge sorts, entropy, worst-case complexity, approx-
imability

ACM Reference format:
Vincent Jugé. 2024. Adaptive Shivers Sort: An Alternative Sorting Algorithm .ACM Trans. Algor. 20, 4, Article 31
(August 2024), 55 pages.
https://doi.org/10.1145/3664195

1 Introduction
The problem of sorting data has been one of the first and most extensively studied problems
in computer science, and sorting is ubiquitous, due to its use as a sub-routine in a wealth of
various algorithms. Hence, as early as the 1940s, sorting algorithms were invented, which enjoyed
many optimality properties regarding their complexity in time (and, more precisely, in number of
comparisons or element moves required) as well as in memory. Every decade or so, a new major
sorting algorithm was invented, either using a different approach to sorting or adapting specifically
tuned data structures to improve previous algorithms: MergeSort [10], QuickSort [12], HeapSort
[23], SmoothSort [7], SplaySort [17],…

An extended abstract of this article appeared in the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA
2020).
Author’s Contact Information: Vincent Jugé (Corresponding author), LIGM (UMR 8049), CNRS, Université Gustave Eiffel,
Marne-la-Vallée, France; e-mail: vincent.juge@univ-eiffel.fr.
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes only.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1549-6333/2024/8-ART31
https://doi.org/10.1145/3664195

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

https://orcid.org/0000-0003-0834-9082
https://doi.org/10.1145/3664195
mailto:vincent.juge@univ-eiffel.fr
https://doi.org/10.1145/3664195
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664195&domain=pdf&date_stamp=2024-08-05

31:2 V. Jugé

Fig. 1. A sequence and its run decomposition computed by a greedy algorithm: for each run, the first two
elements determine if it is non-decreasing or decreasing, and then the run continues with the maximum
number of consecutive elements that preserves the monotonicity.

In 2002, Tim Peters, a software engineer, created a new sorting algorithm, which was called
TimSort [19].This algorithm immediately demonstrated its efficiency for sorting actual data, andwas
adopted as the standard sorting algorithm in core libraries of wide-spread programming languages,
such as Python and Java. Hence, the prominence of such a custom-made algorithm over previously
preferred optimal algorithms contributed to the regain of interest in the study of sorting algorithms.

Understanding the reasons behind the success of TimSort is still an ongoing task. These reasons
include the fact that TimSort is well adapted to the architecture of computers (e.g., for dealing with
cache issues) and to realistic distributions of data. In particular, a model that successfully explains
why TimSort is adapted to sorting realistic data involves run decompositions [3, 8], as illustrated
in Figure 1. Such decompositions were already used in Knuth’s NaturalMergeSort [15], which
predated TimSort and adapted the traditional MergeSort algorithm as follows: NaturalMergeSort is
based on splitting arrays into monotonic subsequences, also called runs, and on merging these runs.
Thus, all algorithms sharing this feature of NaturalMergeSort are also called natural merge sorts.

In addition to being a natural merge sort, TimSort also includes many optimisations, which were
carefully engineered, through extensive testing, to offer the best complexity performances. As a
result, the general structure of TimSort can be split into three main components: (1) a complicated
variant of an insertion sort, which is used to deal with small runs (e.g., runs of length less than 32),
(2) a simple policy for choosing which large runs to merge, (3) a complex sub-routine for merging
these runs. The first and third components were those which were the most finely tuned, hence
understanding the subtleties of why they are efficient and how they could be improved seems diffi-
cult. The second component, however, is quite simple, and therefore it offers the best opportunities
for modifying and improving TimSort.

Context and Related Work. The success of TimSort has nurtured the interest in the quest for
sorting algorithms that would be adapted to arrays with few runs. However, the ad hoc conception
of TimSort made its complexity analysis less easy than what one might have hoped, and it is only
in 2015, a decade after TimSort had been largely deployed, that Auger et al. proved that TimSort
required O(= log(=)) comparisons for sorting arrays of length = [2].

Even worse, because of the lack of a systematic and theoretical analysis of this algorithm, several
bugs were discovered only recently in both Python and Java implementations of TimSort [1, 6].

Meanwhile, since TimSort was invented, several natural merge sorts have been proposed, all
of which were meant to offer easy-to-prove complexity guarantees. Such algorithms include
ShiversSort, introduced by Shivers in Shivers [20], as well as Takaoka’sMinimalSort [21] (equivalent
constructions of this algorithm were also obtained in Barbay and Navarro [3]), Buss and Knop’s
U-MergeSort [5], and the most recent algorithms PeekSort and PowerSort, due to Munro and
Wild [18]. Alternatively, as we will mention again, algorithms for constructing optimal binary
search trees, such as the algorithms of Hu and Tucker [13] and Garsia and Wachs [9], can be adapted
to provide natural merge sorts as well. We call MinimalStableSort the merge sort derived from
adapting either algorithm.

These algorithms share most of the nice properties of TimSort, as summarised in Table 1
(columns 1–3). For instance, except MinimalSort, these are stable algorithms, which means that

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:3

Table 1. Properties of a Few Natural Merge Sorts

Algorithm Time complexity Stable :-aware Worst-case merge cost
NaturalMergeSort O(= + = log(d)) Ø 7 = log2 (d) + O(=)
TimSort O(= + =H) Ø : = 4 3/2=H + O(=)
ShiversSort O(= log(=)) Ø : = 2 = log2 (=) + O(=)
MinimalSort O(= + =H) 7 7 =H + O(=)
MinimalStableSort O(= + =H) Ø 7 =H + O(=)
U-MergeSort O(= + =H) Ø : = 3 2U=H + O(=)
PowerSort O(= + =H) Ø 7 =H + O(=)
PeekSort O(= + =H) Ø 7 =H + O(=)
Adaptive ShiversSort O(= + =H) Ø : = 3 =H + O(=)

The constant 2U is such that 1.04 < 2U < 1.09. The merge cost of an algorithm is an upper bound on its number
of comparisons and element moves.

they sort repeated elements in the same order as these elements appear in the input. This is very
important for merge sorts, because only adjacent runs will be merged, which allows merging
directly arrays instead of having to use linked lists. This feature is also important for merging
composite types (e.g., non-primitive types in Java), which might be sorted twice according to distinct
comparison measures. Moreover, all these algorithms sort arrays of length = in time O(= log(=)),
and, for all of them except ShiversSort, they even do it in time O(= + = log(d)), where d is the
number of runs of the array. This is optimal in the model of sorting by comparisons [16], using the
classical counting argument for lower bounds.

Some of these algorithms even adapt to the lengths of the runs, and not only to the number
of runs: if the array consists of d runs of lengths A1, . . . , Ad , these algorithms run in O(= + =H),
whereH is defined asH = � (A1/=, . . . , Ad/=) and � (G1, . . . , Gd) = −

∑d

8=1 G8 log2 (G8) is the general
entropy function. Considering the number of runs and their lengths as parameters, this finer upper
bound is again optimal in the model of sorting by comparisons [3].

Focusing only on the time complexity, six algorithms seem on par with each other, and finer
complexity evaluations are required to separate them. Except TimSort, it turns out that these
algorithms are, in fact, described only as policies for merging runs, the actual sub-routine used for
merging runs being left implicit. Therefore, we settle for the following cost model.

Since naive merging algorithms approximately require< + = element comparisons and element
moves for merging two arrays of lengths< and =, and since< + = element moves may be needed
in the worst case (for any values of< and =), we measure below the complexity in terms of merge
cost [2, 5, 11, 18]: the cost of merging two runs of lengths< and = is defined as< + =, and we
identify the complexity of an algorithm with the sum of the costs of the merges processed while
applying the run merge policy of this algorithm.

Of course, this identification can be legitimate only if this sum of merge costs dominates the
complexity of deciding which runs should be merged. Fortunately, this is the case in all of the
algorithms presented in Table 1. Indeed, for all algorithms presented except MinimalSort and
MinimalStableSort, deciding which runs to merge can be done in time O(=). Algorithms Minimal-
Sort and MinimalStableSort have more complicated merge policies, and deciding which runs these
algorithms shall merge amounts to computing a Huffman tree (respectively, an optimal binary
search tree) with d leaves, which can be done in time O(d log(d)), and therefore in time O(=H) too.

In this new model, every run merge policy can be identified with a bottom-up construction algo-
rithm for binary search trees, an idea that was already noted and used successfully in
references [3, 18]. In particular, one can prove that the merge cost of any natural merge sort

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:4 V. Jugé

must be at least =H + O(=). This makes MinimalSort, MinimalStableSort, PeekSort and PowerSort
the only sorting algorithms with an optimal merge cost, as shown in the last column of Table 1.

In another direction, and sinceMinimalStableSort, PeekSort and PowerSort are stable, they could
be considered natural options for succeeding TimSort as standard sorting algorithm in Python or
Java. Nevertheless, and although the latter two algorithms have implementations similar to that of
TimSort, their merge policies are slightly more complicated, as illustrated in Section 2.

Therefore, there is yet to find a natural merge sort whose structure would be as simple as and
extremely close to that of TimSort, and whose merge cost would also be optimal up to an additive
term O(=).

A first step towards this goal is using an adequate notion of ‘TimSort-likeness’, and therefore we
look at the class of :-aware sorting algorithms. This class of algorithms was invented by Buss and
Knop [5], with the explicit goal of characterising those algorithms whose merge policy is similar
to that of TimSort. More precisely, TimSort is based on discovering runs on the fly, and ‘storing’
these runs into a stack: if a run spans the 8th to 9th entries of the array, the stack will contain the
pair (8, 9). Then, TimSort merges only runs that lie on the top of the stack, and such decisions are
based only on the lengths of these top runs.

The rationale behind this process is that processing runs in such a way should be adapted to the
architecture of computers, for instance by avoiding cache misses. One says that a natural merge
sort is :-aware if deciding which runs should be merged is based only on the lengths of the top :
runs of the stack, and if the runs merged belong themselves to these top : runs. The fourth column
of Table 1 indicates which algorithms are :-aware for some : < +∞, in which case it also gives the
smallest such : .

Focusing on :-aware algorithms seems all the more relevant because some of the nice features
of TimSort were also due to the high degree of tuning of the components (1) and (3). Hence, if
one does not modify these components, and if one follows a merge policy that behaves in a way
similar to that of TimSort, one may reasonably hope that those nice features of TimSort would be
kept intact, even though their causes are not exactly understood. This suggests identifying natural
merge sorts with their merge policy, and integrating the components (1) and (3) later.

Contributions. We propose a new natural merge sort, which we call adaptive ShiversSort. As
advertised above, we will identify this algorithm with its run merge policy. Adaptive ShiversSort
is a blend between the algorithms TimSort and ShiversSort; the purpose being to borrow nice
properties from both algorithms. As a result, the merge policy of adaptive ShiversSort is extremely
similar to that of TimSort, which means that switching from one algorithm to the other should be
essentially costless, since it would require changing only a dozen lines in the code of Java.

Adaptive ShiversSort is a 3-aware algorithm, which is stable and enjoys an optimal =H + O(=)
upper bound on its merge cost. Hence, adaptive ShiversSort appears as optimal with respect to
all the criteria mentioned in Table 1; it is the first known :-aware algorithm with a merge cost of
=H + O(=), thereby answering a question left open by Buss and Knop [5]. Moreover, and due to its
simple policy, the running time complexity proof of adaptive ShiversSort is simple as well. Below,
we propose a short, self-contained version of this proof.

Then, still aiming to compare PeekSort, PowerSort and adaptive ShiversSort, we investigate their
best-case merge costs. It turns out that the merge costs of PowerSort and of PeekSort, in every
case, are bounded between =H and =(H + 2), these bounds being both close and optimal for any
stable merge sort. Similarly, the merge cost of adaptive ShiversSort is only bounded from above
by =(H + Δ), where Δ = 24/5 − log2 (5) ≈ 2.478, which is also slightly worse than PowerSort.
Hence, we design a variant of adaptive ShiversSort, called length-adaptive ShiversSort, which is
not 3-aware, but whose merge cost also enjoys an =(H + 2) upper bound.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:5

Finally, we further explore the question, raised by Buss and Knop [5], of the optimality of :-aware
algorithms on all arrays. More precisely, this question can be stated as follows: for a given integer
: and a real number Y > 0, does there exist a :-aware algorithm whose merge cost is at most 1 + Y
times the merge cost of any stable merge cost on any array? We prove that the answer is always
negative when : = 2; for all : ¾ 3, the set of numbers Y for which the answer is positive forms an
interval with no upper bound, and we prove that the lower bound of that interval is a positive real
number, which tends to 0 when : grows arbitrarily.

Detailed Content Summary. Section 2 contains brief descriptions of several natural merge sort algo-
rithms mentioned earlier in this introduction. We begin with 2-adaptive ShiversSort, a parametrised
algorithm that generalises both adaptive ShiversSort and length-adaptive ShiversSort, and present
the main properties that explain its efficiency. Subsequent subsections include descriptions of Tim-
Sort; U-StackSort and U-MergeSort; ShiversSort; augmented ShiversSort; PowerSort and PeekSort;
and the original version of adaptive ShiversSort presented in Jugé [14].

Section 3 is devoted to the worst-case analysis of 2-adaptive ShiversSort. It culminates with the
following two results:

Theorem 5. The merge costs of adaptive ShiversSort and of length-adaptive ShiversSort are bounded
from above by =(H + 3) and by =(H + 2), respectively.

Theorem 15. For every value of the parameter 2 , the merge cost of 2-adaptive ShiversSort is bounded
from above by = (H + Δ), where Δ = 24/5 − log2 (5) ≈ 2.478.

Section 4 is an intermezzo, where we study lower bounds on the best- and worst-case merge
costs of all natural merge sort algorithms. Although unconventional, the study of the best-case
merge cost is meaningful here, because it turns out to be extremely close to the worst-case merge
costs of algorithms like adaptive ShiversSort or PowerSort.

Section 5 is focused on studying the entire family of (:, ℓ)-aware and length-(:, ℓ)-aware algo-
rithms; the former family was proposed by Buss and Knop [5], and is a subset of the latter family,
which also contains algorithms like PowerSort and length-adaptive ShiversSort. More precisely,
we wish to find how close to optimal such algorithms can be: an algorithm is Y-optimal if there is
no input array on which its merge cost exceeds 1 + Y times the smallest cost of a natural merge-sort
algorithm. Table 2 gather our results about the values of Y for some algorithms listed in Section 2.
It is followed by three inapproximability and approximability results.

Proposition 29. Let : ¾ 3 be an integer, and let

\: = 1/((10: + 12) log2 (2: + 2)) .
No :-aware sorting algorithm is \: -optimal.

Proposition 30. Let : ¾ 3 be an integer, and let

Y: = 1/2:+7.
No length-(∞, :)-aware sorting algorithm is Y: -optimal.

Theorem 33. Let : ¾ 8 be an integer, and let

[: = (Δ + 7)/log2 ((: − 3)/4),
where we recall that Δ = 24/5 − log2 (5). There exists a :-aware sorting algorithm that is [: -optimal.

Finally, Section 6 is focused on implementation details. It includes an easy analysis of the space
complexity of adaptive ShiversSort, as well as suggestions for painlessly switching from TimSort
to adaptive ShiversSort or length-adaptive ShiversSort in Python and Java.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:6 V. Jugé

Table 2. Merge Costs on a Few Sequences of Run Lengths

Run lengths

Merge cost

Adaptive
Length-
adaptive PowerSort PeekSort

(= = 2: , : = 2ℓ , ℓ ¾ 2) ShiversSort ShiversSort

(2= − 1, =, 1) 6= − 1 4= + 1 4= + 1 4= + 1
(50% overhead) (optimal) (optimal) (optimal)

(2=, 2, 1, = − 1, 9= + 16 10= + 14 12= + 8 12= + 8
1, 1, = − 3, 3) (optimal) (11% overhead) (33% overhead) (33% overhead)

(2= − 1, =/2, =/4, . . . , 8= − 5 6= − 3 5= + : − 2 5= + : − 2
16, 8, 4, 2, 2, 1) (60% overhead) (20% overhead) (optimal) (optimal)

Sequence a=,=+1 U=,=+1 U ′=,=+1 U=,=+1 U=,=+1
(see page 36) (optimal) (50% overhead) (optimal) (optimal)

Sequence a=,= U ′=,= U ′=,= U=,= U=,=
(see page 36) (50% overhead) (50% overhead) (optimal) (optimal)
Sequence b=,2 30= + 3: − 23 33= + 3: − 25 42= − : − 36 42= − : − 36
(see page 36) (optimal) (10% overhead) (40% overhead) (40% overhead)
Sequence b=,1 42= − 2: − 21 33= + 3: − 10 42= − : − 19 42= − : − 19
(see page 36) (40% overhead) (10% overhead) (40% overhead) (40% overhead)
Sequence c= 19= + 2: − 12 19= + 2: − 12 18= + 2: − 10 22= − 2: − 14
(see page 36) (6% overhead) (6% overhead) (optimal) (22% overhead)
Sequence d= 13= + 6: − 23 13= + 6: − 23 18= − 2: − 21 14= + 2: − 18
(see page 36) (optimal) (optimal) (38% overhead) (8% overhead)

Run lengths
Merge cost

TimSort 2-MergeSort
q-MergeSort Minimal

(= = 2: , : = 2ℓ , ℓ ¾ 2) (q = (1 +
√
5)/2) StableSort

(2= − 1, =, 1) 4= + 1 6= − 1 4= + 1
4= + 1

(optimal) (50% overhead) (optimal)
(2=, 2, 1, = − 1, 12= + 12 10= + 14 12= + 12

9= + 16
1, 1, = − 3, 3) (33% overhead) (11% overhead) (33% overhead)

(2= − 1, =/2, =/4, . . . , 6= − 3 8= − 5 6= − 3
5= + : − 28

16, 8, 4, 2, 2, 1) (20% overhead) (60% overhead) (20% overhead)
Sequence a=,=+1 4=2− 2=− 6: − 2 U ′=,=+1 U ′=,=+1 U=,=+1(see page 36) (100% overhead) (50% overhead) (50% overhead)
Sequence a=,= 4=2 − 6=− 6: + 4 U ′=,= U ′=,= U=,=(see page 36) (100% overhead) (50% overhead) (50% overhead)
Sequence b=,2 30= + 3: − 23 33= + 3: − 25 30= + 3: − 23

30= + 3: − 23
(see page 36) (optimal) (10% overhead) (optimal)
Sequence b=,1 30= + 3: − 8 33= + 3: − 10 30= + 3: − 8

30= + 3: − 8
(see page 36) (optimal) (10% overhead) (optimal)
Sequence c= 18= + 2: − 10 22= + 2: − 10 18= + 2: − 10

18= + 2: − 10
(see page 36) (optimal) (22% overhead) (optimal)
Sequence d= 14= + 4: − 23 14= + 4: − 24 14= + 4: − 24

13= + 6: − 23
(see page 36) (8% overhead) (8% overhead) (8% overhead)

Overheads indicated hold when = → +∞. Gray cells indicate the worst performance (i.e., the largest overhead) of each
algorithm.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:7

Reading Itineraries. Given the length of this article and the variety of results listed just above,
various readers may prefer different reading strategies. We strongly advise the reader who just
discovers this article to first skip the most technical results and proofs, and to focus on Section 2,
which gives a nice, yet non-exhaustive overview of various algorithms that may exist; on Table 2,
which sums up the results of these algorithms on various input arrays; and on Section 6, in which
we discuss actual (and sometimes low-level) implementation details.

Those readers who wish to understand why Theorems 5 and 15 are valid are then invited to
read their proofs, which can be found in Sections 3.1 and 3.2, respectively. Although one might be
tempted to jump directly to Section 3.2, because Theorem 15 gives us a better complexity bound for
adaptive ShiversSort than Theorem 5, we recommend starting with Section 3.1. Indeed, the reader
will later find that the proof of Theorem 15, which relies on a carefully crafted ad hoc notion of
potential, is substantially more technical and difficult, although conceptually not so demanding.

Those who wonder why Theorems 5 and 15 brand adaptive ShiversSort and length-adaptive
ShiversSort as excellent merge sort algorithms should definitely read Section 4: this short section,
whose content is easy to comprehend, simply indicates that no natural merge sort algorithm,
even in the best case, performs substantially fewer comparisons than adaptive ShiversSort and
length-adaptive ShiversSort do in the worst case.

Finally, when having to choose between algorithms, such as TimSort, PowerSort or adaptive
ShiversSort, the reader might wish to discover the ultimate natural merge sort algorithm, maybe
restricting this this quest to (:, ℓ)-aware or length-(:, ℓ)-aware algorithms, for implementation
reasons. In such a case, the reader should read Section 5, in which it is proved that no such ultimate
algorithm exists.

On the one hand, Section 5.1 contains proofs that, once : and ℓ are fixed, length-(:, ℓ)-aware
algorithms cannot be Y-optimal for arbitrarily small values of Y. By contrast, Section 5.2 proves that
an explicit 2O(1/Y) -aware parametrised algorithm is Y-optimal. Thus, the reader may be content
with knowing which parameter values make the algorithm Y-optimal, or dive into the step-by-step
proof of Theorem 1; in the latter case, we strongly recommend reading Sections 5.2.1–5.2.4 one at a
time.

2 Adaptive ShiversSort and Related Algorithms
In this section, we describe the run merge policy of the algorithm adaptive ShiversSort and of
related algorithms, most of which were mentioned in Section 1.

Here and in subsequent sections, we will always use the following notations. Below, the length
of a run ' is denoted by A and the integer blog2 (A/2)c is denoted by ℓ . The integer ℓ will be called
the level of the run '. We adapt readily these notations when the name of the run considered
varies, e.g., the length of the run '′ is denoted by A ′ and the integer blog2 (A ′/2)c is denoted by ℓ ′.
In particular, we will commonly note the stack ('1, . . . , 'ℎ), where ': is the :th deepest run of the
stack; therefore, the 'ℎ is the top element of the stack and is easy to access, whereas accessing '1 is
much less straightforward. The length of ': is then denoted by A: , and we set ℓ: = blog2 (A:/2)c.

2.1 Adaptive ShiversSort
The merge policy of adaptive ShiversSort is depicted in Algorithm 1. For the ease of Section 3.1, and
because it does not make any proof harder, we shall consider adaptive ShiversSort as a special case
of the parametrised algorithm 2-adaptive ShiversSort: in addition to the array to sort, 2-adaptive
ShiversSort also requires a positive integer 2 as a parameter.

In subsequent sections, we will consider most specifically two choices for the parameter 2: we
may either set 2 = 1, thereby obtaining the algorithm adaptive ShiversSort itself, or 2 = = + 1,

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:8 V. Jugé

Algorithm 1: c-adaptive ShiversSort
Input :Array � to sort, integer parameter 2
Result: The array � is sorted into a single run. That run remains on the stack.
Note: Whenever two consecutive runs of S are merged, they are replaced, in S, by the run resulting

from the merge. In practice, in S, each run is represented by a pair of pointers to its first and
last entries.

1 runs← the run decomposition of �
2 S ← an empty stack
3 while true : Â main loop
4 if ℎ ¾ 3 and ℓℎ−2 ¶ max{ℓℎ−1, ℓℎ} :
5 merge the runs 'ℎ−2 and 'ℎ−1
6 else if runs ≠ ∅ :
7 remove a run ' from runs and push ' onto S
8 else:
9 break

10 while ℎ ¾ 2 :
11 merge the runs 'ℎ−1 and 'ℎ

where = is the length of the array to be sorted, thereby obtaining the algorithm length-adaptive
ShiversSort. Except in Section 3.1, where we run a complexity analysis for generic values of the
parameter 2 (thus encompassing both cases 2 = 1 and 2 = = + 1 at once), we will only focus on the
algorithm adaptive ShiversSort, i.e., we will set 2 = 1.

One reason for introducing this parameter is as follows. Although choosing 2 = 1 is the most
natural choice in general, the resulting algorithm adaptive ShiversSort is not scale-invariant: if we
triple the size of every run, the merges that adaptive ShiversSort will perform may change. This
would not be the case if we had used an optimal sorting algorithm. Relating the parameter 2 to the
length = is a way to recover scale invariance, as will be proved in Section 6.2.

This algorithm is based on discovering monotonic runs and on maintaining a stack of such runs,
which may be merged or pushed onto the stack according to whether ℓℎ−2 ¶ max{ℓℎ−1, ℓℎ}. In
particular, since this inequality only refers to the values of ℓℎ−2, ℓℎ−1 and ℓℎ , and since only the runs
'ℎ−2, 'ℎ−1 and 'ℎ may be merged, this algorithm falls within the class of 3-aware stable sorting
algorithms, such as described by Buss and Knop [5] as soon as the value of 2 does not depend on
the input. This is the case of adaptive ShiversSort, but not of other variants, such as length-adaptive
ShiversSort.

Let us now present briefly some related algorithms. Like adaptive ShiversSort, these algorithms
all rely on discovering andmaintaining runs in a stack, although their merge policies follow different
rules. In fact, each of these policies is obtained by modifying the main loop of adaptive ShiversSort.
In addition, they may share most of all of the three properties of adaptive ShiversSort:

(1) with the possible exception of the few top runs, the sequence (A8)8¶ℎ of the lengths of those
runs stored in the stack should decrease at exponential speed; this is the exponential decay
property; it is typically achieved by maintaining some invariant (the fact that A8 ¾ A8+1 + A8+2
for all 8 ¶ ℎ − 2);

(2) when pushing a new run ' onto that stack, one should postpone merging it until we can
merge it with runs of size approximately equal to '; this is the late merging property; and

(3) deciding whether two runs should be merged should be done by comparing their levels,
instead of comparing directly their lengths; this is the level-driven merging property.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:9

Algorithm 2: TimSort main loop
3 while true : Â main loop
4 if ℎ ¾ 3 and Aℎ−2 < Aℎ :
5 merge the runs 'ℎ−2 and 'ℎ−1
6 else if ℎ ¾ 2 and Aℎ−1 ¶ Aℎ :
7 merge the runs 'ℎ−1 and 'ℎ
8 else if ℎ ¾ 3 and Aℎ−2 ¶ Aℎ−1 + Aℎ :
9 merge the runs 'ℎ−1 and 'ℎ

10 else if ℎ ¾ 4 and Aℎ−3 ¶ Aℎ−2 + Aℎ−1 :
11 merge the runs 'ℎ−1 and 'ℎ
12 else if runs ≠ ∅ :
13 remove a run ' from runs and push ' onto S
14 else:
15 break

The rational of using these three properties is as follows. exponential decay ensures that merging
the top runs of the stack (except those top few runs we decided should not be concerned by the
exponential decay), say '8 , '8+1, . . . , ' 9 , is not much more expensive than just merging the two runs
'8 and '8+1: the runs '8+2, '8+3, . . . , ' 9 are somehow harmless.

Then, one should definitely avoid merging a new run ', which we just pushed onto a stack
'1, '2, . . . , 'ℎ , if A is much larger than both Aℎ−1 and Aℎ : instead of merging ' with 'ℎ and then,
presumably, with 'ℎ−1, we should rather start by merging 'ℎ−1 with 'ℎ , and then decide whether
the resulting run is worth merging with 'ℎ−2 or with ' itself.

Finally, level-driven merging turns out to be an adequate approximation of the ideal situation
where every merge would be perfectly balanced, i.e., one would not merge two runs A and A ′ unless
A = A ′. Demanding length equality is too much, and we must relax this requirement, for example
by merging two runs if they have the same level.

Then, ensuring that the sequence of levels (ℓ8)8¶ℎ is decreasing already ensures the exponential
decay property. This makes the urge to merge successive runs ' and '′ such that ℓ ¶ ℓ ′ even more
compelling. If, in addition, one manages to merge runs ' and '′ only if their levels ℓ and ℓ ′ are
equal to each other, then the resulting run '′′ will be of level ℓ ′′ = ℓ + 1. Thus, when sorting an
array of length =, each run ' of length A could undergo at most dlog2 (=/A)e such merges before
being merged into a run of length =, concluding the algorithm.

Of course, one cannot always ensure that runs ' and '′ are merged only if their levels are equal to
each other. This is the case, for instance if the array contains two runs of lengths 2 and 1. However,
it might remain possible to make sure that most of the merges will concern runs with equal levels.

2.2 TimSort
The first algorithm we present is TimSort, and is due to Peters [19]. Its main loop is presented in
Algorithm 2. This algorithm enjoys the exponential decay and late merging properties, which entail
the O(= + =H) worst-case merge cost mentioned in the introduction.

Original versions of TimSort missed the test on lines 10–11, which made the invariant invalid
and caused several implementation bugs [1, 6]. Nevertheless, in the full version of [1], Auger et al.
proved that these flawed versions of the algorithm miraculously managed to enjoy a O(= + =H)
worst-case merge cost. Alas, even in the corrected version of TimSort, the constant hidden in the O
is rather high, as outlined by the following result.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:10 V. Jugé

Algorithm 3: U-StackSort main loop
3 while true : Â main loop
4 if ℎ ¾ 2 and Aℎ−1 < UAℎ :
5 merge the runs 'ℎ−1 and 'ℎ
6 else if runs ≠ ∅ :
7 remove a run ' from runs and push ' onto S
8 else:
9 break

Algorithm 4: U-MergeSort main loop
3 while true : Â main loop
4 if ℎ ¾ 3 and Aℎ−2 < Aℎ :
5 merge the runs 'ℎ−2 and 'ℎ−1
6 else if ℎ ¾ 2 and Aℎ−1 < UAℎ :
7 merge the runs 'ℎ−1 and 'ℎ
8 else if ℎ ¾ 3 and Aℎ−2 < UAℎ−1 :
9 merge the runs 'ℎ−1 and 'ℎ

10 else if runs ≠ ∅ :
11 remove a run ' from runs and push ' onto S
12 else:
13 break

Theorem 1. The worst-case merge cost of TimSort on inputs of length = is bounded from above by
3/2=H + O(=) and bounded from below by 3/2= log2 (=) + O(=).

Proof. The lower bound is proved in Buss and Knop [5]. The upper bound is proved in the full
version of Auger et al. [1]. �

Hence, and in order to lower the constant from 3/2 to 1, it was important to look for other merge
policies, by keeping the two prominent features of TimSort mentioned above.

2.3 " -StackSort and " -MergeSort
The above considerations led to the invention of the two algorithms U-StackSort [2], which inte-
grates the first feature only, and U-MergeSort [5], which integrates both features.

Like adaptive ShiversSort, these are parametric algorithms, which require a parameter U > 1
and, since their structures are very similar, we present both algorithms at once. U-StackSort uses
the following main loop:

This sorting algorithm uses a main loop that is quite simpler than that of TimSort, which made it
easier to study. However, in spite of enjoying the exponential decay property, it misses the late
merging property, and therefore it is not adaptive to the number of runs nor to their lengths. We
shall see in Section 5.1 that this is the fate of all 2-aware sorting algorithms like U-StackSort.

This problem was circumvented by the 3-aware algorithm U-MergeSort, whose main loop is
slightly longer:

However, evaluating precisely the worst-case merge cost of U-MergeSort is challenging. Buss
and Knop proved [5] that this merge cost is 2U=H + O(=) when q < U < 2, where q = (1 +

√
5)/2

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:11

Algorithm 5: ShiversSort main loop
3 while true : Â main loop
4 if ℎ ¾ 2 and ℓℎ ¾ ℓℎ−1 :
5 merge the runs 'ℎ−1 and 'ℎ
6 else if runs ≠ ∅ :
7 remove a run ' from runs and push ' onto S
8 else:
9 break

is the Golden ratio, and where

2U =
U + 1

(U + 1) log2 (U + 1) − U log2 (U)
> 1.

When 1 < U ¶ q , however, it is only known that the worst-case merge cost of U-MergeSort is at
least 2U=H + O(=): the precise constant in the O(= + =H) upper bound on the time complexity of
U-MergeSort is unknown.

Yet, these partial results already confirm that no value of the parameter U > 1 would let
U-MergeSort have a worst-case merge cost of =H + O(=).

2.4 ShiversSort
The examples of U-MergeSort and TimSort suggest that enjoying the exponential decay and late
merging properties is enough to design an algorithm with a O(= + =H) complexity, but not
necessarily with a =H + O(=) merge cost. Towards achieving this latter goal, one hope comes from
the algorithm ShiversSort, which was invented by Shivers [20]. ShiversSort is obtained by slightly
simplifying the tests carried in the main loop of adaptive ShiversSort and merging the runs 'ℎ−1
and 'ℎ instead of 'ℎ−2 and 'ℎ−1. More precisely, ShiversSort uses the following main loop (and
implicitly uses a parameter 2 = 1):

Like U-StackSort, this algorithm is 2-aware; thus, it misses the late merging property and fails to
be adaptive to the number of runs or to their lengths. Nevertheless, it still enjoys the nice property
of having a worst-case merge cost that is optimal up to an additive linear term, when the only
complexity parameter is =.

Theorem 2. The worst-case merge cost of ShiversSort on inputs of length = that decompose into
d monotonic runs is both bounded from above by = log2 (=) + O(=) and bounded from below by
l (= log2 (d)).

This result was proved in references [5, 20]. Its proof, which we omit here, is very similar to our
own analysis of adaptive ShiversSort in Section 3 below. A crucial element of both proofs, as will
be stated in Lemma 7, is the fact that the sequence ℓ1, ℓ2, . . . , ℓℎ−: shall always be decreasing, for
some small integer : : we have : = 1 in the proof of Buss and Knop [5], and : = 2 in Lemma 7. In
essence, this invariant is similar to that of TimSort, but it allows decreasing the associated constant
hidden in the O notation from 3/2 to 1.

2.5 Augmented ShiversSort
The very idea of integrating exponential decay, late merging and level-driven merging properties
from TimSort and ShiversSort led Buss and Knop to invent the algorithm augmented ShiversSort [5].
Its run merge policy is motivated as follows. When the levels of the two top runs 'ℎ−1 and 'ℎ
obey the inequality ℓℎ−1 ¶ ℓℎ , one should merge them, with one possible exception: if 'ℎ−2 is

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:12 V. Jugé

Algorithm 6: augmented ShiversSort main loop
3 while true : Â main loop
4 if ℎ ¾ 3, Aℎ−2 ¶ Aℎ and ℓℎ−1 ¶ ℓℎ :
5 merge the runs 'ℎ−2 and 'ℎ−1
6 else if ℎ ¾ 2 and ℓℎ−1 ¶ ℓℎ :
7 merge the runs 'ℎ−1 and 'ℎ
8 else if runs ≠ ∅ :
9 remove a run ' from runs and push ' onto S

10 else:
11 break

significantly smaller than 'ℎ , one should merge the runs 'ℎ−2 and 'ℎ−1 instead. This is in line with
the fact that augmented ShiversSort should be 3-aware instead of only 2-aware.

Based on this motivation, the algorithm augmented ShiversSort is obtained by using the following
main loop (like ShiversSort, it implicitly uses a parameter 2 = 1):

The hope here is that both avoiding merging newly pushed runs while they are too large and
maintaining an invariant (on the integers ℓ8) similar to that of ShiversSort would make augmented
ShiversSort very efficient. Unfortunately, this algorithm suffers from the same design flaw as the
original version of TimSort, and the desired invariant is not maintained. Even worse, the effects of
not maintaining this invariant are much more severe here, as underlined by the following result.

Theorem 3. The worst-case merge cost of augmented ShiversSort on inputs of length = is Θ(=2).

Proof. Consider some integer : ¾ 1, and let = = 8: and d = 2: . Let also (A1, . . . , Ad) be the
sequence of run lengths defined by A28−1 = 6 and A28 = 2 for all 8 ¶ : . Note that A1 + . . . + Ad = =.

Now, let us apply the algorithm augmented ShiversSort on an array of = integers that splits
into increasing runs '1, . . . , 'd of lengths exactly A1, . . . , Ad . One verifies quickly that the algorithm
performs successively the following operations:

(1) push the runs '1 and '2;
(2) for all 8 ∈ {2, . . . , :}, push the run '28−1, then merge the runs '28−2 and '28−3, and push the

run '28 ; and
(3) keep merging the last two runs on the stack (line 11): we first merge the runs 'd−1 and 'd ,

and then, the (< + 1)th such merge involves runs of sizes 8 and 8<.

Therefore, the merge cost of augmented ShiversSort on that array is

mc =
:∑
8=1

(A28−1 + A28) +
:−1∑
<=1

8(< + 1) = =2/16 + 3=/2 − 8.

Conversely, in any (natural or not) merge sort, any element can be merged at most = − 1 times,
and therefore the total merge cost of such a sorting algorithm is at most =(= − 1). �

2.6 PowerSort and PeekSort
As mentioned in Section 1, PowerSort and PeekSort enjoy excellent complexity guarantees, with
merge costs bounded from above by =(H + 2). However, these are not :-aware algorithms for
any : , and their merge policy is more complicated than that of TimSort.

Unlike TimSort and other :-aware algorithms, PeekSort is better described by adopting a top-
down point of view. When PeekSort merges two runs ' and '′ that resulted from merging runs
'8 , '8+1, . . . , ' 9−1 and ' 9 , ' 9+1, . . . , ':−1 respectively, the lengths A and A ′ shall be as close to each

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:13

Algorithm 7: Level-TimSort main loop
3 while true : Â main loop
4 if ℎ ¾ 3 and ℓℎ−2 ¶ ℓℎ :
5 merge the runs 'ℎ−2 and 'ℎ−1
6 else if ℎ ¾ 2 and ℓℎ−1 ¶ ℓℎ :
7 merge the runs 'ℎ−1 and 'ℎ
8 else if ℎ ¾ 3 and ℓℎ−2 ¶ ℓℎ−1 :
9 merge the runs 'ℎ−1 and 'ℎ

10 else if runs ≠ ∅ :
11 remove a run ' from runs and push ' onto S
12 else:
13 break

other as possible, i.e., the quantity | (A8 +A8+1 + . . .+AG−1) − (AG +AG+1 + . . .+A:−1) | is minimized when
choosing G = 9 . To this day, the merge policy of PeekSort does not seem to have any TimSort-like
bottom-up description.

The algorithm PowerSort follows a similar intuition, as described by its authors [18]: when
a (created or original) run still need to be merged 3 times, the positions it spans should be a
good approximation of an interval of the form [:=/23 , (: + 1)=/23], thereby making every merge
somewhat balanced. However, and unlike its sibling PeekSort, the algorithm PowerSort also admits
a bottom-up description that makes it quite close to being a 3-aware algorithm. Yet, and due to that
intuition, whether PowerSort should merge two consecutive runs ' and '′ cannot depend only on
their lengths. Indeed, it also depends on the powers of these runs, which are defined as follows.

Let ' be a run resulting from the merge of several (original) runs '8 , . . . , ' 9 , let pos be the last
position contained in the run ', and let = be the length of the array to be sorted. The power of
' is defined as the least integer ? such that b2? (2 pos − A 9)/=c < b2? (2 pos + A 9+1)/=c. Then, two
consecutive runs ' and '′ should be merged if ? > ?′.

Thus, the merge decisions of PowerSort are based not only on the lengths of the runs, but also
on their positions within the array. This prevents PowerSort from being a :-aware algorithm per
se. However, in practice, allowing the algorithm to base its decisions on the length of the array
and on the positions of the runs, which are already stored in the stack used to represent runs, is
often harmless. Consequently, in Section 5, we will generalise the notion of :-awareness to include
algorithms like PowerSort.

2.7 Alternative Constructions and Variants
Like augmented ShiversSort, the algorithm adaptive ShiversSort just consists in a new attempt
to integrate the three properties of TimSort and ShiversSort: exponential decay, late merging and
level-driven merging. Although this attempt was eventually successful, one might have made
different choices. Here, we present two such choices.

A first choice consists in the following variant of TimSort’s main loop, which we decide to call
level-TimSort; it can be used for every value of the parameter 2:

This variant is obtained as follows. Aiming to enjoy the level-driven merging property prescribes
replacing every comparison A8 < A 9 or A8 ¶ A 9 between run lengths by a comparison ℓ8 ¶ ℓ9 between
run levels. Similarly, using the approximation log2 (A 9 + A:) ≈ max{log2 (A 9), log2 (A:)}, it would
be meaningful to replace every comparison A8 ¶ A 9 + A: between run lengths by a comparison
ℓ8 ¶ max{ℓ9 , ℓ: } between levels. Doing so and removing unnecessary tests results in level-TimSort.
This variant unsurprisingly enjoys a O(= + =H) time complexity and, by mimicking the study of

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:14 V. Jugé

Algorithm 8: adaptive ShiversSort main loop – Original version
3 while true : Â main loop
4 if ℎ ¾ 3 and ℓℎ−2 ¶ ℓℎ :
5 merge the runs 'ℎ−2 and 'ℎ−1
6 else if ℎ ¾ 2 and ℓℎ−1 ¶ ℓℎ :
7 merge the runs 'ℎ−1 and 'ℎ
8 else if ℎ ¾ 3 and ℓℎ−2 ¶ ℓℎ−1 :
9 merge the runs 'ℎ−2 and 'ℎ−1

10 else if runs ≠ ∅ :
11 remove a run ' from runs and push ' onto S
12 else:
13 break

2-adaptive ShiversSort that we conduct below, we might actually prove that its worst-case merge
cost is also =H + O(=).

A second variant may come from the surprise that, both in TimSort and in that first variant,
line 9 consists in merging the runs 'ℎ−1 and 'ℎ although that line was triggered by the fact that
'ℎ−2 is small: either Aℎ−2 ¶ Aℎ−1 + Aℎ or ℓℎ−2 ¶ ℓℎ−1. Thus, it is tempting to decide, in that case, that
one should merge the runs 'ℎ−2 and 'ℎ−1. As a result, we obtain the following main loop:

Of course, one might also decide to exchange the lines 6–7 and 8–9, which triggered the same
merge in TimSort and in the previous algorithm, but trigger now two distinct merges. However,
this decision would change nothing, because having failed the test (ℎ ¾ 3 and ℓℎ−2 ¶ ℓℎ) already
ensures that one cannot pass both tests (ℎ ¾ 2 and ℓℎ−1 ¶ ℓℎ) and (ℎ ¾ 3 and ℓℎ−2 ¶ ℓℎ−1).

This second variant was actually the original version of 2-adaptive ShiversSort presented in
Jugé [14]. We will prove in Section 6.1 that Algorithms 1 and 8 perform the same merges, in the
same order, and therefore that both versions have the same merge cost.

In this article, we preferred the current version of 2-adaptive ShiversSort, both because its code
is simpler and because it makes the analysis carried out in Sections 3 and 5 also simpler.

3 Worst-Case Analysis of Adaptive ShiversSort
We stated in the introduction that adaptive ShiversSort enjoys excellent worst-case upper bounds in
terms of merge cost. We prove that statement in this section, which is subdivided in two independent
parts.

Section 3.1 is devoted to proving Theorem 5, which contains simple yet already excellent upper
bounds on the merge costs of adaptive ShiversSort and of length-adaptive ShiversSort. Section 3.2
then consists in proving Theorem 15, which contains an even better upper bound on the merge cost
of adaptive ShiversSort. However, the proof of this latter result is less intuitive and more technical
than that of Theorem 5, which is why we decided to present it only later in Section 3.

3.1 A First Upper Bound
Proposition 4. For every value of the parameter 2 , the merge cost of 2-adaptive ShiversSort is

bounded from above by =(H + 3 − {log2 (=/2)}) − d − 1, where {G} = G − bGc denotes the fractional
part of the real number G .

The upper bound provided in Proposition 4 is slightly complicated. Hence, and in particular for
2 = 1 and 2 = = + 1, it can readily be replaced by the following upper bounds, which depend only
on = andH .

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:15

Theorem 5. Themerge costs of adaptive ShiversSort and of length-adaptive ShiversSort are bounded
from above by =(H + 3) and by =(H + 2), respectively.

Proof. Proposition 4 states that adaptive ShiversSort has a merge cost

mc ¶ =(H + 3 − {log2 (=)}) − d − 1 ¶ =(H + 3).
It also states that length-adaptive ShiversSort has a merge cost

mc ¶ =(H + 3 − {log2 (=/(= + 1))}) − d − 1.
Observing that {log2 (=/(=+1))} = log2 (=/(=+1)) − blog2 (=/(=+1))c = 1− log2 (1+1/=) ¾ 1−2/=,
it follows that mc ¶ =(H + 2) − d + 1 ¶ =(H + 2). �

In what follows, we fix the value of the parameter 2 once and for all, and we aim at proving Propo-
sition 4. We first prove two auxiliary results about the levels of the runs manipulated throughout
the algorithm.

Lemma 6. When two runs ' and '′ are merged into a single run '′′, we have ℓ ′′ ¶ max{ℓ, ℓ ′} + 1.

Proof. Without loss of generality, we assume that A ¶ A ′. In that case,

2ℓ
′′
2 ¶ A ′′ = A + A ′ ¶ 2A ′ < 2 × 2ℓ ′+12 = 2ℓ

′+22,

and therefore ℓ ′′ ¶ ℓ ′ + 1. �

Lemma 7. At any time during the main loop of the algorithm 2-adaptive ShiversSort, if the run
stack is S = ('1, . . . , 'ℎ), we have:

ℓ1 > ℓ2 > . . . > ℓℎ−3 > max{ℓℎ−2, ℓℎ−1}. (1)

If, furthermore, S results from a merge between two runs, then ℓℎ−2 ¾ ℓℎ−1.

Proof. The proof is done by induction. First, if ℎ ¶ 2, there is nothing to prove: this case occurs,
in particular, when the algorithm starts. Now, consider some stack S = ('1, . . . , 'ℎ) that satisfies
(1) and is updated into a new stack S = ('1, . . . , 'ℎ), either by merging the runs 'ℎ−2 and 'ℎ−1, or
by pushing the run '

ℎ
:

⊲ If the runs 'ℎ−2 and 'ℎ−1 were just merged, then ℎ = ℎ − 1 and '8 = '8 for all 8 ¶ ℎ − 3. Thus,
the inequalities ℓ1 > ℓ2 > . . . > ℓℎ−3 immediately rewrite as ℓ1 > ℓ2 > . . . > ℓ

ℎ−2. Meanwhile,
'
ℎ−1 results from the merge between 'ℎ−2 and 'ℎ−1, and therefore Lemma 6 proves that
ℓ
ℎ−1 ¶ max{ℓℎ−2, ℓℎ−1} + 1 < ℓℎ−3 + 1. It follows that ℓ

ℎ−2 = ℓℎ−3 ¾ ℓ
ℎ−1.

⊲ If the run '
ℎ
was just pushed, then ℎ = ℎ + 1 and '8 = '8 for all 8 ¶ ℎ. Thus, the inequalities

ℓ1 > ℓ2 > . . . > ℓℎ−2 already rewrite as ℓ1 > ℓ2 > . . . > ℓ
ℎ−3. Furthermore, since 2-adaptive

ShiversSort triggered a push operation instead of a merge operation, it must be the case that
ℓ
ℎ−3 = ℓℎ−2 > max{ℓℎ−1, ℓℎ} = max{ℓ

ℎ−2, ℓℎ−1}.

In both cases, the stack S also satisfies (1), which completes the induction. �

Roughly speaking, Lemma 7 states that the lengths of the runs stored in the stack increase at
exponential speed (when we start from the top of the stack), with the possible exception of the top
run, whose length we have no control over. As suggested in Section 2, this property was already
crucial in the complexity proofs of several algorithms, such as ShiversSort, TimSort or U-MergeSort.

In addition to these results, we will also need the following technical lemma.

Lemma 8. For all real numbers G such that 0 ¶ G ¶ 1, we have 21−G ¶ 2 − G .

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:16 V. Jugé

Proof. Every function of the form G ↦→ exp(CG), where C is a fixed real parameter, is convex.
Therefore, the function 5 : G ↦→ 21−G − (2 − G) is convex too. It follows, for all G ∈ [0, 1], that
5 (G) ¶ max{5 (0), 5 (1)} = 0, which completes the proof. �

The proof of Proposition 4 consists now in a careful estimation of the total cost of those merges
performed by the algorithm. Intuitively, this proof may be seen as a cost allocation, where each
merge between two runs ' and '′ should be paid for by some run (which may be either ', '′, or
some other run). In practice, however, assigning the entire cost of a merge to a single run may be
too crude for our needs. Therefore, it will be convenient to split the cost of a merge in two parts
that will be paid for by different runs.

Hence, below, we artificially split the merge between ' and '′ into two separate operations,
which we call half-merges: the half-merge of ' with '′, for a cost of A , and the half-merge of '′
with ', for a cost of A ′. Together, these operations indeed consist in merging ' and '′ with each
other. Their costs add up to A +A ′, as expected and, in what follows, they may be allocated to distinct
cost centres.

Then, when merging the run ' with a run '′ into one bigger run '′′, we say that the half-merge
of ' is expanding if ℓ ′′ ¾ ℓ + 1, and is non-expanding otherwise. Note that, if ℓ ¶ ℓ ′, the half-merge
of ' with '′ is necessarily expanding. Consequently, when two runs ' and '′ are merged with each
other, either the half-merge of ' or of '′ is expanding. In particular, if ℓ = ℓ ′, then both half-merges
of ' and of '′ must be expanding. Hence, we say that the merge between ' and '′ is intrinsically
expanding if ℓ = ℓ ′.

We first show that, up to a linear term, the announced merge cost is entirely due to expanding
merges. To do so, we use the notation _ = {log2 (A/2)}, where we recall that {G} = G − bGc denotes
the fractional part of G ; in other words, _ = log2 (A/2) − ℓ . Similarly, we set _′ = {log2 (A ′/2)} =
log2 (A ′/2) − ℓ ′ and _8 = {log2 (A8/2)} = log2 (A8/2) − ℓ8 .

Lemma 9. The total cost of expanding half-merges is at most =(H − {log2 (=/2)}) + Λ, where Λ is
defined as Λ =

∑d

8=1 A8_8 .

Proof. While the algorithm is performed, the elements of a run ' of initial length A may take
part in at most

blog2 (=/2)c − ℓ = (log2 (=/2) − {log2 (=/2)}) − (log2 (A/2) − _) = log2 (=/A) + _ − {log2 (=/2)},
expanding half-merges. Consequently, if the array is initially split into runs of lengths A1, . . . , Ad ,
the total cost of expanding half-merges is at most

d∑
8=1

A8 (log2 (=/A8) + _8 − {log2 (=/2)}) = =(H − {log2 (=/2)}) + Λ.

�

It remains to prove that the total cost of non-expanding half-merges is at most 3= − Λ − d − 1.
This requires classifying merges based on the conditions that triggered them, and binding some
merges to a single run, as follows.

Definition 10. Let S = ('1, . . . , 'ℎ) be a stack of runs such that ℎ ¾ 3 and ℓℎ−2 ¶ max{ℓℎ−1, ℓℎ}.
By construction, when encountering the stack S during its main loop, the algorithm 2-adaptive
ShiversSort performs a merge operation< between the runs 'ℎ−2 and 'ℎ−1. We say that< is

(1) a #1-merge if ℓℎ−2 < ℓℎ−1; in that case, we bind < to the run 'ℎ−1;
(2) a #2-merge if ℓℎ−1 ¶ ℓℎ−2 ¶ ℓℎ ; in that case, we bind< to the run 'ℎ ; and
(3) a #3-merge if ℓℎ < ℓℎ−2 = ℓℎ−1; in that case, we do not bind< to any run.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:17

We also say that a half-merge<′ is a #:-half-merge if the merge< to which<′ belongs is a
#:-merge. Furthermore, if< is bound to a run ' and if<′ is non-expanding, we also bind<′ to the
run '. If< is not bound to any run or if<′ is expanding, we do not bind<′ to any run.

Observe that the conditions for being a #1-merge, a #2-merge or a #3-merge are mutually
exclusive, and that every merge belongs to one of these three classes. By extension, we may also
refer to a #4-push operation, so that each update is a #:-update for some : ¶ 4.

Our decision to bind some merges to a given run is motivated as follows. By construction, every
#3-merge is intrinsically expanding. Therefore, every non-expanding half-merge< is bound to
a run ', and we choose to allocate the cost of< to '. Intuitively, ' is the run that was so large
that it triggered<: had ' been substantially smaller, the half-merge< might not have occurred.
Moreover, as we prove below, the run ' will necessarily be a run from the original array (i.e., ' has
not yet been merged before< occurs). These are the main reasons why, among others, we made
the otherwise surprising choice to bind every #2-merge to a run 'ℎ that does not even actively
participate to the merge.

Lemma 11. No merge is immediately followed by a #1-merge, and no #3-merge is immediately
followed by a #2-merge.

Proof. Let< be a merge. Let S = ('1, . . . , 'ℎ) and S = ('1, . . . , 'ℎ) denote the stack just before
the merge and just after the merge, respectively, so that ℎ = ℎ − 1. If ℎ ¶ 2, then < cannot be
followed by any merge, hence we assume that ℎ ¾ 3.

First, Lemma 7 already states that ℓ
ℎ−2 ¾ ℓ

ℎ−1, and therefore< cannot be followed by a #1-merge.
Second, if< is a #3-merge, we must have ℓℎ−1 = ℓℎ−2 > ℓℎ . Since 'ℎ = 'ℎ and '

ℎ−1 results from
merging the runs 'ℎ−2 and 'ℎ−1, it follows that ℓ

ℎ−1 ¾ ℓℎ−1 > ℓℎ = ℓ
ℎ
, which shows that< cannot

be followed by a #2-merge. �

Lemma 12. If a push is immediately preceded by a #3-merge, it cannot be immediately followed by
a #1-merge.

Proof. Let ? be a push update preceded by a #3-merge<. Let S = ('1, . . . , 'ℎ) denote the stack
before< occurs, and S = ('1, . . . , 'ℎ) the stack after ? occurs, so that ℎ = ℎ.

By construction, the run '
ℎ−2 results from merging the runs 'ℎ−2 and 'ℎ−1, and 'ℎ−1 = 'ℎ , so

that ℓℎ−1 ¶ ℓ
ℎ−2 and ℓℎ = ℓ

ℎ−1. Since< is a #3-merge, we conclude that ℓ
ℎ−1 = ℓℎ < ℓℎ−1 ¶ ℓ

ℎ−2,
i.e., that ? cannot be immediately followed by a #1-merge. �

A consequence of Lemma 11 is the following one. Let ' be some run in the array to be sorted.
Just after ' has been pushed, there will be, in this order:

(1) zero or one #1-merge, which is not bound to ';
(2) an arbitrary number of #2-merges, which are bound to ';
(3) an arbitrary number of #3-merges;
(4) a #4-push operation (unless we have reached the end of the array);
(5) zero or one #1-merge, which is bound to '; and
(6) other merge or push updates, none of these merges being bound to '.

Furthermore, if there is at least one #3-merge at step 3, then there is no #1-merge at step 5.Therefore,
the merges bound to ' form a contiguous sequence of merge updates which we call merge sequence
of '. This situation is illustrated in Figure 2.

Lemma 13. The total cost of non-expanding half-merges bound to a run ' is at most (2 − _)A − 1.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:18 V. Jugé

Fig. 2. The run ' is pushed. Then come one (optional) #1-merge, a (possibly empty) sequence of #2-merges
bound to ', and a (possibly empty) sequence of #3-merges. Finally, a new run ' is pushed, which may be
followed by one (optional) #1-merge bound to '. In case 1, the latter #1-merge does not exist, and #2-merges
bound to ' form the merge sequence of '; in case 2, the latter #1-merge exists, the sequence of #3-merges
must be empty, and the #2-merges and #1-merge bound to ' form the merge sequence of '.

Proof. Let mc be the total cost of the non-expanding half-merges bound to '. If no such half-
merge exists, then mc = 0 ¶ A − 1 ¶ (2 − _)A − 1. Hence, we assume below that such a half-merge
exists, and thus that the merge sequence of ', which is denoted by Mseq, contains at least one
merge.

Let S = ('1, . . . , 'ℎ) be the stack just after ' has been pushed onto the stack or, if a #1-merge
immediately follows the push of ', just after that #1-merge has been performed. We know that
' = 'ℎ . Moreover, due to Lemma 7, and since the first update performed on S cannot be a #1-merge,
we have

ℓ1 > . . . > ℓℎ−2 ¾ ℓℎ−1.

Thus, Mseq consists in merging 'ℎ−2 and 'ℎ−1, then merging successively the resulting run with
'ℎ−3, 'ℎ−4, . . . , ': for some : (we set : = ℎ − 1 if Mseq contains no #2-merge nor #3-merge), then
possibly with ' = 'ℎ itself.

Now, let<′ be some non-expanding half-merge bound to '. If< is a #1-merge, then it must be
the merge of ' = 'ℎ with a smaller run, and its cost is A = Aℎ ; if< is a #2-merge, then it must be
the merge of some run '8 (with : ¶ 8 ¶ ℎ − 2) with a smaller run, and its cost is A8 . This proves that
mc =

∑
8∈- A8 , where the set - is defined by

- = {8 : 1 ¶ 8 ¶ ℎ and the half-merge of '8 is non-expanding and is bound to '}.

Then, let<∗ be the last non-expanding half-merge bound to ', and let '∗ be the run that results
from<∗. Just after<∗ is completed, all the runs that had been merged since Mseq started must now
belong to the run '∗. These runs must include the run 'ℎ−1, which was the first run merged during
Mseq and whose half-merge must have been expanding. It follows that

∑
8∈- A8 ¶ A ∗ − Aℎ−1 ¶ A ∗ − 1.

Finally, and as mentioned before,<∗ must be the non-expanding half-merge of some run ' 9 : we
have 9 = ℎ if<∗ is a #1-merge, and : ¶ 9 ¶ ℎ − 2 if<∗ is a #2-merge. In both cases, ℓ9 ¶ ℓ . Then,
since<∗ is non-expanding, we also have ℓ∗ ¶ ℓ9 ¶ ℓ .

Using Lemma 8, we conclude that the total cost of non-expanding half-merges bound to ' is

mc =
∑
8∈-

A8 ¶ A ∗ − 1 ¶ 2ℓ
∗+12 − 1 ¶ 2ℓ+12 − 1 = 21−_A − 1 ¶ (2 − _)A − 1. �

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:19

A similar result also holds for those merges performed after the main loop.

Lemma 14. The total cost of non-expanding half-merges performed in line 11 of Algorithm 1 is at
most = − 1.

Proof. Let mc be the total cost of these non-expand ing half-merges, and let S = ('1, . . . , 'ℎ)
be the stack at the end of the main loop, just before line 11 is reached. Due to Lemma 7 and to the
fact that no merge was triggered, we know that

ℓ1 > . . . > ℓℎ−2 > max{ℓℎ−1, ℓℎ}.

Consequently, any non-expanding half-merge that takes place in line 11 must be the half-merge of
some run '8 with a smaller run. This proves that mc =

∑
8∈- A8 , where the set - is defined by

{8 : 1 ¶ 8 ¶ ℎ and the half-merge of '8 is non-expanding}.

Since - is a strict subset of {1, . . . , ℎ}, it follows that mc ¶
∑ℎ
8=1 A8 − 1 = = − 1. �

We conclude this section by gathering these results as follows.

Proof of Proposition 4. Lemma 9 states that the total cost of expanding half-merges is at
most =(H − {log2 (=/2)}) + Λ. Then, Lemma 13 states that the total cost of those non-expanding
half-merges bound to a given run ' is at most (2 − _)A − 1. Taking all runs into account, the total
cost of those non-expanding half-merges performed during the main loop of 2-adaptive ShiversSort
is at most 2= − Λ − d . Finally, Lemma 14 states that the total cost of those non-expanding half-
merges performed in line 11 is at most = − 1. Summing all these costs completes the proof of
Proposition 4. �

3.2 A Finer Upper Bound
Now that Theorem 5 has been proved, let us present a finer upper bound on the merge cost of
2-adaptive ShiversSort.

Theorem 15. For every value of the parameter c, the merge cost of c-adaptive ShiversSort is bounded
from above by = (H + Δ), where Δ = 24/5 − log2 (5) ≈ 2.478.

The proof we draw below relies mainly on the ideas and results already presented in Section 3.1.
However, we cannot reuse directly our cost allocation scheme, and we will need a notion of potential
instead. As a first step towards defining our potential, we first introduce the notion of state of the
algorithm.

Definition 16. Consider the execution of the algorithm 2-adaptive ShiversSort on a sequence of
runs to be sorted. At each step, the algorithm handles both a stack S = ('1, . . . , 'ℎ) of runs and
a sequence R = ('ℎ+1, . . . , 'C) of those runs that have yet to be discovered and pushed onto the
stack. We call state of the algorithm, at that step, the sequence ('1, . . . , 'C), i.e., the concatenation
of S and R.

Finally, two states of the algorithm are said to be consecutive if they are distinct from each other
and were separated by a single (run push or merge) operation performed by the algorithm.

We immediately see that a push operation does not modify the state of the algorithm. Thus,
the operation that separates two consecutive states of the algorithm is necessarily a run merge
operation. Moreover, and in order to reduce possible confusions between sequences of runs of
different natures, we will stick to the notation S for stacks and S for states of the algorithm.

We focus now on describing how 2-adaptive ShiversSort transforms a state into another one.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:20 V. Jugé

Definition 17. Let R = ('1, . . . , 'C) be a sequence of runs of length C ¾ 2. We say that an integer
G is dominated in the sequence R if 1 ¶ G ¶ C − 1 and ℓG ¶ max{ℓG+1, ℓG+2}, with the convention
that ℓC+1 = ∞ (we may omit mentioning R when the context is clear). This convention ensures us
that C − 1 is necessarily dominated.

Then, let : be the smallest dominated integer. We say that : is the merge point of the sequence R.
Finally, we call successor of R, and note succ(R), the sequence of runs

('1, . . . , ':−1, ', ':+2, . . . , 'C),

where ' is the run obtained by merging ': and ':+1.

Proposition 18. Let S and S be two consecutive states encountered during an execution of 2-adaptive
ShiversSort. We have S = succ(S).

Proof. Let< be the merge operation that transforms the state S into S. Let S = ('1, . . . , ':+2)
be the stack just before< takes place, and let R = (':+3, . . . , 'C) be the sequence of those runs that
are yet to be pushed onto the stack, so that< consists in merging the runs ': and ':+1, and that S
is the concatenation of S and R.

Lemma 7 states that ℓ1 > ℓ2 > . . . > ℓ:−1 > max{ℓ: , ℓ:+1}, and since 2-adaptive ShiversSort
performed the merge<, it means that ℓ: ¶ max{ℓ:+1, ℓ:+2}. This implies that : is the merge point
of S, and therefore that S = succ(S). �

In addition to the notion of state and to the notations defined in Section 2 (page 8), we will
frequently use the following notation. For every run ' of length A and level ℓ , we set A • = A/(2ℓ 2)−1.
Note that, as ' varies over the interval [2ℓ 2, 2ℓ+1 2), the quantity A • varies over the interval [0, 1).
Once again, we will adapt this notation when the name of ' varies, e.g., writing A •8 when considering
the run '8 .

We introduce now the notions of potential that we will use in the subsequent proofs.

Definition 19. Let Φ : [0, 1] ↦→ R be the function defined by Φ : G ↦→ max{(2− 5G)/3, 1/2− G, 0}.
Then, let S = ('1, . . . , 'C) be a state of the algorithm. By convention, let ℓ0 = ℓC+1 = +∞. We define
the potential of a run '8 in S as the real number PotS0 ('8) =

∑4
9=1 Pot

S
9 ('8), where PotS1 ('8) = −ℓ8A8

and

PotS2 ('8) =
{
−A8 if ℓ8−1 ¾ ℓ8 and ℓ8 < ℓ8+1;

0 if ℓ8−1 < ℓ8 or ℓ8 ¾ ℓ8+1;

PotS3 ('8) =
{
2ℓ82 Φ(A •8) if ℓ8−1 ¾ ℓ8 ;

2ℓ8+12 if ℓ8−1 < ℓ8 ;

PotS4 ('8) =
{
2ℓ82

(
2Φ

(
(A •8 + A •8+1)/2

)
− Φ(A •8) − Φ(A •8+1)

)
if ℓ8−1 > ℓ8 and ℓ8 = ℓ8+1;

0 if ℓ8−1 ¶ ℓ8 or ℓ8 ≠ ℓ8+1 .

Finally, we call global potential of the state S the sum Pot(S) = ∑C
8=1 Pot

S
0 ('8), i.e., the sum of the

potentials of all the runs '1 to 'C .

Below, and in order to make a good use of the otherwise mysterious function Φ, we will need
the following technical lemma.

Lemma 20. The function Φ is convex and non-increasing. Moreover, for all real numbers G such that
0 ¶ G ¶ 1, we have

1 ¾ G + 2Φ(G/2) − Φ(G) ¾ G + Φ(G) and log2 (1 + G) + Φ(G)/(1 + G) ¾ 3 − Δ.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:21

Proof. First, since Φ is a maximum of non-increasing affine functions, it is convex and non-
increasing. It already follows that G + 2Φ(G/2) −Φ(G) = (G + Φ(G)) + 2 (Φ(G/2) − Φ(G)) ¾ G +Φ(G)
for all G ∈ [0, 1]. It remains to prove that both functions 5 : G ↦→ log2 (1 + G) +Φ(G)/(1 + G) + Δ − 3
and 6 : G ↦→ 1 − G − 2Φ(G/2) + Φ(G) are non-negative.

First, the function Φ is affine on each of the intervals [0, 1/4], [1/4, 1/2] and [1/2, 1], and thus
we study 5 on each of these intervals:

⊲ If 0 < G < 1/4, then Φ(G) = (2 − 5G)/3, and thus

(1 + G)2 5 ′ (G) = (1 + G) log2 (4) − 7/3 ¶ 5/4 log2 (4) − 7/3 ≈ −0.5.
Hence, 5 is decreasing on [0, 1/4], and 5 (G) ¾ 5 (1/4) = 0 when 0 ¶ G ¶ 1/4.

⊲ If 1/4 < G < 1/2, then Φ(G) = 1/2 − G , and thus

(1 + G)2 5 ′ (G) = (1 + G) log2 (4) − 3/2 ¾ (1 + G) log2 (4) − 3/2 ≈ 0.3.

Hence, 5 is increasing on [1/4, 1/2], and 5 (G) ¾ 5 (1/4) = 0 when 1/4 ¶ G ¶ 1/2.
⊲ If 1/2 < G < 1, then Φ(G) = 0, and thus

(1 + G) 5 ′ (G) = log2 (4) > 0.

Hence, 5 is increasing on [1/2, 1], and 5 (G) ¾ 5 (1/2) ¾ 0 when 1/2 ¶ G ¶ 1.

Second, since Φ is affine on each of the intervals [0, 1/4], [1/4, 1/2] and [1/2, 1], so is 6. Since
6(0) = 1/3, 6(1/4) = 1/12 and 6(1/2) = 6(1) = 0, we conclude that 6 is non-negative on each of
these intervals. �

In particular, the function Φ is convex and bounded from above by 2/3. Consequently, the
following simple observation can be made about the order in which, in Definition 19, we listed the
possible values of the real numbers PotS9 ('8) for 9 = 2, 3, 4: the above value is always the smallest
one. Indeed, we always have 0 ¾ −A8 , 2ℓ8+12 ¾ 2ℓ8+12/3 ¾ 2ℓ82 Φ(A •8), and 0 ¾ 2ℓ82

(
2Φ

(
(A •8 +A •8+1)/2

)
−

Φ(A •8) − Φ(A •8+1)
)
. Remembering this may help the reader to follow the arguments used in the next

lemmas, which concern the variations of potential of a given run when a merge is performed.
More precisely, we prove now that the variation of global potential between two consecutive

states separated by a merge operation< is a good over-approximation of the cost of<. This is the
object of the two following results: the first one proves that the variation of global potential can be
under-approximated by a local quantity, and the second result then proves that this is enough.

Lemma 21. Let S = ('1, . . . , 'C) and S = ('1, . . . , 'C−1) be two consecutive states of 2-adaptive
ShiversSort, and let : be the merge point of S. If : ¶ C − 2, then

Pot(S) ¾ Pot(S) + Pot S0 (':) + Pot S0 (':+1) + Pot S3 (':+2) − Pot S0 (':) − Pot S3 (':+1) .

Proof. By construction, we know that '8 = '8 for all 8 ¶ : − 1, that '8 = '8−1 for all 8 ¾ : + 2,
and that the run ': results from merging the runs ': and ':+1. Since the potential of a run in
a state depends only of the lengths of that run and of its neighbours, it already follows that
PotS0 ('8) = PotS0 ('8) for all 8 ¶ : − 2 and that PotS0 ('8) = PotS0 ('8−1) for all 8 ¾ : + 3.

Then, we prove that PotS9 (':−1) ¾ PotS9 (':−1) for all 9 = 1, 2, 3, 4:

(1) both PotS1 (':−1) and PotS1 (':−1) are equal to −ℓ:−1A:−1;
(2) since ℓ:−1 ¾ ℓ: , we have PotS2 (':−1) ¾ 0 ¾ PotS2 (':−1);
(3) since ℓ:−2 = ℓ:−2 ¾ ℓ:−1 = ℓ:−1, we have PotS3 (':−1) = 2ℓ:−12Φ(A •

:−1) = PotS3 (':−1); and
(4) since ℓ:−1 ≠ ℓ: , we have PotS4 (':−1) = 0 ¾ PotS4 (':−1).

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:22 V. Jugé

We prove similarly that PotS9 (':+2) ¾ PotS9 (':+1) for all 9 = 1, 2, 4 (recall the convention that
ℓ:+3 = +∞ if : = C − 2):

(1) both PotS1 (':+2) and PotS1 (':+1) are equal to −ℓ:+2A:+2;
(2) if ℓ:+1 < ℓ:+2 or ℓ:+2 ¾ ℓ:+3, then PotS1 (':+2) = 0 ¾ PotS1 (':+1); in the contrary case, we

know that ℓ: ¾ ℓ:+1 ¾ ℓ:+2 = ℓ:+1 and that ℓ:+1 = ℓ:+2 < ℓ:+3 = ℓ:+2, which proves that
PotS2 (':+2) = −A:+2 = PotS2 (':+1);

(3) if ℓ:+1 ¶ ℓ:+2 or ℓ:+2 ≠ ℓ:+3, then PotS4 (':+2) = 0 ¾ PotS4 (':+1); in the contrary case, we
know that ℓ: ¾ ℓ:+1 > ℓ:+2 = ℓ:+1 and that ℓ:+1 = ℓ:+2 = ℓ:+3 = ℓ:+2, which proves that
PotS4 (':+2) = 2ℓ:+22

(
2Φ

(
(A •
:+2 + A

•
:+3)/2

)
− Φ(A •

:+2) − Φ(A
•
:+3)

)
= PotS4 (':+1).

Consequently, we conclude that

Pot(S) − Pot(S) = ∑C
8=1Pot

S
0 ('8) −

∑C−1
8=1 Pot

S
0 ('8)

=
∑:+2
8=:−1Pot

S
0 ('8) −

∑:+1
8=:−1Pot

S
0 ('8)

¾ PotS0 (':) + Pot S
0 (':+1) + PotS3 (':+2) − PotS0 (':) − PotS3 (':+1). �

Proposition 22. Let < be a merge operation of cost mc, and let S and S be the states that <
separates. It holds that Pot(S) ¾ Pot(S) +mc.

Proof. Let S = ('1, . . . , 'C), and S = ('1, . . . , 'C−1), and let : be the merge point of S. If : = C − 1,
let us append to both states a fictitious run '∞ of length 2=, where = = A1 + . . . + AC . This does not
change the fact that S = succ(S), and only adds PotS0 ('∞) = PotS0 ('∞) to the global potentials of
both states. Then, in view of Lemma 21, it suffices to prove that the real number

Θ = PotS0 (':) + PotS0 (':+1) + PotS3 (':+2) − PotS0 (':) − PotS3 (':+1) −mc

is non-negative.
We already evaluate the difference PotS3 (':+2) − PotS3 (':+1) by distinguishing three subcases,

depending on how ℓ:+2 compares with ℓ:+1 and ℓ: :

⊲ If ℓ:+1 ¾ ℓ:+2, we have PotS3 (':+2) = 2ℓ:+22 Φ(A •
:+2) = PotS3 (':+1).

⊲Similarly, if ℓ: < ℓ:+2, we have PotS3 (':+2) = 2ℓ:+22 = PotS3 (':+1).
⊲Then, if ℓ:+1 < ℓ:+2 ¶ ℓ: , we have PotS3 (':+2) − PotS3 (':+1) = 2ℓ:+22 (2 − Φ(A •

:+2)).

Hence, overall, PotS3 (':+2) − PotS3 (':+1) = 1ℓ:+1<ℓ:+2¶ℓ: 2
ℓ:+22 (2 − Φ(A •

:+2)).
Then, we also evaluate the term PotS4 (':+1) hidden in the term PotS0 (':+1). Indeed, if ℓ: > ℓ:+1,

and since ℓ: ¶ max{ℓ:+1, ℓ:+2}, we have ℓ:+1 ≠ ℓ:+2. Thus, we always have PotS4 (':+1) = 0.
However, going further requires considering separately several cases. In each case, we decompose

Θ as a sum, then we evaluate each summand separately.
Case 1: ℓ: = ℓ:+1. Here, we decompose Θ as the sum

Θ = (PotS1 (':) + PotS1 (':+1) − PotS1 (':) −mc) + PotS2 (':) + PotS2 (':+1) − PotS2 (':)

+ (PotS3 (':) + PotS3 (':+1) − PotS3 (':) + PotS4 (':)) + PotS4 (':+1) − PotS4 (':)

+ (PotS3 (':+2) − PotS3 (':+1)) .

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:23

⊲Since ℓ: = ℓ: + 1 = ℓ:+1 + 1, we have

PotS1 (':) + PotS1 (':+1) − PotS1 (':) −mc = −ℓ:A: − ℓ:+1A:+1 + ℓ: (A: + A:+1) − (A: + A:+1)
= (ℓ: − ℓ: − 1)A: + (ℓ: − ℓ:+1 − 1)A:+1 = 0.

⊲Since ℓ: = ℓ: + 1 = ℓ:+1 + 1, we also have

A •
:
+ A •

:+1 = A:/(2
ℓ: 2) + A:+1/(2ℓ:+1 2) − 2 = 2A:/(2ℓ: 2) − 2 = 2A •: .

Since ℓ:−1 > ℓ: = ℓ:+1 and ℓ:−1 ¾ ℓ: , it follows that

PotS3 (':) = 2ℓ:+12 Φ(A •:) = 2ℓ:2 Φ(A •
:
) + 2ℓ:2 Φ(A •

:+1) + 2
ℓ:2

(
2Φ(A •:) − Φ(A

•
:
) − Φ(A •

:+1)
)

= PotS3 (':) + PotS3 (':+1) + PotS4 (':).

⊲As mentioned above, since the function Φ is convex, the partial potential Pot4 is never positive,
and thus PotS4 (':) ¶ 0.

⊲Since ℓ:+1 < ℓ:+2 if and only if ℓ: ¶ ℓ:+2, we have PotS2 (':+1) = −1ℓ:¶ℓ:+2A:+1.
⊲We have PotS2 (':) = 0, PotS4 (':+1) = 0 and PotS2 (':) = −1ℓ:<ℓ:+2A: .
⊲Finally, Φ is bounded from above by 1. Moreover, since ℓ:+1 and ℓ: are consecutive integers,
ℓ:+1 < ℓ:+2 ¶ ℓ: if and only if ℓ:+2 = ℓ: . Thus, since A:+1 ¶ 2ℓ:+1+12 = 2ℓ:2 , it follows that

PotS3 (':+2) − PotS3 (':+1) = 1ℓ:+2=ℓ: 2
ℓ:+22 (2 − Φ(A •

:+2)) ¾ 1ℓ:+2=ℓ: 2
ℓ:2 ¾ 1ℓ:+2=ℓ:A:+1 .

Gathering all these equalities and inequalities and replacing each summand by its value or by a
lower bound of that summand, we conclude that

Θ = 0 + 0 − 1ℓ:¶ℓ:+2A:+1 + 1ℓ:<ℓ:+2A: + 0 + 0 − Pot
S
4 (':) + (PotS3 (':+2) − PotS3 (':+1))

¾ − 1ℓ:¶ℓ:+2A:+1 + 1ℓ:<ℓ:+2A:+1 + 1ℓ:=ℓ:+2A:+1
¾ 0

whenever ℓ: = ℓ:+1.
Case 2 : ℓ: > ℓ: > ℓ:+1 or ℓ: > ℓ:+1 > ℓ: . Here, we decompose Θ as the sum

Θ = (PotS1 (':) + PotS1 (':+1) − PotS1 (':) −mc) + (PotS2 (':) + PotS2 (':+1))

+ (PotS3 (':+1) − PotS2 (':)) + (PotS3 (':+2) − PotS3 (':+1))

+ PotS3 (':) − PotS3 (':) + PotS4 (':) + PotS4 (':+1) − PotS4 (':).

Below, in order to let the runs ': and ':+1 play somewhat symmetric roles, we set 'max = ':
and 'min = ':+1 if ℓ: > ℓ:+1, and we set 'max = ':+1 and 'min = ': if ℓ: < ℓ:+1. Accordingly, we set
Amax = max{A: , A:+1}, Amin = min{A: , A:+1}, ℓmax = max{ℓ: , ℓ:+1} and ℓmin = min{ℓ: , ℓ:+1}.

⊲Since ℓ: = ℓmax + 1 and ℓmax ¾ ℓmin + 1, we have

PotS1 (':) + PotS1 (':+1) − PotS1 (':) −mc = −ℓ:A: − ℓ:+1A:+1 + ℓ: (A: + A:+1) − (A: + A:+1)
= (ℓ: − ℓ: − 1)A: + (ℓ: − ℓ:+1 − 1)A:+1
= (ℓ: − ℓmax − 1)Amax + (ℓ: − ℓmin − 1)Amin

= (ℓmax − ℓmin)Amin

¾ Amin .

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:24 V. Jugé

⊲Since ℓmin < ℓmax, we have PotS2 ('max) = 0. Since PotS2 ('min) ¾ −Amin by definition of Pot2, it
follows that

PotS2 (':) + PotS2 (':+1) = PotS2 ('max) + PotS2 ('max) ¾ −Amin .

⊲By definition of Pot2 and Pot3, we have PotS2 (':) ¶ 0 and PotS3 (':+1) ¾ 0.Then, we distinguish
two sub-cases, depending on how the levels ℓ:+2 compares with ℓ:+1 and ℓ: :
⊲ If ℓ: < ℓ:+2, we have −PotS2 (':) = A: ¾ 2ℓ:2 ¾ 2ℓ:+12/3.
⊲ If ℓ:+2 ¶ ℓ:+1, we have ℓ:+1 = max{ℓ:+1, ℓ:+2} ¾ ℓ: . It follows that ℓ:+1 > ℓ: and that
ℓ: = ℓ:+1 + 1, which proves that PotS3 (':+1) = 2ℓ:+12 ¾ 2ℓ:+12/3.
Hence, overall, we have PotS3 (':+1) − PotS2 (':) ¾ 1ℓ:<ℓ:+2 or ℓ:+2¶ℓ:+12

ℓ:+12/3.
⊲Since Φ is bounded from above by 2/3, we have PotS3 (':) = 2ℓ:2 Φ(A •:) ¶ 2ℓ:+1/3.
⊲As mentioned above, since the function Φ is convex, the partial potential Pot4 is never positive,
and thus we have PotS4 (':) ¶ 0.

⊲We have PotS3 (':) ¾ 0, PotS4 (':+1) = 0 and PotS4 (':) = 0.
⊲Finally, if ℓ:+1 < ℓ:+2, we have ℓ: ¶ max{ℓ:+1, ℓ:+2} = ℓ:+2, and thus ℓ:+2 ¾ ℓ: − 1. Since Φ is
bounded from above by 2/3, it follows that

PotS3 (':+2) − PotS3 (':+1) = 1ℓ:+1<ℓ:+2¶ℓ: 2
ℓ:+22 (2 − Φ(A •

:+2))
¾ 1ℓ:+1<ℓ:+2¶ℓ: 2

ℓ:+22 × 4/3

¾ 1ℓ:+1<ℓ:+2¶ℓ: 2
ℓ:+12/3.

Gathering all these equalities and inequalities and replacing each summand by its value or by a
lower bound of that summand, we conclude that

Θ ¾ Amin − Amin + 1ℓ:<ℓ:+2 or ℓ:+2¶ℓ:+12
ℓ:+12/3 + 1ℓ:+1<ℓ:+2¶ℓ: 2

ℓ:+12/3 + 0 − 2ℓ:+12/3 + 0 + 0 − 0
¾ 0

whenever ℓ: ≠ ℓ:+1 and ℓ: > max{ℓ: , ℓ:+1}.
Case 3: ℓ: = ℓ: > ℓ:+1 or ℓ: = ℓ:+1 > ℓ: . Here, we decompose Θ as the sum

Θ = (PotS1 (':) + PotS1 (':+1) − PotS1 (':) −mc) + (PotS2 (':) + PotS2 (':+1)) − PotS2 (':)

+ (PotS3 (':) + PotS3 (':+1)) + (PotS3 (':+2) − PotS3 (':+1))

− (PotS3 (':) + PotS4 (':)) + PotS4 (':) + PotS4 (':+1).

Like in Case 2, we use the notations 'max, 'min, Amax, Amin, ℓmax and ℓmin. In addition, we will
often distinguish sub-cases, based on how ℓ:+2 compares with ℓ: and ℓ:+1: either (1) ℓ: < ℓ:+2, or
(2) ℓ:+2 ¶ ℓ:+1, or (3) ℓ:+1 < ℓ:+2 ¶ ℓ: . Since ℓ: ¶ max{ℓ:+1, ℓ:+2} and ℓ: = max{ℓ: , ℓ:+1}, the latter
case arises if and only if ℓ: = ℓ: = ℓ:+2 > ℓ:+1.

⊲Since ℓ: = ℓmax and ℓmax ¾ ℓmin + 1, we have

PotS1 (':) + PotS1 (':+1) − PotS1 (':) −mc+ = −ℓ:A: − ℓ:+1A:+1 + ℓ: (A: + A:+1) − (A: + A:+1)
= (ℓ: − ℓ: − 1)A: + (ℓ: − ℓ:+1 − 1)A:+1
= (ℓ: − ℓmax − 1)Amax + (ℓ: − ℓmin − 1)Amin

= −Amax + (ℓmax − ℓmin − 1)Amin

¾ −Amax.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:25

⊲Since ℓmin < ℓmax, we have PotS2 ('max) = 0. Since PotS2 ('min) ¾ −Amin by definition of Pot2, it
follows that

PotS2 (':) + PotS2 (':+1) = PotS2 ('max) + PotS2 ('max) ¾ −Amin .

⊲We distinguish two sub-cases, depending on how ℓ: compares with ℓ:+1:
⊲ If ℓ: = ℓ: > ℓ:+1, since Φ is non-decreasing and A •

:
= A:/(2ℓ:2) − 1 ¶ A:/(2ℓ:2) − 1 = A •: , we

have PotS3 (':) + PotS3 (':+1) = 2ℓ:2 Φ(A •
:
) + 2ℓ:+12 Φ(A •

:+1) ¾ 2ℓ:2 Φ(A •
:
) ¾ 2ℓ:2 Φ(A •:).

⊲ If ℓ: = ℓ:+1 > ℓ: , we have PotS3 (':)+PotS3 (':+1) = 2ℓ:2 Φ(A •
:
)+2ℓ:+1+12 ¾ 2ℓ:+12 ¾ 2ℓ:2 Φ(A •:)

anyway, because Φ is bounded from above by 2/3.
⊲We also distinguish two cases, depending on how ℓ:+2 compares with ℓ:+1 and ℓ: :
⊲ In general, since the function Φ is convex and the partial potential function Pot4 is never
positive, we have PotS4 (':) ¶ 0, and thus PotS3 (':) + PotS4 (':) ¶ Pot S

3 (':) = 2ℓ:2 Φ(A •:).
⊲ If ℓ:+1 < ℓ:+2 ¶ ℓ: , we mentioned above that ℓ: = ℓ:+2. Then, since Φ is non-increasing, we
have

PotS3 (':) + PotS4 (':) = 2ℓ:2 Φ(A •:) + 2
ℓ:2

(
2Φ((A •: + A

•
:+2)/2) − Φ(A

•
:) − Φ(A

•
:+2)

)
= 2ℓ:2

(
2Φ((A •: + A

•
:+2)/2 − Φ(A

•
:+2)

)
¶ 2ℓ:2

(
2Φ(A •:/2) − Φ(A

•
:+2)

)
.

⊲We have PotS2 (':) = −1ℓ:<ℓ:+2A: , Pot
S
4 (':+1) = 0 and PotS4 (':) = 0.

⊲Finally, we proved in the preamble of Case 3 that, if ℓ:+1 < ℓ:+2 ¶ ℓ: , then ℓ:+2 = ℓ: . Hence,

PotS3 (':+2) − PotS3 (':+1) = 1ℓ:+1<ℓ:+2¶ℓ: 2
ℓ:2 (2 − Φ(A •

:+2)) .

Gathering all these equalities and inequalities and replacing each summand by its value or by a
lower bound of that summand, we conclude that:

⊲ If ℓ: < ℓ:+2, we have

Θ ¾ −Amax − Amin + A: + 2ℓ:2 Φ(A •:) + 0 − 2
ℓ:2 Φ(A •:) + 0 + 0 = 0.

⊲ If ℓ: < ℓ:+1, we have

Θ ¾ −Amax − Amin + 0 + 2ℓ:+12 + 0 − 2ℓ:2 Φ(A •:) + 0 + 0 = 2ℓ:2 (1 − A •: − Φ(A
•
:)) ¾ 0.

⊲ If ℓ:+2 ¶ ℓ: and ℓ:+1 < ℓ: , the inequality ℓ: ¶ max{ℓ:+1, ℓ:+2} proves that ℓ:+1 < ℓ:+2 ¶ ℓ: .
Thus, we have

Θ ¾ − Amax − Amin + 0 + 2ℓ:2 Φ(A •:) + 2
ℓ:2 (2 − Φ(A •

:+2))

− 2ℓ:2 (2Φ(A •:/2) − Φ(A
•
:+2)) + 0 + 0

¾ 2ℓ:2 (1 + Φ(A •:) − A
•
: − 2Φ(A

•
:/2))

¾ 0.

This proves that Θ ¾ 0 whenever ℓ: ≠ ℓ:+1 and ℓ: = max{ℓ: , ℓ:+1}. �

Equipped with these hard-won results, it is now time to prove Theorem 15 itself.

Proof of Theorem 15. Let S = ('1, . . . , 'd) be the initial state, i.e., the run decomposition of
the array to sort, and let S = ('end) be the last state encountered in the algorithm, whose only run
has length Aend = A1 + . . . + Ad = =.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:26 V. Jugé

For every run '8 , we have

Pot0(('8) ¶ 2ℓ8+12 − ℓ8A8 =
(
2/(1 + A •8) + log2 (2) − log2 (A8) + log2 (1 + A •8)

)
A8

¶
(
2 + log2 (2) − log2 (A8)

)
A8 by applying Lemma 8 to G = log2 (1 + A •8).

Therefore, it holds that Pot(S) ¶ ∑d

8=1 (2 + log2 (2))A8 − A8 log2 (A8) = (2 + log2 (2) + H − log2 (=))=.
Then, we also verify that

Pot(S) = 2ℓend2 Φ(A •end) − (ℓend + 1)Aend
=

(
Φ(=•)/(1 + =•) − log2 (=) + log2 (1 + =•) + log2 (2) − 1

)
=

¾
(
3 − Δ − log2 (=) + log2 (2) − 1

)
=.

Consequently, it follows from Proposition 22 that the total merge cost of 2-adaptive ShiversSort
is mc ¶ Pot(S) − Pot(S) ¶ =(H + Δ), which completes the proof. �

4 Best-Case and Worst-Case Merge Costs
In the introduction, we mentioned that, unlike PowerSort and length-adaptive ShiversSort, the
algorithm adaptive ShiversSort is 3-aware. This suggests that it might be preferred to PowerSort
and length-adaptive ShiversSort. However, the worst-case merge cost of PowerSort and length-
adaptive ShiversSort is at most =(H + 2), whereas the above analysis only proves that the merge
cost of adaptive ShiversSort is bounded from above by =(H + Δ). Hence, and most notably in cases
whereH is small, PowerSort or length-adaptive ShiversSort might be significantly better options.
Furthermore, in other cases than the worst case, we have little information on the relative costs of
adaptive ShiversSort, PowerSort and length-adaptive ShiversSort.

We address these problems as follows. First, we derive lower bounds on the best-casemerge cost of
any merge policy. Then, we prove that the worst-case merge cost of PowerSort and length-adaptive
ShiversSort is actually optimal among all the stable natural merge-sort algorithms.

4.1 Best-Case Merge Cost
Given a sequence r = (A1, . . . , Ad) of run lengths and an array of length = = A1 + . . . + Ad that splits
into monotonic runs of lengths A1, . . . , Ad , what is the best merge cost of any merge policy? An
answer to this question is given by Theorem 24, which is a rephrasing of results from references
[3, 9, 13, 16, 18], adapted to the context of sorting algorithms and merge costs.

This answer comes from the analysis of merge trees, which we describe below, and of two
algorithms: MinimalSort [3, 21], which is not a stable natural merge sort, and whose merge policy
is described in Algorithm 9; and MinimalStableSort, which is a stable natural merge sort, and
whose merge policy can be computed by following either the Hu-Tucker [13] or Garsia-Wachs [9]
algorithms for constructing optimal binary search trees.

Note that MinimalSort may require merging non-adjacent runs, which might therefore be less
easy to implement than just merging adjacent runs. Yet, such merges (between runs of lengths<
and =) can still be carried in time< + =, for instance by using linked lists, and therefore the merge
cost remains an adequate measure of complexity for this algorithm.

Definition 23. LetM be a merge policy and R a sequence of runs. We define the merge tree
induced byM on R as the following binary rooted tree. Every node of the tree is identified with a
run, either present in the initial sequence or created by the merge policy. The runs in the sequence
R are the leaves of the tree, and when two runs '1 and '2 are merged together in a run ', the run
' is identified with the internal node whose children are '1 and '2: if the run '1 was placed to the
left of '2 in the sequence to be sorted, then '1 is the left sibling of '2.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

S3.Thmtheorem4

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:27

Algorithm 9: MinimalSort
Input :Array to � to sort
Result: The array � is sorted into a single run.

1 runs← the run decomposition of �
2 while runs contains at least two runs :
3 merge the two shortest runs in runs

Fig. 3. Adaptive ShiversSort keeps merging the two leftmost runs of a 7-run array of length = = 5<, for a
total merge cost mc = =(H + Δ + > (1)). Each run (original or created) is labelled by its length.

For example, Figure 3 presents the merge tree induced by adaptive ShiversSort on a sequence of
runs of lengths (2, 2< − 7, 2,<, 2, 2<, 1).

Any merge tree is the tree of a binary prefix encoding on a text on the alphabet {1, . . . , d}, which
contains A8 characters 8 for all 8 ¶ d . Furthermore, denoting by 38 the depth of the leaf '8 , both the
length of this code and the merge cost of the associated merge policy are equal to

∑d

8=1 38A8 . Hence,
character encoding algorithms unsurprisingly yield efficient sorting algorithms.

Similarly, ifM is a stable merge policy, and considering a node '8 to be smaller than another
node ' 9 whenever 8 < 9 , the merge tree induced byM on R is a binary search tree. Then, assuming
that there will be A8 queries for finding the leaf '8 in that tree, the total cost of these queries is
also equal to

∑d

8=1 38A8 , whence the usefulness of algorithms for constructing optimal binary search
trees.

In particular, from now on, we identify every merge tree T with a collection of merges (these
are the merges between the nodes '1 and '2 that are siblings in T), and we define the cost of that
tree as the sum of the costs of these merges. Equivalently, the cost of T is the sum of the lengths of
the runs that are internal nodes of T .

Theorem 24. The merge cost of any (stable or not) merge policy on a non-sorted array is minimised
by the algorithm MinimalSort, and the merge cost of any stable merge policy on a non-sorted array is
minimised by the algorithm MinimalStableSort. Both costs are at least max{=, =H}.

Proof. Themerge trees of the algorithmsMinimalSort andMinimalStableSort are aHuffman tree
and an optimal binary search tree. This means that MinimalSort (respectively, MinimalStableSort)
is indeed the natural (respectively, stable natural) merge sort with the least merge cost, and that
this merge cost is the length of a Huffman code for a text containing A8 occurrences of the character
8 . Such a text has entropyH , and therefore Shannon theorem proves that the associated Huffman

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:28 V. Jugé

code has length at least =H . Furthermore, it is clear that the merge cost of MinimalSort must be at
least =, which completes the proof. �

4.2 Optimality of Worst-Case Merge Costs
The lower bound provided by Theorem 24 matches quite well the worst-case merge costs of both
PowerSort and adaptive ShiversSort. In particular, and independently of the sequence to be sorted,
the merge cost of PowerSort (respectively, adaptive ShiversSort) lies between =H and =(H + 2)
(respectively, =(H + Δ)).

This shows, among others, that both PowerSort and adaptive ShiversSort are very close to
optimal whenH is large. WhenH is small, however, the respective performances of PowerSort
and adaptive ShiversSort are still worth investigating. In particular, and given the tiny margin of
freedom between these lower and upper bounds, it becomes meaningful to check whether our
upper bounds are indeed optimal.

A first result in that direction is the following one, which implies that the worst-case merge costs
of PowerSort and of length-adaptive ShiversSort are optimal.

Proposition 25. Let S be a stable merge policy. Assume that there exist real constants U and V
such that the merge cost of S can be bounded from above by =(UH + V). We have U ¾ 1 and V ¾ 2.

Proof. First, Theorem 24 proves, by considering arbitrarily large values ofH , that U ¾ 1. Second,
let = ¾ 6 be some integer, and let a be some array of data that splits into runs of lengths 2, = − 4
and 2. One checks easily that =H ¶ 4 log2 (=) + 2 and that every stable merge policy has a merge
cost 2= − 2 when sorting a. Hence, considering arbitrarily large values of = proves that V ¾ 2. �

While Proposition 25 indeed proves that the worst-case merge cost of PowerSort and of length-
adaptive ShiversSort is optimal, addressing the optimality of the worst-case merge cost of adaptive
ShiversSort requires considering another example.

Proposition 26. Let V be a real constant such that the merge cost of adaptive ShiversSort can be
bounded from above by =(H + V) when = is large enough. We have V ¾ Δ.

Proof. Let : ¾ 3 be some integer, and let< = 2: , so that< ¾ 8. Then, consider an array that
decomposes into seven runs '1, . . . , '7 with lengths 2, 2< − 7, 2,<, 2, 2< and 1, respectively. This
array is represented in Figure 3. Its length is = = 5< = 5 · 2: , and its entropy is

H = −
7∑
8=1

log2 (A8/=) A8/= = log2 (5) − 4/5 + > (1).

Meanwhile, the merge cost of adaptive ShiversSort is equal to mc = 20< − 13 = = (4 + > (1)). Since
mc ¶ =(H + V), it follows that V ¾ 4 − (log2 (5) − 4/5) = Δ. �

Hence, theworst-casemerge cost of adaptive ShiversSort is not optimal.This is not very surprising
since, unlike PowerSort and length-adaptive ShiversSort, the algorithm adaptive ShiversSort cannot
take into account the total length of the input until that end is indeed reached.

5 Approximately Optimal Sorting Algorithms
In previous sections, we have shown that adaptive ShiversSort is both very easy to obtain by
modifying the code of TimSort and very effective. Yet, and although adaptive ShiversSort is optimal
up to an additive term of at most Δ=, this term may still be of importance when considering arrays
of data with small run-length entropyH .

For example, in Table 2, we present the run lengths of arrays on which adaptive ShiversSort,
PowerSort and TimSort have significantly different merge costs: the overhead of each algorithm,

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:29

compared to the others, can climb up to between 40% and 100% (at least), and each algorithm can
be quite better or quite worse than the other two. This table also illustrates that, although they
are similar to each other, the algorithms adaptive ShiversSort and length-adaptive ShiversSort,
PowerSort and PeekSort, or even U-MergeSort for various values of U , can still have substantially
behaviours on well-chosen arrays.

For space reasons, and using the convention that = = 2: and : = 2ℓ , we define here some
sequences and merge costs mentioned in Table 2:

⊲ the sequences a=,< = (<=/4 − 1,<=/8 − 1, . . . , 2< − 1,< − 1,< − 2, 1, 1, . . . , 1) with : terms
‘1’ at the end;
⊲ the sequences b=,< = (6= − 1, 1, 1, 3= − 2, 1, 1, 3=/2 − 2, 1, 1, 3=/4 − 1, . . . , 3 · 2<+1 − 2, 1, 1,
3 · 2< − 3, 2, 1, 3 · 2< − 1);

⊲ the sequences c= = (4= + 2, 2= − 2, 1, 1, = − 2, 1, 1, =/2 − 2, . . . , 23 − 2, 1, 1, 22 − 2, 1, 1, 2);
⊲ the sequences d= = (7, 1, 1, 23 − 2, 1, 1, 24 − 2, 1, 1, . . . , =/2 − 2, 1, 1, 2= − 2, 1, 1, =/2 − 2, 1, 1,
=/4 − 2, . . . , 24 − 2, 1, 1, 23 − 2, 1, 1, 7);
⊲ the merge costs U=,< = (2= − 2)< + : (2ℓ + : − 3) and U ′=,< = (3= − 4)< + : (2ℓ − : − 3) + 2.

Moreover, arrays with small run-length entropy may have arbitrarily large lengths, but also
arbitrarily many monotonic runs. This is, for instance, the case of arrays whose run lengths form
the sequence (2, 2, . . . , 2, :2), where the : first terms are integers 2: although this sequence contains
: + 1 terms, it is associated with a value ofH ≈ 4 log2 (:)/: .

Hence, and since the parameters =, d andH may vary more or less independently of each other
(up to the rather loose inequalities (d − 1) log2 (=)/= ¶ H ¶ log2 (d) ¶ log2 (=)), we aim for the
uniform approximation result captured by the following definition.

Definition 27. Let A be a stable natural merge sort, and let Y ¾ 0 be a real number. We say that
A is Y-optimal if, for every stable natural merge sort B and every array to be sorted, the respective
merge costs mc0 and mc1 of A and B satisfy the inequality mc0 ¶ (1 + Y)mc1 .

Below, we study the Y-optimality of algorithms, such as TimSort, adaptive ShiversSort, U-
MergeSort, or even PowerSort and length-adaptive ShiversSort. To that aim, we first define the
family of :-aware algorithms, to which all these algorithms belong; our notion subsumes and
generalises slightly the notion of awareness of Buss and Knop [5]. While TimSort and adaptive
ShiversSort are (4, 3)- and (3, 3)-aware algorithms in the sense of Buss and Knop, this novel notion
also captures PowerSort and length-adaptive ShiversSort, which are respectively length-(∞, 3)-
and length-(3, 3)-aware algorithms. It fails, however, to capture PeekSort.

Definition 28. Let : and ℓ be elements of the set {0, 1, 2, . . .} ∪ {∞}, with : ¾ ℓ . A deterministic
sorting algorithm is said to be (:, ℓ)-aware (or simply :-aware if : = ℓ) if it sorts arrays of data
by manipulating a stack of runs (where each run is represented by its first and last indices) and
operating as follows:

⊲ the algorithm discovers, from the left to the right, the monotonic runs in which the array is
split, and it pushes these runs on the stack when discovering them;

⊲ the algorithm is allowed to merge two consecutive runs in the ℓ top runs of its stack only, and
its decision may be based only on the lengths of the top : runs of the stack, and on whether
the algorithm already discovered the entire array; and

⊲ if ℓ = ∞, the algorithm may merge any two consecutive runs in its stack; if : = ∞, it is granted
an infinite memory, and thus its decisions may be based all the push or merge operations it
performed (and on the lengths of the runs involved in these operations).

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:30 V. Jugé

If, furthermore, the algorithm is given access to the length of the array and can base its decisions
on this information, then we say that it is a length-(:, ℓ)-aware algorithm.

In particular, note that PowerSort needs to remember not only the lengths of the array and of
the runs stored in its stack, but also their powers (or, alternatively, the positions they span in the
array), which does not fall into the scope of length-(3, 3)-awareness. Our new notion of awareness
could be further generalised in a meaningful way that would make PowerSort a length-(3, 3)-aware
algorithm. However, our results below already apply to all length-(∞, ℓ)-aware algorithms, and
therefore such generalisations are not needed within the framework of this article.

We present now results going in opposite directions, and which, taken together, form a first step
towards finding the best approximation factor of :-aware algorithms. One direction is explored
in Section 5.1, where we prove that, once the integer : is fixed, :-aware algorithms cannot be
Y-optimal for arbitrarily small values of Y. The other direction is explored in Section 5.2, where we
prove that, for all Y, there exists a Y-optimal algorithm that is :-aware for some : .

5.1 Inapproximability Bounds
Below, we present a few inapproximability results. We first investigate lower bounds on those
numbers Y such that, for a given integer : ¾ 3, there exists a Y-optimal algorithm that is :-aware
(in Proposition 29) or length-(∞, :)-aware (in Proposition 30). Then, we focus on the case : = 2,
and we prove that length-(∞, 2)-aware algorithms cannot be Y-optimal for any Y.

Proposition 29. Let : ¾ 3 be an integer, and let

\: = 1/((10: + 12) log2 (2: + 2)) .

No k-aware sorting algorithm is \: -optimal.

Proof. Let ℎ = dlog2 (: + 2)e, and let d = 2ℎ − 1. We design six arrays AG,~ , where G ∈ {1, 3}
and ~ ∈ {0, 2, 4}. Each array will have d runs, and we prove below that no :-aware algorithm can
approach the merge cost of MinimalStableSort by a factor \: on those six arrays.

For all G and ~, let A1 = G + 5, A2 = . . . = Ad−1 = 5, and Ad = ~ + 5. We build the array AG,~ as
any array whose run lengths form the sequence (A1, A2, . . . , Ad). Thus, the length of this array is
= = 5d + G + ~.

The merge tree induced by MinimalStableSort on the array AG,~ is a Huffman tree. That tree is a
perfectly balanced binary tree of height ℎ, except that its two leftmost (if G > ~) or rightmost (if
G < ~) leaves have been deleted, their parent thereby becoming a new leaf. Then, the merge cost of
MinimalStableSort on the array AG,~ is simply mcopt = ℎ= − 5 −max{G,~}. In particular, note that
ℎ ¶ log2 (: + 1) + 1 = log2 (2: + 2), so that d ¶ 2: + 1 and that = ¶ 5d + 7 ¶ 10: + 12. It follows that

mcopt = ℎ= − 5 −max{G,~} < ℎ= ¶ 1/\: .

Hence, let A be some \: -optimal algorithm, and let mc0 be its merge cost on the array AG,~ .
Since mcopt ¶ mc0 ¶ (1 + \:)mcopt < mcopt + 1, it follows that mc0 = mcopt. In particular, this
means thatA must sort AG,~ optimally, even in the class of not necessarily stable merge algorithms.

Let '8 denote the 8th run of AG,~ . Then, let 38 denote the depth of the run '8 in the merge tree
associated with A, i.e., the number of merges into which the elements of '8 have been involved.
We know that mc0 =

∑d−1
8=1 A838 and, by minimality of mc0 , we must have 38 ¾ 3 9 whenever A8 < A 9 ;

otherwise, by exchanging the runs '8 and ' 9 , we would strictly decrease the merge cost of A
(although this might require merging non-adjacent runs). Now, we prove that A must merge the
same pairs of runs as MinimalStableSort. We treat the case where G < ~, the case G > ~ being
entirely analogous.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:31

Let D be the largest of the integers 38 , and let I be the number of indices 8 such that 38 = D. We
have D ¾ 38 ¾ 31 ¾ 3d for all 8 = 2, 3, . . . , d − 1. Then, if 3d ≠ D, let '8 and '8+1 be two runs thatA
merges with each other, and such that 38 = 38+1 = D. The run resulting from the merge is (strictly)
larger than 'd , and therefore, again by minimality of mc0 , we know that 3d ¾ 38 − 1 = D − 1.

Finally, Kraft equality states that 1 =
∑d

8=1 2
−38 . Since every integer 38 is equal either to D or

to D − 1, this means that 1 = 2−DI + 21−D (d − I), i.e., that 2D = 2d − I. Since 1 ¶ I ¶ d , it
follows that 2ℎ+1 = 2d + 2 > 2D ¾ d > 2ℎ−1, and therefore we conclude that D = ℎ and that
I = 2d − 2D = 2ℎ − 2 = d − 1. Hence, we know that 31 = . . . = 3d−1 = ℎ and that 3d = ℎ − 1.
Remembering that A can merge adjacent runs only, this means that A must perform the same
merges as MinimalStableSort, as announced above.

Let us now further assume that A is :-aware. Then, when scanning some array AG,~ , it cannot
distinguish between the arrays AG,G−1 and AG,G+1 until it discovers the rightmost run 'd . Moreover,
no two adjacent runs '8 and '8+1 would ever be merged by MinimalStableSort in both arrays
AG,G−1 and AG,G+1. Thus, A must wait until discovering the run 'd before it can perform a single
merge.

Imagine now that ~ = 2, i.e., ~ = G + 1 if G = 1, or ~ = G − 1 if G = 3. When discovering
the run 'd , the run '1 lies at the bottom of the stack, which contains d ¾ : + 1 runs. Therefore,
A cannot distinguish any more between the arrays A~−1,~ and A~+1,~ . Once again, no two ad-
jacent runs '8 and '8+1 would ever be merged by MinimalStableSort in both arrays A~−1,~ and
A~+1,~ .

This proves thatA cannot make sure that it will perform the same merges as MinimalStableSort
on all the arrays AG,~ , which completes the proof. �

Proposition 30. Let : ¾ 3 be an integer, and let

Y: = 1/2:+7

No length-(∞, :)-aware sorting algorithm is Y: -optimal.

Proof. The proof below follows similar lines as the proof of Proposition 29, but its details are
often quite different.

We design two arrays A− and A+ and prove below that no length-(∞, :)-aware algorithm can
approach the merge cost of MinimalStableSort by a factor Y: on those two arrays. The array A−

can be any array whose run lengths form the sequence (A1, A2, . . . , A2:+4) defined by A8 = 2:+4−8

for 8 = 1, 2, . . . , : ; A:+1 = 9; A:+2 = 8; A:+3 = 11; A:+4 = 18; A:+4+8 = 28+4 for 8 = 1, 2, . . . , : − 2;
A2:+3 = 2:+2 + 2; and A2:+4 = 2:+3. The array A+ is any array whose run lengths form the sequence
(A1, A2, . . . , A2:+2, Aend), where Aend = A2:+3 + A2:+4 = 3 × 2:+2 + 2. Hence, the length of both arrays is
= = 9 × 2:+2. In what follows, we will note '8 the 8th run of A− , and 'end the rightmost run of A+.

When sorting either array A+ or A− , the algorithmMinimalStableSort performs the same merges
as those of a Huffman tree. That tree looks like a bunch of grapes, as illustrated in Figure 4. Thus,
the merge costs of the algorithms MinimalStableSort and MinimalSort are equal to each other.
These merge costs are mc−opt = 29× 2:+2 − 2: − 48 on the array A− , and mc+opt = 26× 2:+2 − 2: − 45
on the array A+: in both cases, we have mcopt < 2:+7 = 1/Y: .

Hence, let A be some Y: -optimal algorithm. Since mcopt ¶ mc0 ¶ (1 + Y:)mcopt < mcopt + 1, it
follows that mc0 = mcopt. In particular, this means thatA must sort A± optimally, even in the class
of not necessarily stable merge algorithms. We prove now the following claims:

(1) when sorting A− , the algorithm A must merge the runs ':+2 and ':+3; and
(2) when sorting A+, the algorithm A must merge the run ':+3 successively with the runs

':+4, ':+5, . . . , '2:+2, 'end.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:32 V. Jugé

Fig. 4. Merge trees associated with MinimalStableSort when sorting A− (left) and A+ (right).

Let us first prove Claim 1. In order to do so, let us note 38 the depth of the run '8 in the merge
tree associated with A when sorting A− . Since A is optimal among all merge algorithms when
sorting A− , we can prove the following statement: if ' and '′ are two runs ever manipulated by
A (either because the are runs of the original array A− or because they result from some merge
operation), and if A < A ′, then 3 ¾ 3 ′. Indeed, both inequalities A < A ′ and 3 < 3 ′ were to hold,
exchanging the runs ' and '′ would provide us with a smaller total merge cost.

Since ':+1 and ':+2 are the two shortest runs of the array, they must be the deepest runs as well,
and thus 3:+1 = 3:+2. Then, the run ':+2 must be merged with either ':+1 or ':+3. For the sake
of contradiction, assume that ':+1 and ':+2 were merged with each other, and let ' be the run
resulting from that merge.

We know that A:+4 > A = 17 > A:+3, and therefore that 3:+4 ¶ 3 = 3:+1 − 1 ¶ 3:+3 ¶ 3:+1. Then,
since, 3:+1 − 3:+3 ≡ mc−opt ≡ 0 (mod 2), it follows that 3:+3 = 3:+1. Consequently, ':+3 is also the
deepest run of the array, and since it is not merged with ':+2, it must be merged with ':+4. But
this is impossible since 3:+4 ¾ 3 > 3:+3. Hence, our assumption was incorrect, which proves that
A must merge ':+2 with ':+3.

Now that Claim 1 is proved, let us also prove Claim 2. Like above, 38 denotes the depth of the
run '8 , and 3end denotes the depth of the run 'end. Once again, the runs ':+1 and ':+2 are the
deepest runs of the array, and thus 3:+1 = 3:+2. Yet, this time, 3:+1 − 3:+3 ≡ mc+opt ≡ 1 (mod 2),
and therefore 3:+3 < 3:+1. Hence, the runs ':+1 and ':+2 must be merged together.

Below, let us note ' the parent of every run '. Since A:+1 = 17 > A: > A:+3, we have 3:+1 ¶ 3: ¶
3:+3. Then, since 3:+3 < 3:+1 = 3:+1 + 1, this even proves that 3:+1 = 3: = 3:+3. Similarly, for all
8 ¶ : − 1 or 8 ¾ : + 4, we know that A8 > A:+1, and thus that 38 ¶ 3:+1. Consequently, the run ':+3
must be merged with either ':+1 or ':+4.

In both cases, we have A:+3 ¶ A:+3 +max{A:+1, A:+4} = 29, and therefore A8 > A:+3 for all 8 ¶ : − 1
or 8 ¾ : + 5, thereby proving that 38 ¾ 3:+3. Consequently, the only runs that lie at depth 3:+1 are
': , ':+1, ':+3, and possibly ':+4. Since there must be an even number of such runs, it follows at
once that all four runs lie at depth 3:+1 and that A merges ': with ':+1, and ':+3 with ':+4.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:33

Let us further prove that A merges ':−1 with ': , and ':+4 with ':+5. Indeed, both runs ': and
':+4 lie at depth 3: , and since A: = 25 + 1 > A:−1 = A:+5 > 25 − 3 = A:+4, the runs ':−1 and ':+5 also
lie at depth 3: . Hence, the run ':+4 will be merged with either ': or ':+5. In both cases, we have
A:+4 ¶ A:+4 +max{A: , A:+5} < 26 ¶ A8 for all 8 ¶ : − 2 or 8 ¾ : + 6. Consequently, the runs ':−1, ': ,
':+4 and ':+5 are the only runs at depth 3: , and A merges ':−1 with ': , and ':+4 with ':+5.

Repeating the same arguments verbatim, we prove that A merges ':−1−8 with ':−8 , and ':+4+8
with ':+5+8 , for all 8 = 0, 1, . . . , : − 2. Eventually, we end up with the runs '0, '1, '2:+2 and 'end,
whose lengths are A0 = 2:+3, A 1 = 2:+3 + 1, A 2:+2 = 2:+3 − 1 and Aend = 3× 2:+2 + 2. The only optimal
way to merge these runs is to merge '0 with '1, and '2:+2 with 'end. This completes the proof of
Claim 2.

Let us now further assume that A is length-(∞, :)-aware. When scanning either array A±, and
since both arrays A− and A+ have the same length, A cannot distinguish between them until it
discovers the run '2:+3 or 'end. In particular, it must wait until discovering that run before it can
merge the run ':+3.

Imagine now that A is sorting the array A+. When A merges the run ':+3, the : runs ':+4, . . . ,
'2:+2, 'end have already been pushed onto the stack, and none of them can be merged before ':+3
is merged. Thus, if the algorithm A is to merge ':+3, it could in fact not be length-(∞, :)-aware,
which completes the proof. �

Unsurprisingly, this result can be strengthened dramatically in the case of length-(∞, 2)-aware
algorithms, which are not Y-optimal for any Y.

Lemma 31. Consider the following dynamic system. Starting with one empty stackS, we successively
perform operations of the following type: either (1) if S contains at least two elements, we may remove
the top element of the stack, or (2) if we have already pushed the integers 0, 1, . . . , ℓ − 1 onto S (some
of which may have been removed), we may push the integer ℓ on the top of the stack.
Then, for all integers ℎ and all functions 5 : Z¾0 ↦→ Z¾0, there exists an integer<5 ,ℎ such that,

when the integer<5 ,ℎ is pushed onto the stack, either the stack S has been of height ℎ at some point,
or some integer : has been the top element of the stack after 5 (:) operations of type (1).

Proof. Since, at every step, we have the choices between options (1) and (2), the set of executions
of the system can be seen as an infinite tree in which every node has two children, one per option.
Let us restrict this tree to the subtree T containing those (finite or infinite) executions where the
stack is always of height smaller than ℎ, and where no integer : ever becomes the top element after
5 (:) or more operations of type (1).

First, we show that every branch (i.e., execution) of T is finite. Indeed, consider some infinite
execution where the stack height is always smaller than ℎ. At most ℎ − 1 integers will stay forever
on the stack after they have been pushed onto it, and 0 is one of these integers. Hence, let : be
the largest such integer. Every integer ever placed just above : must have been removed from the
stack at some point, hence : must have been the top element of the stack infinitely many times.
Therefore, this execution is not a branch of T .

Finally, since the branching degree of T is 2, and since its branches are all finite, König’s lemma
proves that T itself is finite. Defining<5 ,ℎ as the maximal length of T ’s branches completes the
proof. �

Proposition 32. Let A be a length-(∞, 2)-aware stable merge sort algorithm. The worst-case
merge cost ofA is bounded from below by l (=(H + 1)). In particular,A is not Y-optimal for any real
number Y.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:34 V. Jugé

Proof. For the sake of contradiction, we assume in the entire proof that there exist an integer z
and a length-(∞, 2)-aware algorithm A whose merge cost is bounded from above by z=(H + 1).
Then, for all integers : ¶ ℓ , let A:,ℓ be an array that decomposes into : + 1 runs '0, '1, . . . , ': of
respective lengths 2ℓ−1, 2ℓ−2, . . . , 2ℓ−: and 2ℓ + 2ℓ−: : the array A:,ℓ has length 2ℓ+1.

The entropy of any array A:,ℓ is defined by

H:,ℓ =

:+1∑
8=2

1
28

log2 (28) −
1 + 2−:

2
log2

(
1 + 2−:

2

)
<

∑
8¾2

8

28
+ 1 = 5

2
,

and therefore the cost of those merges used byA for sorting A:,ℓ is smaller than 7z2ℓ . Moreover, if
the stack of A is of height ℎ when the last run of A:,ℓ is discovered, then that run will take part in
ℎ merges, for a total cost of 2ℓℎ at least. It follows that ℎ < 7z.

However, once the integer ℓ is fixed, and provided that the algorithm A is executed on some
array A:,ℓ , it cannot distinguish between the arrays A0,ℓ , . . . ,Aℓ,ℓ until it discovers their last run (or
the second last run of Aℓ,ℓ). In particular, if, when treating some array A:,ℓ , and just before pushing
its 8th run (with 8 ¶ :), the stack of A turns out to be of height ℎ ¾ 7z, then A might as well
discover that it was, in fact, treating the array A8,ℓ , contradicting the previous paragraph. Therefore,
the stack of A may never be of height 7z or more.

At the same time, if the elements of some run ' 9 take part in 7z29+1 merges, then of course
these merges have a total cost of 7z2ℓ at least. Hence, the elements of every run ' 9 can take part in
at most 5 (9) merges, where 5 (9) = 7z29+1. Furthermore, our stack follows exactly the dynamics
described in Lemma 31, where choosing the option (1) means that we merge the top two elements
of the stack: if the element 9 becomes the new top element after such an operation, this means that
we have just merged the elements of ' 9 (among others). It follows from Lemma 31 that ℓ ¶ <5 ,7z.

Consequently, and when ℓ is large enough, we know that there must exist arrays on which the
merge cost of A is at least z=(H + 1). In particular, since PowerSort would have sorted A for a
cost of =(H + 2), it follows that A is not (z/2 − 1)-optimal. �

5.2 Approximability Bounds
We focus now on one approximability result, which states that there exists a :-aware algorithm
that matches some approximability bound. Furthermore, this result has a constructive proof, which
consists in providing an effective algorithm and proving that this algorithm indeed matches the
approximability bound.

Theorem 33. Let : ¾ 8 be an integer, and let

[: = (Δ + 7)/log2 ((: − 3)/4),

where we recall that Δ = 24/5 − ;>62 (5). There exists a k-aware sorting algorithm that is [: -optimal.

Note that, if : ¾ 3, then Theorems 15 and 24 already prove that adaptive ShiversSort, which is a
3-aware (and thus a :-aware) algorithm, is also Δ-optimal. In particular, numerical computations
show that Δ ¶ [: when : ¶ 59, which already proves Theorem 33 in that case. Furthermore, and
although the constants \: and [: become arbitrarily small when : →∞, there is still an exponential
gap between these constants.

Our proof consists in showing that the parametrised algorithm ^-stack ShiversSort depicted in
Algorithm 10, which is visibly (2^ + 2)-aware, is [2^+3-optimal. In order to do so, we go through
several phases:

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:35

Algorithm 10: ^-stack ShiversSort and its auxiliary functions
Input : An array to � to sort, integer parameter ^
Result: The array � is sorted into a single run, which remains on the stack.

Note: Whenever two successive runs of S are merged, they are replaced, in S, by the run resulting
from the merge. In practice, in S, each run is represented by a pair of pointers to its first and
last entries.

1 runs← the run decomposition of �
2 S ← an empty stack
3 while true : Â main loop
4 if ℎ = 2^ + 1, runs ≠ ∅ and mustMerge : Â phase 1
5 doMerge
6 else if ℎ ¾ 2^ + 2 and ℓℎ−2 ¶ max{ℓℎ−1, ℓℎ} :
7 merge the runs 'ℎ−2 and 'ℎ−1
8 else if runs ≠ ∅ :
9 remove a run ' from runs and push ' onto S

10 else if ℎ ¾ 2^ + 2 :
11 merge the runs 'ℎ−1 and 'ℎ
12 else if ℎ ¾ 2 : Â phase 2
13 perform the first merge prescribed by MinimalStableSort
14 else:
15 break

16 Function mustMerge: Â called only with ℎ = 2^ + 1
17 Alarge ← b(A1 + A2 + . . . + A2^)/^c
18 ℓlarge ← blog2 (Alarge)c
19 for 8 ← 1, 2, . . . , 2^ − 1 :
20 if ℓ8 ¶ max{ℓ8+1, ℓ8+2} and max{ℓ8 , ℓ8+1} ¶ ℓlarge :
21 return true
22 return false

23 Function doMerge: Â called only with ℎ = 2^ + 1
24 Alarge ← b(A1 + A2 + . . . + A2^)/^c
25 ℓlarge ← blog2 (Alarge)c
26 for 8 ← 1, 2, . . . , 2^ − 1 :
27 if ℓ8 ¶ max{ℓ8+1, ℓ8+2} and max{ℓ8 , ℓ8+1} ¶ ℓlarge :
28 merge the runs '8 and '8+1
29 break

(1) In Section 5.2.1, we prove that adaptive ShiversSort enjoys independence or stability properties,
which describe the behaviour of adaptive ShiversSort if some merges have been performed
in advance, or if one uses adaptive ShiversSort to sort a sub-array instead of the entire array.

(2) In Section 5.2.2, we prove a variant of Proposition 18 that characterises the behaviour of
^-stack ShiversSort during its so-called phase 1, which consists of those merges performed
in lines 7, 11 or 28.

(3) In Section 5.2.3, we introduce an object called the least high border of a merge tree, which
consists of large enough runs. We prove that this object is a reasonable approximation of an
actual state of MinimalStableSort, and we evaluate the quality of this approximation.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:36 V. Jugé

(4) In Section 5.2.4, we use this approximation to find good upper bounds on the merge cost of
^-stack ShiversSort, thereby proving Theorem 33 itself.

5.2.1 Independence and Stability Properties. In this section, and before focusing on ^-stack
ShiversSort itself, we explore some behavioural properties of the algorithm adaptive ShiversSort.
We start this exploration by recalling some key tools already introduced in previous sections: the
notions of state, merge point, successor and merge tree.

Definition 16. Consider the execution of the algorithm 2-adaptive ShiversSort on a sequence of
runs to be sorted. At each step, the algorithm handles both a stack S = ('1, . . . , 'ℎ) of runs and
a sequence R = ('ℎ+1, . . . , 'C) of those runs that have yet to be discovered and pushed onto the
stack. We call state of the algorithm, at that step, the sequence ('1, . . . , 'C), i.e., the concatenation
of S and R.

Finally, two states of the algorithm are said to be consecutive if they are distinct from each other
and were separated by a single (run push or merge) operation performed by the algorithm.

Definition 17. Let R = ('1, . . . , 'C) be a sequence of runs of length C ¾ 2. We say that an integer
G is dominated in the sequence R if 1 ¶ G ¶ C − 1 and ℓG ¶ max{ℓG+1, ℓG+2}, with the convention
that ℓC+1 = ∞ (we may omit mentioning R when the context is clear). This convention ensures us
that C − 1 is necessarily dominated.

Then, let : be the smallest dominated integer. We say that : is the merge point of the sequence R.
Finally, we call successor of R, and note succ(R), the sequence of runs

('1, . . . , ':−1, ', ':+2, . . . , 'C),

where ' is the run obtained by merging ': and ':+1.

Proposition 18. Let S and S be two consecutive states encountered during an execution of 2-adaptive
ShiversSort. We have S = succ(S).

Definition 23. LetM be a merge policy and R a sequence of runs. We define the merge tree
induced byM on R as the following binary rooted tree. Every node of the tree is identified with a
run, either present in the initial sequence or created by the merge policy. The runs in the sequence
R are the leaves of the tree, and when two runs '1 and '2 are merged together in a run ', the run
' is identified with the internal node whose children are '1 and '2: if the run '1 was placed to the
left of '2 in the sequence to be sorted, then '1 is the left sibling of '2.

Proposition 18 clearly marks states as a crucial object for studying the dynamics of adaptive
ShiversSort, since they seem to capture the right amount of information manipulated by the
algorithm at a given point in time. On the other hand, merge trees are generic objects, which may
be constructed for every (stable) merge policy, and allow us to capture at once the entire list of
merges performed by the algorithm, with little regard for the temporality of these merges: when
two runs in the tree are not related by the ancestor relation, and if neither is a leaf of the tree, we
cannot know which run was created first.

A natural further step is then to bind both of these objects: this is the aim of borders, illustrated
in Figure 5.

Definition 34. Let R = ('1, . . . , 'd) be a sequence of runs, and let T be a merge tree induced
by some merge sort on R. A border of T is a maximal set B of pairwise incomparable (for the
strict ancestor relation) nodes of T , i.e., a maximal set B such that no strict ancestor of a node in
B belongs to B. We call the set of ancestors of nodes in B, including nodes in B themselves, the
ancestor sub-tree of B in T .

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:37

Fig. 5. A merge tree with seven borders, and corresponding ancestor sub-trees.

Every border or, more generally, every set of pairwise incomparable nodes of a merge tree T ,
is naturally endowed with a left-to-right ordering. Hence, we will often identify a border B with
the unique sequence of runs ('′1, . . . , '′:) such that each '′8 lies to the left of '′8+1 and such that
B = {'′1, . . . , '′: }. In particular, every state encountered during an execution of adaptive ShiversSort
is a border of R.

Theorem 35. Let T be the merge tree induced by adaptive ShiversSort on a sequence of runs R,
and let R′ be a border of T . The merge tree induced by adaptive ShiversSort on R′ coincides with the
ancestor sub-tree of R′ in T .

Proof. Let ('1, . . . , 'd) be our sequence of runs R, and let d = |R | and B = |R′ |. Then, if d ¾ 2,
let : be the merge point of R, and let ' be the run obtained by merging ': and ':+1, i.e., their
parent in the tree T ; if d = 1, we just set : = 0. Since : ¶ d , we prove Theorem 35 by induction on
the triple (d, d − B, :).

First, if d = B , we have R = R′, and the result is immediate.
Second, let us assume that d = B + 1. In that case, there exists an integer 8 ¶ d − 1 such that
B = R \{'8 , '8+1}∪{'′}, where '′ is the run obtained by merging '8 and '8+1, i.e., their parent in T .
By minimality of : , we have 8 ¾ : , and since ': and ':+1 are already merged with each other, we
cannot have 8 = : + 1. Thus, either 8 = : or 8 ¾ : + 2:

⊲ If 8 = : , Proposition 18 proves that merging the runs '8 and '8+1 into one single run '′ is
the first merge operation performed while applying adaptive ShiversSort on the sequence R.
Thus, for all 0 ¾ 1, the 0th merge performed while executing adaptive ShiversSort on R′ is
also the (0 +1)th merge performed while executing adaptive ShiversSort on R. This completes
the proof in that case.

⊲ If 8 ¾ : + 2, let also R = R \ {': , ':+1} ∪ {'} and R
′
= R \ {': , ':+1, '8 , '8+1} ∪ {', '′} be

borders of T . Let T ′, T and T ′ be the merge trees induced by adaptive ShiversSort on R′, R
and R′. We will show that they are all ancestor sub-trees of T , as illustrated in Figure 6.
The induction hypothesis proves that T is the ancestor sub-tree of R in T . Since R′ is a border
of T , the induction hypothesis also proves that T ′ is the ancestor sub-tree of R′ in T (and
thus in T too).
Then, Proposition 18 proves that the runs ': and ':+1 are siblings in T ′. It follows that R′ is
a border of T ′ and, by induction hypothesis, that T ′ is the ancestor sub-tree of R′ in T ′.
Hence, T ′ is a sub-tree of both trees T and T ′. Then, since the only nodes of T ′ that do not
belong to T ′ are siblings in T (these are the leaves '8 and '8+1), it means that T ′ is itself a
sub-tree of T , as desired.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:38 V. Jugé

Fig. 6. Embedding the trees T ′, T and T ′ = T ′ ∩ T ′ as sub-trees of T .

Finally, we assume that d ¾ B + 2. Let ' be an internal node of T that belongs to R′, and let '⊕
and '	 be its children. The set R′′ = R′ \ {'} ∪ {'⊕, '	} is a border of T of cardinality B + 1. Let
also T ′ and T ′′ be the merge trees, respectively induced by adaptive ShiversSort on R′ and R′′.

The induction hypothesis proves that T ′′ is the ancestor sub-tree of R′′ in T . Therefore, R′ is a
border of T ′′, and the induction hypothesis proves that T ′ is the ancestor sub-tree of R′ in T ′′.
Consequently, T ′ is also the ancestor sub-tree of R′ in T . �

When R′ is a state encountered while executing adaptive ShiversSort on the sequence R, Theo-
rem 35 means that interrupting and then restarting this execution would not change the list of those
merges that adaptive ShiversSort performs. However, R′ does not need to be such a state. Thus,
Theorem 35 provides us with the following remarkable stability property of adaptive ShiversSort.

Corollary 36. Let A be some stable natural merge sort algorithm, which consists in (1) applying
some (arbitrary) sequence of merges that would have been performed by adaptive ShiversSort, and
then (2) applying adaptive ShiversSort on the resulting state. The algorithm A simply performs the
same merges as adaptive ShiversSort, although in a possibly different order.

It also provides us with the following independence property.

Proposition 37. Let T be the merge tree induced by adaptive ShiversSort on a sequence R, let '
be a node of the tree T , and let R′ be the subsequence of R that consists of those runs that descend
from '. The sub-tree of T rooted at ' coincides with the merge tree induced by adaptive ShiversSort on
the sequence R′.

Proof. Let 3 be the depth of the node ' in the tree T , let d be the number of leaves of T , and
let T ′ be the sub-tree of T rooted at '. We prove Proposition 37 by induction on the pair (3, d).
First, if 3 = 0, then ' is the root of T , and the result clearly holds.

Second, if 3 = 1, let (be the sibling of '. If (is a leaf of T , it is either the leftmost or rightmost
element of R. Therefore, replacing (by an arbitrarily large run would not alter the dynamics of
adaptive ShiversSort, and thus the conclusion of Proposition 37 comes immediately.

If, however, (is an internal node of T , let B be the border of T that consists of R′ (i.e., the leaves
of T ′) and of the node (: this border contains at most d − 1 nodes. Theorem 35 states that the merge
tree T ′′ induced by adaptive ShiversSort on the sequence B coincides with the ancestor sub-tree
of B in T , and thus T ′ is also the sub-tree of T ′′ rooted at '. Hence, the induction hypothesis
proves the desired result in that case too.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:39

Finally, if 3 ¾ 2, let '◦ be the parent of ', let T ◦ be the sub-tree of T rooted at '◦, and let
R◦ be the subsequence of R that consists of those runs that descend from '◦, i.e., of those leaves
of T ◦. The induction hypothesis proves first that T ◦ coincides with the merge tree induced by
adaptive ShiversSort on the sequence R◦, and then that T ′ coincides with the merge tree induced
by adaptive ShiversSort on the sequence R′. �

Note that MinimalStableSort also enjoy the stability and independence properties mentioned in
Corollary 36 and Proposition 37. Actually, and except in the rare case where several merge trees
have the optimal merge cost, every optimal merge-sort must have these properties.

5.2.2 Phase 1 in ^-Stack ShiversSort. In this section, we study more closely the behaviour of
^-stack ShiversSort. Our first step consists in observing that, as soon as runs = ∅ and ℎ ¶ 2^ + 1,
the algorithm ^-stack ShiversSort will keep performing the merges of line 13 until ℎ = 1, thereby
following the merge policy of MinimalStableSort itself. Therefore, we split ^-stack ShiversSort
in two phases: phase 1 consists in the (merge or push) operations performed while runs ≠ ∅ or
ℎ ¾ 2^ + 2, in lines 7, 9, 11 or 28 of Algorithm 10, whereas phase 2 consists in the merge operations
performed while ℎ ¶ 2^ + 2 and runs = ∅, in line 13.

Unsurprisingly, the dynamics of these two phases are quite different: phase 1 keeps the flavour of
adaptive ShiversSort, whereas phase 2 is just a brutal application of MinimalStableSort. However,
the notion of successor used when studying adaptive ShiversSort cannot be reused verbatim. Thus,
we present a variant of the notion of successor, which will be well adapted to ^-stack ShiversSort
and will lead to a variant of Proposition 18.

Definition 38. Let R = ('1, . . . , 'C) be a sequence of runs of length C ¾ 2^ + 1. Recall that an
integer G is dominated in the sequence R if 1 ¶ G ¶ C − 1 and ℓG ¶ max{ℓG+1, ℓG+2}, with the
convention that ℓC+1 = ∞.

Let us also define the integers

Alarge = b(A1 + A2 + . . . + A2^)/^c

and ℓlarge = blog2 (Alarge)c. We say that an integer G is low in the sequence R if 1 ¶ G ¶ C − 1 and if
max{ℓG , ℓG+1} ¶ ℓlarge (we may omit mentioning R when the context is clear).

Lemma 39. Let R = ('1, . . . , 'C) be a sequence of runs of length C ¾ 2^ + 1. There exists at least one
integer G ¶ 2^ − 1 that is low in R.

Proof. Let B = A1 + A2 + . . . + A2^ , and consider the set

- = {G : 1 ¶ G ¶ 2^ and ℓG > ℓlarge}.

For all G ∈ - , we have log2 (AG) > log2 (Alarge), i.e., AG > Alarge, and therefore AG > B/^. Therefore,

B ¾
∑
G∈-

AG > B |- |/^,

which means that |- | ¶ ^ − 1.
Among the ^ pairs {1, 2}, {3, 4}, . . . , {2^ − 1, 2^}, at most ^ − 1 contain an element of - . Thus,

there exists an integer 8 ¶ ^ such that neither 28 − 1 nor 28 belong to - , i.e., such that the integer
G = 28 − 1 is low. �

Lemma 40. LetS = ('1, . . . , 'ℎ) be a stack of heightℎ = 2^+1 encountered while^-stack ShiversSort
calls the function mustMerge, and let S = ('1, . . . , 'C) be the associated state. If there exists a low
integer G ¶ 2^ − 1 such that G + 1 is not low in S, that call to mustMerge returns true.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:40 V. Jugé

Proof. If G is low in S and G+1 is not low in S, then ℓG ¶ max{ℓG , ℓG+1} < ℓ large ¶ max{ℓG+1, ℓG+2}.
Therefore, G is both low in S and dominated, and mustMerge necessarily returns true. �

Definition 41. Let R = ('1, . . . , 'C) be a sequence of runs of length C ¾ 2^ + 1, and let : be the
least integer that is both low in R and dominated, if such an integer exists; it not, we simply set
: = 0. The integer : is called the ^-merge point of R. Furthermore, if : ≠ 0, we call ^-successor of
R, and note succ^ (R), the sequence of runs

('1, . . . , ':−1, '′, ':+2, . . . , 'C),

where '′ is the run obtained by merging ': and ':+1; if : = 0, the ^-successor of R is not defined.

Lemma 42. Let S = ('1, . . . , 'ℎ) be a stack encountered during phase 1 of ^-stack ShiversSort, let
S = ('1, . . . , 'C) be the associated state, and let : be the ^-merge point of S. If ℎ ¾ 2^ + 2, then

(1) the integer : is not equal to any of the integers 1, 2, . . . , 2^ − 1;
(2) the integer 2^ − 1 is low in S;
(3) we have:

ℓ2^−1 > ℓ2^ > . . . > ℓℎ−3 > max{ℓℎ−2, ℓℎ−1}. (2)

Proof. The proof is done by induction. First, if ℎ ¶ 2^ + 1, there is nothing to prove: this case
occurs, in particular, when the algorithm starts. Now, consider some stack S = ('1, . . . , 'ℎ) that is
updated into a new stack S = ('1, . . . , 'ℎ) of height ℎ ¾ 2^ + 2, either by merging the runs 'ℎ−2
and 'ℎ−1 or by pushing the run '

ℎ
, and let S be the state associated with S. Note that, if the update

consists in a push operation, the states S and S coincide with eath other. Let also : and : be the
respective ^-merge points of S and S, and assume that S satisfies Lemma 42:

⊲ If ℎ = 2^ + 1, then ℎ = 2^ + 2 and S was obtained by pushing '
ℎ
, so that S = S. This run push

must have been preceded by a call to the function mustMerge, which consisted in checking
that : differs from the integers 1, 2, . . . , 2^ − 1, and then returning the value false.
Since Lemma 39 states that there exists a integer G ¶ 2^ − 1 that is low in S = S, Lemma 40
then proves that 2^ − 1 is low in S = S. Then, since : ≠ 2^ − 1, it must be that 2^ − 1 is not
dominated, i.e., that ℓ2^−1 > max{ℓ2^ , ℓ2^+1}, which means that S satisfies (2).

⊲ If ℎ ¾ 2^ + 2 and S was obtained by pushing '
ℎ
, then ℎ = ℎ + 1 and S = S. It already follows

that 2^ − 1 is low in S = S, that : = : ∉ {1, 2, . . . , 2^ − 1} and that ℓ2^−1 > ℓ2^ > . . . > ℓ
ℎ−3.

Finally, since ^-stack ShiversSort triggered a push operation instead of a merge operation, it
must be the case that ℓℎ−2 > max{ℓℎ−1, ℓℎ}, i.e., that ℓℎ−3 > max{ℓ

ℎ−2, ℓℎ−1}. This proves that
S satisfies (2).

⊲ If S was obtained by merging the runs 'ℎ−2 and 'ℎ−1, then ℎ = ℎ − 1 and '8 = '8 for all
8 ¶ ℎ− 2, and in particular for all 8 ¶ 2^ . It follows that (1) each integer G ¶ ℎ− 4 is dominated
in S if and only if G is dominated in S, and that (2) ℓlarge = ℓ large, thereby proving that each
integer G ¶ ℎ − 3 is low in S if and only if G is low in S. Since ℎ ¾ 2^ + 2, it already follows
that : ∉ {1, 2, . . . , 2^ − 2} and that 2^ − 1 is low in S.
Finally, the inequalities ℓ2^−1 > ℓ2^ > . . . > ℓℎ−3 rewrite as ℓ2^−1 > ℓ2^ > . . . > ℓ

ℎ−2. Then,
since the run '

ℎ−1 results from the merge between 'ℎ−2 and 'ℎ−1, Lemma 6 proves that
ℓ
ℎ−1 ¶ max{ℓℎ−2, ℓℎ−1} + 1 ¶ ℓℎ−3 = ℓℎ−2. This proves that S satisfies (2), from which it also
follows that 2^ − 1 is not dominated in S, thereby proving that : ≠ 2^ − 1. �

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:41

Proposition 43. Let S and S be two consecutive states encountered during an execution of the
phase 1 of ^-stackShiversSort. We have S = succ^ (S).

Proof. Let< be the merge operation that transforms S into S. Let S = ('1, . . . , 'ℎ) be the stack
just before< is performed. Let : be the ^-merge point of S, and let '8 and '8+1 be the runs that are
merged when< is performed. We shall prove that 8 = : .

If ℎ = 2^ + 1, the merge< was triggered by a call to mustMerge. During that call, the function
mustMerge scans the integers 1, 2, . . . , 2^ − 1 one by one until it finds a low dominated integer is
identified. That integer is equal to 8 , and by construction it is also equal to : .

Then, if ℎ ¾ 2^ + 2, we know that 8 = ℎ − 2. Furthermore, in that case, Lemma 42 states that
either : = 0 or : ¾ 2^, and that the inequalities (2) are satisfied. In particular, : cannot be equal
to any of the integers 2^, . . . , ℎ − 3, which are not even dominated, whereas ℎ − 2 is both low and
dominated. This means that : = ℎ − 2, which completes the proof. �

Due to the characterisation provided by Proposition 43, we focus now on proving that every
merge performed in phase 1 of ^-stack ShiversSort would also have been performed by adaptive
ShiversSort.

Lemma 44. Let R = ('1, . . . , 'd) be a sequence of runs with ^-merge point : ≠ 0. At some point
when sorting that sequence, the algorithm adaptive ShiversSort will merge the runs ': and ':+1.

Proof. If : = 1, then : is the least dominated integer, and thus adaptive ShiversSort starts by
merging ': and ':+1. Hence, we assume that : ¾ 2.

If : − 1 is dominated, then ℓ:−1 ¶ max{ℓ: , ℓ:+1} ¶ ℓlarge, and thus max{ℓ:−1, ℓ: } ¶ ℓlarge, proving
that : − 1 is also low. Since : is the minimal low dominated integer, it follows that : − 1 cannot be
dominated.

In particular, an immediate induction on the number of operations performed by adaptive
ShiversSort proves that, in every state encountered until adaptive ShiversSort ever merges one
of the runs ': or ':+1, the run ': will always be preceded by a run ' such that ℓ > max{ℓ: , ℓ:+1}.
Indeed, the only way to modify that run is to merge it with other runs, which cannot decrease its
level.

Now, let< be the first merge performed by adaptive ShiversSort that involves some of the runs
': , ':+1, . . . , 'd . We shall prove that< consists in merging the runs ': and ':+1. The state just
before< takes place is a sequence of the form S = ('1, . . . , 'C , ': , ':+1, . . . , 'd) for some C ¶ : − 1.
First, < cannot merge any of the runs '1, . . . , 'C−1. Second, since ℓC > max{ℓ: , ℓ:+1}, it cannot
merge 'C either. Consequently, and since ℓ: ¶ max{ℓ:+1, ℓ:+2}, it must merge ': and ':+1. �

Proposition 45. Every merge performed during phase 1 of ^-stack ShiversSort on a sequence of
runs R would also have been performed by adaptive ShiversSort on the sequence R.

Proof. Let S0, . . . , S? be the sequence of states encountered in phase 1 of ^-stack ShiversSort,
with S0 = R. For all 8 ¶ ? − 1, since S8+1 = succ^ (S8), Lemma 44 proves that S8+1 is a border of the
merge tree induced by adaptive ShiversSort on S8 . It follows at once that every state S8 is a border
of the tree T induced by adaptive ShiversSort on R, which completes the proof. �

As a nice consequence of Proposition 45, we can already observe that using ^-stack ShiversSort
instead of adaptive ShiversSort comes with no additional merge cost.

Corollary 46. The merge cost of ^-stack ShiversSort cannot exceed the cost of adaptive ShiversSort.

Proof. If phase 2 of ^-stack ShiversSort consisted in running adaptive ShiversSort instead of
MinimalStableSort, the algorithms adaptive ShiversSort and ^-stack ShiversSort would perform

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:42 V. Jugé

the same list of merges, possibly in a different order. Since running MinimalStableSort cannot
increase the total merge cost of those merges performed in phase 2, the result follows. �

5.2.3 Least High Border and Lattice of Partitions into Intervals. In order to go further in our
proof, we need a way to compare two states S1 and S2 obtained while executing two algorithms,
although there might exist no merge tree of which both S1 and S2 are borders. This requires finding
a framework in which all borders of all merge trees can simultaneously exist.

To do this, we consider a given sequence of runs R = ('1, . . . , 'd), that will be fixed once and for
all, and therefore left implicit whenever possible. This allows us to identify every run '8 with the
integer 8 , or even with the singleton set {8}. We also identify every interval- = {G, G +1, . . . , ~} with
the run ' created by merging the consecutive runs 'G , 'G+1, . . . , '~ . In order to avoid ambiguities,
and depending on the context, we may note this run '- or directly - . Building on this notation,
the length of the run '- is denoted by A- =

∑
G∈- AG , and we set ℓ- = blog2 (A-)c.

Then, we extend these notations to sequences of runs and to partitions into intervals. We
thereby also identify every partition I = (�1, . . . , �B) of - into intervals with the sequence of runs
('�1 , . . . , '�B). Again, in order to avoid ambiguities, and depending on the context, we may note this
sequence RI or directly by I. Furthermore, if I is the finest partition of - , we may simply note R-
the sequence RI: this is the sub-sequence ('G , 'G+1, . . . , '~) of the sequence R. In particular, this
identification between sequences of runs and partitions applies to every border of every merge tree
induced on R- , and each such border is now seen as a partition of - into intervals.

The interest of this identification also comes from the refinement ordering on such partitions: we
say that a partition I = (�1, . . . , �B) refines a partition J = (�1, . . . , �C), which is denoted by I v J, if
every set �8 is contained in some set � 9 . Partitions of {1, . . . , d} into intervals form a lattice for the
refinement ordering. Below, let start be the finest partition {{1}, . . . , {d}}, and end be the coarsest
partition {{1, . . . , d}}: these are respectively the v-minimal and the v-maximal elements of the
lattice. The sequence Rstart is simply the sequence R, whereas Rend is the sequence whose only run
is the sorted array itself.

Then, we need a simple characterisation of the state obtained at the end of phase 1. Such a
characterisation relies on the notions of high nodes in a merge tree and of least high border.

Definition 47. Let T be a merge tree induced by some stable algorithm on the sequence R. Let =
be the sum of the lengths or the runs in R, and let ℓ★large = blog2 (=/^)c. Finally, let ' be a node of T ,
with level ℓ . We say that ' is immense if ℓ ¾ ℓ★large + 2, that ' is very high if ℓ ¾ ℓ★large + 1, and that '
is high in T if ' or its sibling (in case ' is not the root of T) is very high; whenever the context is
clear enough, we will omit mentioning the tree T , and just say that ' is high.

Definition 48. Let T be a merge tree induced by some stable algorithm, and let T ′ be the sub-tree
that consists of the high nodes of T . The border of T that consists of the leaves of T ′ is called the
least high border of T .

Equipped with these two notions, we will focus on the two trees Tass and Topt, respectively
induced by adaptive ShiversSort and MinimalStableSort on R, and four partitions of {1, . . . , d}, the
first three of which we introduce as states or borders:

⊲ the last state Sphase 1 encountered in phase 1 of ^-stack ShiversSort when sorting R;
⊲ the least high border Bass of the tree Tass;
⊲ the least high border Bopt of the tree Topt;
⊲ the coarsest partition K that refines both Bass and Bopt, i.e., their v-greatest lower bound.

The interest of the least high border Bass comes from the following result, illustrated in Figure 7.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:43

Fig. 7. Case ^ = 3: merge trees induced by adaptive ShiversSort, ^-stack ShiversSort and MinimalStableSort,
and remarkable partitions. Least high borders are represented by black nodes and, in the two top trees, the
border S is represented by square nodes. Tree leaves are labelled by the lengths of the runs they represent.
Finally, upward arrows between partitions indicate refinement relations.

Proposition 49. The partition Sphase 1 refines the partition Bass.

Proof. Let us assume, for the sake of contradiction, that some run ' of Sphase 1 is a strict ancestor,
in the tree Tass, of a node in Bass. By definition, both children of ' are high nodes of Tass. Hence,
one of them, say '′, is a run of level ℓ ′ > ℓ★large, where we recall that ℓ★large = blog2 (=/^)c and = is
the sum of the lengths of the runs in the sequence R.

Now, consider the state S = ('1, . . . , 'C) just before ^-stack ShiversSort proceeded to merging '′.
By construction, at this point in time, we have A large = b(A 1 + . . . + A 2^)/^c ¶ (A 1 + . . . + A C)/^ = =/^ ,
which proves that ℓ large = blog2 (A large)c ¶ ℓ★large. It follows that ℓ ′ > ℓ large, contradicting the fact
that ^-stack ShiversSort might have merged '′ in phase 1. This completes the proof. �

Another interest of the notion of least high border is that it can be defined in every merge tree,
which allows considering both trees Tass and Topt at once. Then, the partition K, which does not
need to be a border in either tree, is meant to provide a convenient intermediate step towards
proving that the partitions Bass and Bopt are similar to each other.

Let us make this statement precise by using adequate metrics.

Definition 50. Let I = (�1, . . . , �B) and J = (�1, . . . , �C) be two partitions of {1, . . . , d} into intervals,
such that I refines J. For all 9 ¶ C , we set d9 = |{8 : �8 ⊆ � 9 }|, i.e., d9 is the number of intervals �8 in
which � 9 is subdivided. We say that I is a d-refinement of J if d9 ¶ d for all 9 ¶ C .

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:44 V. Jugé

Lemma 51. Let T be a merge tree induced on the sequence R, and let B be its least high border:

(1) each very high run of R also belongs to B; and
(2) each immense run of B also belongs to R.

Proof. Claim (1) immediately follows from the definition of the least high border. Then, if an
immense run ' of T has two children '	 and '⊕ , Lemma 6 proves that

max{ℓ	, ℓ⊕} ¾ ℓ − 1 ¾ ℓ★large + 1.

This means that '	 and '⊕ are high nodes, and thus that ' cannot belong to the border B, thereby
proving claim (2). �

Lemma 52. Among any two consecutive runs of Bass, at least one is very high in the tree Tass.

Proof. Let us assume that there exist two consecutive runs ' and '′ of Bass that are not very
high. Let us apply the algorithm adaptive ShiversSort on the border Bass, and let S be the state
obtained just before one of the runs ' or '′ is merged. Three cases are a priori possible:

⊲ If the run ' is merged with '′, neither run is high in Tass.
⊲ If the run '′ has a right neighbour '′′ in S and is merged with '′′, we must have
ℓ > max{ℓ ′, ℓ ′′} ¾ ℓ ′′, so that '′′ is not very high, and neither '′ nor '′′ is high in Tass.

⊲ If the run ' has a left neighbour ' in S and is merged with ', we have ℓ ¶ max{ℓ, ℓ ′}, so that
' is not very high, and neither ' nor ' is high in Tass.

Thus, our initial assumption is disproved in every case. �

Lemma 53. Let ' be some run in the tree Topt, and let '1, . . . , ': be the runs with whichMinimal-
StableSort successively merges ' (i.e., the sibling of ' is '1, the uncle of ' is '2, and so on). For all
8 ¾ 3, we have A 8 ¾ A .

Proof. Let us first assume that A 3 < A . Then, the total cost of the merges of ' with '1, '2 and
'3 is mc = 3(A + A 1) + 2A 2 + A 3. However, if we had used a balanced binary tree of height 2 for
merging these four runs, (i.e., merging first the two leftmost runs, then the two rightmost runs, and
finally the two resulting runs), each run would have participated to 2 merges only, for a total cost
of mc′ = 2(A + A 1 + A 2 + A 3) = mc − (A + A 1 − A 3) < mc. This contradicts the optimality of our merge
policy, which proves that A 3 ¾ A .

The same reasoning, applied to the run obtained by merging ' and '1, . . . , '8 , shows that A 8+3 ¾
A + A 1 + . . . + A 8 ¾ A for all 8 ¶ : − 3, which completes the proof. �

Corollary 54. Among any five consecutive runs of Bopt, at least one is very high in the tree Topt.

Proof. Let T ′ be the ancestor sub-tree of Bopt in Topt, and let us assume that there exist five
consecutive runs '8−2, '8−1, '8 , '8+1 and '8+2 of Bopt that are not very high. Let '′ be the parent
of '8 , and let 〈'′〉 be the sub-tree of T ′ rooted at '′. Among any two sibling leaves of 〈'′〉 of
maximal depth, one of them, say ', must be very high.

Since ℓ8 ¶ ℓ★large < ℓ , and thus A 8 < A , Lemma 53 proves that '8 is either the sibling or the uncle
of '. This means that 〈'′〉 has either two or three leaves and, since these leaves that consecutive
runs of B, they must all belong to the set {'8−2, '8−1, '8 , '8+1, '8+2}. Thus, one of these runs was in
fact very high, which invalidates our initial assumption and completes the proof. �

Proposition 55. The partition K is a 11-refinement of Bass and a 7-refinement of Bopt.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:45

Proof. First, assume that some interval � , belonging to the partition Bass, contains at least 12
sub-intervals 1, . . . , 12 of the partition K. By definition of K, each of the intervals 2, . . . , 11

belongs toBopt. Corollary 54 proves that one of the runs ' 2 , . . . , ' 6 , say ' G
, is very high. Similarly,

one of the runs ' 7 , . . . , ' 11 , say ' ~
, is very high too. It follows that

A� ¾
12∑
:=1

A :
¾ A G

+ A ~
¾ 2 × 2ℓ

★
large+1 = 2ℓ

★
large+2,

which means that '� is immense. Hence, Lemma 51 proves that '� also belongs to R and to Bopt,
which is a contradiction.

Likewise, assume some interval � of the partition Bopt contains at least 8 sub-intervals 1, . . . , 8

of the partition K. Then, all sub-intervals 2, . . . , 7 also belong to Bass. Lemma 52 proves that one
of the runs ' 2 , ' 3 or ' 4 , say ' G

, is very high, and that one of the runs ' 5 , ' 6 or ' 7 , say ' ~
,

is very high too. But then

A � ¾
8∑
:=1

A :
¾ A G

+ A ~
¾ 2 × 2ℓ

★
large+1 = 2ℓ

★
large+2,

which means that '� is immense, again leading to a contradiction. �

5.2.4 The Cost of Approximations. Grossly speaking, Theorem 33 says that the merge cost of
^-stack ShiversSort is very good, which is what we prove below. Before writing this proof itself,
we first provide an intuition of how the main steps this proof consists of.

(1) ^-stack ShiversSort consists in applying merges prescribed by adaptive ShiversSort until
one reaches the partition Sphase 1, in phase 1, and then applying MinimalStableSort, in phase
2. Instead of this phase 2, we might just continue applying merges prescribed by adaptive
ShiversSort until one reaches the partition Bass, and then apply MinimalStableSort on this
partition. Doing so will only increase the total cost of the merges performed.

(2) By independence property, using merges from adaptive ShiversSort to obtain the partition
Bass amounts to using adaptive ShiversSort to sort, one by one, the sub-sequences of R
spanned by the runs in Bass. Theorem 15 states that using adaptive ShiversSort to sort each
such sub-sequence is not much more expensive than using MinimalStableSort.

(3) Since K is a d-refinement of both partitions Bass and Bopt for small values of d, using
MinimalStableSort to obtain (the sequence of runs that we identify with) the partition K is
approximately as expensive as using MinimalStableSort to obtain either the partition Bass or
Bopt, and the partition K is approximately as expensive to sort as either the partition Bass or
Bopt.

(4) Since Bopt is a border of the tree Topt, and up to changing the order in which MinimalStable-
Sort performs merges, we may assume that it uses Bopt as an intermediate state, so that the
smallest merge cost to sort R is the sum of the costs to obtain the partition Bopt and to sort
this partition.

Most of these steps consist in evaluating the total cost of those merges used by a given algorithm
to transform a partition I into another partition J. Thus, if RJ is a border of the merge tree induced
by adaptive ShiversSort on the sequence RI, let mcass (I→ J) denote the total cost of those merges
required by adaptive ShiversSort to transform I into J. As mentioned in step 2 above, and since
adaptive ShiversSort has the independence property, this amounts to considering one by one the
intervals � in J, the partition {� ∈ I : � ⊆ � } of � into intervals taken from the partition I, and to
sorting the sequence R{� ∈I : �⊆ � } (which consists of those runs of RI spanned by the run '�), thereby
obtaining the run '� .

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:46 V. Jugé

Similarly, if I refines I, and even if J is not a border of the merge tree induced by Minimal-
StableSort on the sequence RI, let mcopt (I→ J) denote the total cost of those merges required by
MinimalStableSort to transform I into J, i.e., the merge cost paid by considering one by one the
runs ' in 'J, selecting the sub-sequence of RI of those runs spanned by the run ', and sorting that
sub-sequence.

Finally, given any two partitions I and J of {1, . . . , d} into intervals, we call distortion between I
and J, and note X (I, J), the sum of the lengths of the runs ' that belong to the sequence RI but not
to the sequence RJ. Observe that this function is symmetric, i.e., that X (I, J) = X (J, I).

With these notations in mind, Proposition 45 has the following consequence, which give us a
better bound than Corollary 46.

Corollary 46b. The merge cost of ^-stack ShiversSort cannot exceed

mcass (start→ Bass) +mcopt (Bass → end).

Proof. Let mc^ be he merge cost of ^-stack ShiversSort when sorting the sequence R. Since
forcing MinimalStableSort to use the sequence Bopt as an intermediate step during the phase 2 of
^-stack ShiversSort cannot decrease the resulting merge cost, and since the stability property of
adaptive ShiversSort shows that mcass (start→ S) +mcass (S→ Bass) = mcass (start→ Bass), we
have

mc^ = mcass (start→ S) +mcopt (S→ end)
¶ mcass (start→ S) +mcopt (S→ Bass) +mcopt (Bass → end)
¶ mcass (start→ S) +mcass (S→ Bass) +mcopt (Bass → end)
¶ mcass (start→ Bass) +mcopt (Bass → end). �

Proposition 56. Let I be a partition of the set {1, . . . , d} into intervals, such that RI is a border of
Tass. We have

mcass (start→ I) ¶ mc(start→ I) + Δ X (I, start),

where we recall that Δ = 24/5 − log2 (5).

Proof. Transforming R into RI amounts to sorting the sequence R� for each interval � ∈ I.
Theorem 24 states that MinimalStableSort performs this transformation for a cost that is at least
A�H� , where we set

H� = −
∑
8∈�

A8/A� log2 (A8/A�).

Meanwhile, adaptive ShiversSort performs the same transformation for a cost that is 0 if � ∈ start,
and at most A8 (H� + Δ) in general.

We conclude that

mcass (start→ I) ¶
∑
� ∈I

A� (H� + Δ)1� ∈start ¶ mc(start→ I) + Δ X (I, start). �

Our next move consists in proving a monotonicity statement: whenever a partition I refines
another partition J, obtaining the partition I never costs more than obtaining J, and sorting the
partition J never costs more than sorting I.

Lemma 57. Let I and J be two partitions of the set {1, . . . , d} into intervals, such that I refines J. We
have mc(start→ I) ¶ mc(start→ J) and mc(I→ end) ¾ mc(J→ end).

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:47

Fig. 8. Transforming the tree Topt into a new tree T ′ of smaller merge cost (in case 9 = 4).

Proof. Let I = (�1, . . . , �=) and J = (�1, . . . , �<) be our two partitions of the set {1, . . . , d}. We
prove Lemma 57 by induction on =.

First, if = ¶ <, then I = J, and the result is immediate. Then, if = ¾ < + 2, let L be a partition
that lies between the partitions I and J (i.e., I strictly refines L, which strictly refines J). The
induction hypothesis ensures that mc(start → I) ¶ mc(start → L) ¶ mc(start → J) and
mc(I→ end) ¾ mc(L→ end) ¾ mc(J→ end).

Finally, let us assume that = =< + 1. We first prove that mc(I→ end) ¾ mc(J→ end). Up to
redefining the sequence R as the sequence RI, we assume without loss of generality that I = start.
In that case, let � 9 be the only interval such that d9 = 2: it is the disjoint union of the intervals
� 9 = { 9} and � 9+1 = { 9 + 1}. Then, recall that Topt is the merge tree generated by MinimalStableSort
on the sequence R. Up to replacing R by its mirror (i.e., by the sequence ('=, '=−1, . . . , '1), and
denoting by X 9 and X 9+1 the respective depths of the leaves ' 9 and ' 9+1 in the tree Topt, we assume
without loss of generality that X 9 ¾ X 9+1.

Then, let us consider the sequence of merges performed by MinimalStableSort when sorting the
sequence R: these are the merges between two runs '- and '. that are siblings in the tree Topt. We
modify that sequence as follows. First, the run ' 9 is deleted, and its (unique) merge with another
run is also deleted. Second, and for every run '- ever involved in a merge:

⊲ if - is of the form { 9 + 1, . . . , G} (with G ¾ 9 + 1) we replace '- by the run '{ 9,...,G } ;
⊲ if - is of the form {G, . . . , 9} (with G ¶ 9 − 1) we replace '- by the run '{G,..., 9−1} ;
⊲otherwise, we keep the run '- as is.

This situation is illustrated in Figure 8, where merges of the the former sequence are gathered in
the tree Topt (on the left) and the merges of the latter (modified) sequence are gathered in the tree
T ′ (on the right).

In this new tree T ′, the depth of each run '8 either does not change or decreases (the former runs
' 9 and ' 9+1, which do not longer exist, are seen as both belonging to the run '{ 9, 9+1}). Consequently,
by following this new sequence of merges, we transform the sequence RJ into the sequence Rend,
for a total cost mc such that mcopt (J→ end) ¶ mc ¶ mcopt (I→ end).

Second, we prove that mc(start→ I) ¶ mc(start→ J). This time, the independence property of
MinimalStableSort ensures that we can work independently on all the sub-sequences R � , for each
interval � ∈ J. Thus, and up to redefining the sequence R as the sequence R � , we assume without

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:48 V. Jugé

Fig. 9. Transforming the tree Topt into a new forest F of smaller merge cost (in case I = 5).

loss of generality, we assume that J = end, and thus that I = {{1, . . . , I}, {I + 1, . . . , d}} for some
integer I. Then, let us consider the sequence of merges performed by MinimalStableSort when
sorting the sequence R. We modify that sequence as follows:

⊲ the (unique) merge between runs '- and '. such that I ∈ - and I + 1 ∈ . is deleted;
⊲every merge between runs '- and '. such that {I, I + 1} ⊆ - is replaced by a merge between
the runs '{G∈- : G¾I+1} and '. ;

⊲every merge between runs '- and '. such that {I, I + 1} ⊆ . is replaced by a merge between
the runs '- and '{~∈. : ~¶I} ;

⊲other merges are not modified.

This situation is illustrated in Figure 9, where merges of the the former sequence are gathered in
the tree Topt (on the left) and the merges of the latter (modified) sequence are gathered in the forest
F (on the right), which consists of two trees: one that gathers the runs '- such that - ⊆ {1, . . . , I}
and one that gathers the runs '- such that - ⊆ {I + 1, . . . , d}.

Again, the depth of each run '8 in this new forest either does not change or decreases. Conse-
quently, by following this new sequence of merges, we transform the initial sequence R into the
sequence RJ, for a total cost mc such that mc(start→ I) ¶ mc ¶ mc(start→ J). �

Lemma 58. Let I and J be two partitions of the set {1, . . . , d} into intervals, such that I refines J. If I
is a d-refinement of J, then mc(I→ J) ¶ dlog2 (d)eX (I, J).

Proof. Let I = (�1, . . . , �=) and J = (�1, . . . , �<) be our two partitions of the set {1, . . . , d}.
Consider some integer � 9 such that d9 ¾ 2, and let 8 be the integer such that � 9 is the disjoint union
of �8+1, �8+2, . . . , �8+d9 . We can merge '�8+1 , . . . , '�8+d9 into one unique run '�9 by using a balanced
binary merge tree of height dlog2 (d9)e. The total merge cost of these operations is thus bounded
from above by dlog2 (d)e A �9 . Proceeding in this way for every interval � 9 such that d9 ¾ 2, we
transform the sequence RI into RJ for a cost of dlog2 (d)e X (I, J) or less. �

Theorem 59. The algorithm ^-stack ShiversSort is [2^+3-optimal.

Proof. Let R = ('1, . . . , 'd) be a sequence of runs to sort, of total length = and entropyH , and
let mc^ be the merge cost of ^-stack ShiversSort when sorting the sequence R. Let also - = {8 : '8
is not very high}, and let =★ =

∑
8∈- A- be the sum of the lengths of those runs '8 that are not very

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:49

high. For all 8 ∈ - , we know that blog2 (A8)c = ℓ8 ¶ ℓ★large ¶ log2 (=/^), and thus that A8 ¶ 2=/^. It
follows that

=H =

d∑
8=1

A8 log2 (=/A8) ¾
∑
8∈-

A8 log2 (=/A8) ¾
∑
8∈-

A8 log2 (^/2) = =∗ log2 (^/2).

Then, Lemma 51 proves that each very high run '8 belongs to both Bass and Bopt. and thus the
pairwise distortions between the partitions Bass, Bopt, K and start are bounded from above by =★.

It follows that
mc^ ¶ mcass (start→ Bass) +mcopt (Bass → end) by Corollary 46b

¶ mcopt (start→ Bass) +mcopt (Bass → end) + Δ=★ by Proposition 56
¶ mcopt (start→ K) +mcopt (K→ Bass) +mcopt (Bass → end) + Δ=★
¶ mcopt (start→ K) +mcopt (Bass → end) + (Δ + 4)=★ by Proposition 55
¶ mcopt (start→ Bopt) +mcopt (K→ end) + (Δ + 4)=★ by Lemma 57
¶ mcopt (start→ Bopt) +mcopt (K→ Bopt) +mcopt (Bopt → end) + (Δ + 4)=★
¶ mcopt (start→ Bopt) +mcopt (Bopt → end) + (Δ + 7)=★ by Proposition 55
¶ mcopt (start→ end) + (Δ + 7)=★ since Bopt is a border of Topt .

Since Theorem 24 proves that mcopt (start→ end) ¾ =H ¾ =∗ log2 (^/2), we conclude that

mc^ ¶ mcopt (start→ end) + (Δ + 7)=★

¶ (1 + (Δ + 7)/log2 (^/2))mcopt (start→ end)
¶ (1 + [2^+3)mcopt (start→ end),

which means that ^-stack ShiversSort is [2^+3-optimal. �

In conclusion, the algorithm ^-stack ShiversSort is (2^ + 2)-aware and [2^+3-optimal. Hence, it
is also (2^ + 3)-aware and [2^+2-optimal, which proves Theorem 33.

6 Implementation Details and Simplifications
One of the reasons for introducing the algorithm adaptive ShiversSort is that it might be a good
substitute to TimSort, being both more efficient in the worst case and simple to implement by
modifying the code used for TimSort.

This quest for simplicity led us to adopt the current presentation of adaptive ShiversSort instead
of the original version presented in Jugé [14]. We prove below that Algorithms 1 and 8 perform
the same merge operations, in the same relative order, a claim that was made in Section 2.7. The
only behavioural difference between these two variants is that a push operation, which would
happen after a given merge operation in the original algorithm, may now happen before that merge
operation.

Then, we focus more specifically on the space complexity of adaptive ShiversSort. Indeed past
versions of TimSort in languages, such as Python or Java suffered from implementation bugs [1, 6],
which involved the time complexity and, most importantly, the space complexity of TimSort. In
both languages, the stack S used in TimSort is simulated by a fixed-size array. Allocating enough
memory to that array is therefore a crucial step. This task requires bounding from above the size
that S may ever take during the execution of TimSort, before even starting to sort the array � (i.e.,
when the only thing known about � is its length). However, that step was incorrectly performed,
which led to the bugs mentioned above. That is why, in order to avoid similar problems in the
future, we study this problem below.

Another critical point, if one were to replace TimSort by adaptive ShiversSort or length-adaptive
ShiversSort, consists in making sure that as few code lines as possible be modified, and that
switching between the two algorithms be straightforward. This point was already taken care of

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

S5.Thmtheorem17
S5.Thmtheorem27
S5.Thmtheorem26
S5.Thmtheorem28
S5.Thmtheorem26

31:50 V. Jugé

since, as mentioned in the introduction, the only part that distinguishes adaptive ShiversSort and
length-adaptive ShiversSort from TimSort is the merge policy used for choosing which large runs
to merge. Below, we complete this task and actually provide the few code lines that should be used
in order to use adaptive ShiversSort or length-adaptive ShiversSort instead of TimSort.1

6.1 Comparing the Two Versions of c-Adaptive ShiversSort
In Section 2.7 and in the dicussion above, we claim that, when Algorithms 1 and 8 are used to sort
a given array, they perform the same merge operations, in the same order. This amounts to proving
the following variant of Proposition 18.

Proposition 18b. Let S and S be two consecutive states encountered during an execution of Algo-
rithm 8. We have S = succ(S).

In order to prove Proposition 18b, we first prove a variant of Lemma 7.

Lemma 7b. At any time during the main loop of Algorithm 8, if the run stack is S = ('1, . . . , 'ℎ),
we have:

ℓ1 > ℓ2 > . . . > ℓℎ−2. (3)

Proof. The proof is done by induction. First, if ℎ ¶ 3, there is nothing to prove: this case occurs,
in particular, when the algorithm starts. Now, consider some stack S = ('1, . . . , 'ℎ) that satisfies
(3) and is updated into a new stack S = ('1, . . . , 'ℎ), either by merging two of the runs 'ℎ−2, 'ℎ−1
and 'ℎ , or by pushing the run '

ℎ
:

⊲ If a run merge was just performed, then ℎ = ℎ − 1 and '8 = '8 for all 8 ¶ ℎ − 3. Thus, the
inequalities ℓ1 > ℓ2 > . . . > ℓℎ−3 immediately rewrite as ℓ1 > ℓ2 > . . . > ℓ

ℎ−2.
⊲ If the run '

ℎ
was just pushed, then ℎ = ℎ + 1 and '8 = '8 for all 8 ¶ ℎ. Thus, the inequalities

ℓ1 > ℓ2 > . . . > ℓℎ−2 already rewrite as ℓ1 > ℓ2 > . . . > ℓ
ℎ−3. Furthermore, since Algorithm 8

triggered a push operation instead of a merge operation, it must be the case that ℓ
ℎ−3 = ℓℎ−2 >

ℓℎ−1 = ℓℎ−2.

In both cases, the stack S also satisfies (3), which completes the induction. �

Proof of Proposition 18b. Let < be the merge operation that transforms the state S into S.
Let S = ('1, . . . , ':+8) be the run stack just before < takes place, with 8 = 1 or 8 = 2, and let
R = (':+8+1, . . . , 'C) be the sequence of those runs that are yet to be pushed onto the stack, so that
< consists in merging the runs ': and ':+1, and that S is the concatenation of S and R.

⊲ If 8 = 1, Lemma 7b states that ℓ1 > ℓ2 > . . . > ℓ:−1 , and since Algorithm 8 performed the
merge<, it means that ℓ:−1 > ℓ:+1 ¾ ℓ: .

⊲ If 8 = 2, Lemma 7b states that ℓ1 > ℓ2 > . . . > ℓ: , and since Algorithm 8 performed the merge
<, it means that ℓ: ¶ max{ℓ:+1, ℓ:+2}.

Both cases imply that : is the merge point of S, and therefore that S = succ(S). �

6.2 Scale Invariance
In the introduction, we claimed that length-adaptive ShiversSort is a scale-invariant merge sort, i.e.,
that the sequence of merges it performs does not change if we multiply the length of each run by a
1Since this article was written, PowerSort has been chosen as the new standard sorting algorithm in Python. TimSort
remains the standard sorting algorithm for non-primitive types in Java.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:51

constant 0. Being scale-invariant is a desirable property shared by all the algorithms reviewed in
Table 1 and in Section 2, except ShiversSort and adaptive ShiversSort. The fact that length-adaptive
ShiversSort is indeed scale-invariant is a direct consequence of the following result.

Lemma 62. Let A and = be positive integers, such that A ¶ =. For all integers 0 ¾ 1, we have

blog2 (A/(= + 1))c = blog2 (0A/(0= + 1))c .

Proof. Let ℓ = blog2 (A/(= + 1))c and ℓ ′ = blog2 (0A/(0= + 1))c. Since
0A

0= + 1 =
A

= + 1 +
(0 − 1)A

(= + 1) (0= + 1) ¾
A

= + 1 ,

we know that ℓ ′ ¾ ℓ . Conversely, recall that A/(= + 1) < 2ℓ+1 and that ℓ ¶ −1. This means that
= + 1 > 2−ℓ−1A and that 2−ℓ−1 is an integer, so that = ¾ 2−ℓ−1A . It follows that

0A

0= + 1 <
0A

0=
=
A

=
¶ 2ℓ+1,

and therefore that ℓ ′ ¶ ℓ , which completes the proof. �

6.3 Stack Size
In Section 3, we focused on the time complexity of adaptive ShiversSort, which is obviously an
important parameter. However, for the reasons mentioned just above, evaluating precisely the
space complexity of adaptive ShiversSort is also important. Thus, we first provide upper bounds on
the stack size that might be required while sorting an array of size =.

Since, as mentioned in Section 1, TimSort is also based on dealing with small runs with an ad hoc
sub-routine, we also take into account the minimal size smin that characterises runs large enough to
be considered by our merge policy (except the last run, which may be of any size). We also note
ℓmin = blog2 (smin)c the minimal level of such runs.

Proposition 63. At any time while sorting an array of size = ¾ smin by considering runs of size
smin or more (except, possibly, the rightmost run), the stack size required by the algorithm adaptive
ShiversSort is at most dlog2 (=)e + 1 − ℓmin.

Proof. Let S = ('1, . . . , 'ℎ) be some stack encountered while executing adaptive ShiversSort.
An immediate consequence of Lemma 7 is that ℓ1 > . . . > ℓℎ−2. It follows that

ℓ8 ¾ ℓℎ−2 + (ℎ − 2 − 8) ¾ ℓmin + (ℎ − 2 − 8)

for all 8 ¶ ℎ − 2, and thus that A8 ¾ 2ℓ8 ¾ 2ℎ−2−8+ℓmin as well. Consequently,

= ¾ A1 + . . . + Aℎ ¾

(
ℎ−2∑
8=1

A8

)
+ smin + 1 ¾

(
ℎ−2∑
8=1

2ℎ−2−8+ℓmin

)
+ 2ℓmin + 1 = 2ℎ−2+ℓmin + 1,

and therefore ℎ < log2 (=) + 2 − ℓmin. �

As an immediate consequence, and since smin ¾ 1, i.e., ℓmin ¾ 0, we already know that no stack
of size larger than dlog2 (=)e + 1 will ever be required. Then, in practice, it remains to check whether
the stack sizes currently used in the implementations of TimSort in both languages Python and Java
would be sufficient for sorting arrays of any size. In fact, it might even be possible to use smaller
arrays than those currently in use, but whether making such a change would be worth the effort is
not clear. Finally, we only focus here on arrays of meaningful length, which means that Python and
Java cannot deal with arrays of arbitrary sizes; we make that point clearer below.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:52 V. Jugé

Algorithm 11: Checking whether ℓ8 ¶ max{ℓ8+1, ℓ8+2}, when 2 = 1

Input : Integers A8 , A8+1 and A8+2
Result: true if ℓ8 ¶ max{ℓ8+1, ℓ8+2}, and false otherwise.
Note: We use bit-wise and, or and not binary operations on integers.

1 G ← A8+1 or A8+2
2 return G > (A8 and (not G))

Corollary 64. Whenever sorting an array of meaningful length, the size of the array used to
implement TimSort’s stack in both languages Python and Java is large enough to also implement the
stack of adaptive ShiversSort.

Proof. Let = be the length of the array to be sorted. In Python, TimSort’s stack is simulated
by an array of size ℎmax = 85 and contains only runs of size at least 32 [22], i.e., ℓmin = 5. Thus,
Proposition 61 proves that this array is large enough whenever = ¶ 289: this is more than could
ever be handled by an actual computer, and therefore large enough for all reasonable purposes.

In Java, the situation is slightly different, because we only have ℓmin = 4, and TimSort’s stack is
simulated by an array whose size depends on = and is quite smaller [4]. More precisely, this size is
the integer ℎmax defined by

ℎmax =


5 if = ¶ 119,

10 if 120 ¶ = ¶ 1541,

24 if 1542 ¶ = ¶ 119150,

49 if 119151 ¶ = ¶ 231 − 5.

Finally, Java fails to handle and sort arrays of length = ¾ 231 − 4, which makes these cases irrelevant
for our purposes. We complete the proof by checking that ℎmax ¾ dlog2 (=)e + 1 − ℓmin when = is
equal to 119, 1541, 119150 or 231 − 5, and therefore in all cases where = ¶ 231 − 5. �

6.4 Switching from TimSort to (Length-)adaptive ShiversSort in Python and Java
The general structures of the merge policies of TimSort, adaptive ShiversSort and length-adaptive
ShiversSort are remarkably similar. However, a crucial difference that adaptive ShiversSort and
length-adaptive ShiversSort have with TimSort is that, instead of comparing directly the lengths
of the runs involved, they require comparing their levels. More precisely, a key step is to check
efficiently whether ℓℎ−2 ¶ max{ℓℎ, ℓℎ−1}, which might be bothersome if implemented carelessly.
Fortunately, given three integers A8 , A8+1 and A8+2, checking whether ℓ8 ¶ max{ℓ8+1, ℓ8+2} is made
very easy by the use of Boolean integer operations. When 2 = 1, this is the object of the following
two-line algorithm.

Proposition 65. When given positive integers A8 , A8+1 and A8+2 as input, and provided that 2 = 1,
Algorithm 11 returns true if ℓ8 ¶ max{ℓ8+1, ℓ8+2}, and false otherwise.

Proof. Let ℓ , G ′ and ℓ ′ be the integers defined by ℓ = blog2 (G)c, G ′ = (A8 and (not G)), and
ℓ ′ = blog2 (G ′)c. By construction, we have ℓ = max{ℓ8+1, ℓ8+2}. Thus, we shall prove that ℓ8 ¶ ℓ ,
which is the inequality that Algorithm 11 is supposed to check, if and only if G ′ < G , which is what
Algorithm 11 actually checks.

Below, we write integers in base 2: the bit of weight 28 of an integer = is denoted by b8 (=), so
that = =

∑
8¾0 2

8b8 (=). We complete the proof by distinguishing two cases:

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:53

Algorithm 12: Checking whether ℓ8 ¶ max{ℓ8+1, ℓ8+2}, when 2 = = + 1
Input : Integers A8 , A8+1, A8+2 and =
Result: true if ℓ8 ¶ max{ℓ8+1, ℓ8+2}, and false otherwise.

1 < ← =

2 while< ¾ A8 :
3 < ← b</2c
4 return (< < A8+1) or (< < A8+2)

⊲ If ℓ8 ¶ ℓ , we have ℓ ′ ¶ ℓ8 by definition of G ′, and thus ℓ ′ ¶ ℓ . Since bℓ ′ (G ′) = 1 = bℓ (G) ≠ bℓ (G ′),
we also have ℓ ≠ ℓ ′. It follows that ℓ ′ < ℓ , and thus that G ′ < G .
⊲ If ℓ8 > ℓ , we have bℓ8 (A8) = bℓ8 (not G) = 1, and therefore both bℓ8 (G ′) = 1 too. This proves that
ℓ ′ ¾ ℓ8 > ℓ , and it follows that G ′ > G . �

Consequently, and as promised, switching from TimSort to adaptive ShiversSort would be
extremely easy in practice. For instance, in Python, it would suffice to replace the lines 1940 – 1951
of the implementation of TimSort [22] by the following 8 lines:

1940 Py_ssize_t n = ms->n - 3;

1941 if (n >= 0) {

1942 Py_ssize_t x = p[n+1]. len | p[n+2]. len;

1943 if (x > (p[n].len &~x)) {

1944 if (merge_at(ms, n) < 0)

1945 return -1;

1946 }

1947 }

In Java, it would also suffice to replace the lines 405–412 of the implementation of TimSort [4]
by the following 4 lines:

405 int n = stackSize - 3;

406 int x = runLen[n+1] | runLen[n+2];

407 if (n < 0 || x <= (runLen[n] &~x))

408 break;

Similarly, when 2 = = + 1, where = is the length of the array to be sorted, checking whether
ℓ8 ¶ max{ℓ8+1, ℓ8+2} is the object of the following five-line algorithm.

Proposition 66. When given positive integers A8 , A8+1 and A8+2 as input, and provided that 2 = = + 1,
Algorithm 12 returns true if ℓ8 ¶ max{ℓ8+1, ℓ8+2}, and false otherwise.

Proof. When one checks whether< ¾ A8 (in line 2) for the :th time, the variable< is equal to
b=/2:−1c. Since = ¾ A8 , this test is positive when : = 1. More generally, it is positive if and only if
= ¾ 2:−1A8 . Since : ¾ 1 and A8 is an integer, the latter inequality holds if and only if = + 1 > 2:−1A8
or, equivalently, if 1 − : > ℓ8 . Thus, we keep going into the loop of lines 2 and 3 until : = 1 − ℓ8 .

At this point, we go to line 4 and, for the same reasons as before, we have< ¾ A8+1 if and only if
1 − : > ℓ8+1. It follows that< < A8+1 if and only if ℓ8 = 1 − : ¶ ℓ8+1 and, similarly, that< < A8+2 if
and only if ℓ8 ¶ ℓ8+2. �

Thus, switching from TimSort to length-adaptive ShiversSort would also be very easy, although
it requires modifications in more than one place. For instance, in Python, it would suffice to replace
the lines 1934, 1940–1951, and 2041 of the implementation of TimSort [22] by the following 11 lines:

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

31:54 V. Jugé

1934 merge_collapse(MergeState *ms, Py_ssize_t m)
…
1940 Py_ssize_t n = ms->n - 3;

1941 if (n >= 0) {

1942 while (m >= p[n].len)

1943 m >>= 1;

1944 if (m < p[n+1]. len || m < p[n+2]. len) {

1945 if (merge_at(ms, n) < 0)

1946 return -1;

1947 }

1948 }
…
2401 if (merge_collapse (&ms, saved_ob_size) < 0)

Similarly, in Java, it would suffice to replace the lines 213 and 403–412 of the implementation of
TimSort [4] by the following eight lines:

213 ts.mergeCollapse(hi - lo);
…
403 private void mergeCollapse(int len) {

404 while (stackSize > 2) {

405 int n = stackSize - 3;

406 while (len >= runLen[n])

407 len >>= 1;

408 if (len >= runLen[n+1] && len >= runLen[n+2])

409 break;

References
[1] Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau. 2018. On the worst-case complexity of Timsort. In

Proceedings of the 26th Annual European Symposium on Algorithms (ESA ’18). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 4:1–4:13. Retrieved from https://arxiv.org/abs/1805.08612

[2] Nicolas Auger, Cyril Nicaud, and Carine Pivoteau. 2015. Merge Strategies: From Merge Sort to Timsort. Research Report
hal-01212839. HAL.

[3] Jérémy Barbay and Gonzalo Navarro. 2013. On compressing permutations and adaptive sorting. Theoretical Computer
Science, 513 (2013), 109–123.

[4] Josh Bloch. 2021. Timsort Implementation in Java. Retrieved from https://github.com/openjdk/jdk/blob/
3afeb2cb4861f95fd20c3c04f04be93b435527c0/src/java.base/share/classes/java/util/ComparableTimSort.java

[5] Sam Buss and Alexander Knop. 2019. Strategies for stable merge sorting. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 1272–1290.

[6] Stijn De Gouw, Jurriaan Rot, Frank de Boer, Richard Bubel, and Reiner Hähnle. 2015. OpenJDK’s Java.utils.Collec-
tion.sort() is broken: The good, the bad and the worst case. In Proceedings of the International Conference on Computer
Aided Verification. Springer, 273–289.

[7] Edsger Dijkstra. 1982. Smoothsort, an alternative for sorting in situ. In Theoretical Foundations of Programming
Methodology. Manfred Broy and Gunther Schmidt (Eds.), Springer, 3–17.

[8] Vladmir Estivill-Castro and Derick Wood. 1992. A survey of adaptive sorting algorithms. ACM Computing Surveys 24, 4
(1992), 441–476.

[9] Adriano Garsia and Michelle Wachs. 1977. A new algorithm for minimal binary search trees. SIAM Journal on
Computing 6, 4 (1977), 622–642.

[10] Herman Goldstine and John von Neumann. 1947. Planning and Coding of Problems for an Electronic Computing
Instrument . Research Report, Institute for Advanced Study.

[11] Mordecai Golin and Robert Sedgewick. 1993. Queue-mergesort. Information Processing Letters 48, 5 (1993), 253–259.
[12] Tony Hoare. 1961. Algorithm 64: Quicksort. Communications of the ACM 4, 7 (1961), 321.
[13] Te Hu and Alan Tucker. 1971. Optimal computer search trees and variable-length alphabetical codes. SIAM Journal on

Applied Mathematics 21, 4 (1971), 514–532.

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

https://arxiv.org/abs/1805.08612
https://github.com/openjdk/jdk/blob/3afeb2cb4861f95fd20c3c04f04be93b435527c0/src/java.base/share/classes/java/util/ComparableTimSort.java
https://github.com/openjdk/jdk/blob/3afeb2cb4861f95fd20c3c04f04be93b435527c0/src/java.base/share/classes/java/util/ComparableTimSort.java

Adaptive Shivers Sort: An Alternative Sorting Algorithm 31:55

[14] Vincent Jugé. 2020. Adaptive Shivers sort: An alternative sorting algorithm. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms. 1639–1654.

[15] Donald Knuth. 1998. The Art of Computer Programming, Volume 3 (2nd Ed.) Sorting and Searching. Addison Wesley
Longman Publish. Co., Redwood City, CA.

[16] Heikki Mannila. 1985. Measures of presortedness and optimal sorting algorithms. IEEE Transactions on Computers 34,
4 (1985), 318–325.

[17] Alistair Moffat, Gary Eddy, andOla Petersson. 1996. Splaysort: Fast, versatile, practical. Software: Practice and Experience
26, 7 (1996), 781–797.

[18] J. Ian Munro and Sebastian Wild. 2018. Nearly-optimal mergesorts: Fast, practical sorting methods that optimally
adapt to existing runs. In Proceedings of the 26th Annual European Symposium on Algorithms (ESA ’18). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 63:1–63:15.

[19] Tim Peters. 2021. Timsort Description. Retrieved from https://github.com/python/cpython/blob/
e5c8ddb1714fb51ab1defa24352c98e0f01205dc/Objects/listsort.txt

[20] Olin Shivers. 2002. A Simple and Efficient Natural Merge Sort. Technical Report. Georgia Institute of Technology.
[21] Tadao Takaoka. 2009. Partial solution and entropy. In Proceedings of the Mathematical Foundations of Computer Science

2009 . Springer, 700–711.
[22] Guido van Rossum and 69 Other Contributors. 2021. Timsort Implementation in CPython. Retrieved from https:

//github.com/python/cpython/blob/e5c8ddb1714fb51ab1defa24352c98e0f01205dc/Objects/listobject.c
[23] John Williams. 1964. Algorithm 232: Heapsort. Communications of the ACM 7 (1964), 347–348.

Received 23 June 2020; revised 28 September 2021; accepted 30 April 2024

ACM Transactions on Algorithms, Vol. 20, No. 4, Article 31. Publication date: August 2024.

https://github.com/python/cpython/blob/e5c8ddb1714fb51ab1defa24352c98e0f01205dc/Objects/listsort.txt
https://github.com/python/cpython/blob/e5c8ddb1714fb51ab1defa24352c98e0f01205dc/Objects/listsort.txt
https://github.com/python/cpython/blob/e5c8ddb1714fb51ab1defa24352c98e0f01205dc/Objects/listobject.c
https://github.com/python/cpython/blob/e5c8ddb1714fb51ab1defa24352c98e0f01205dc/Objects/listobject.c

	Abstract
	1 Introduction
	2 Adaptive ShiversSort and Related Algorithms
	2.1 Adaptive ShiversSort
	2.2 TimSort
	2.3 bold0mu mumu -StackSort and bold0mu mumu -MergeSort
	2.4 ShiversSort
	2.5 Augmented ShiversSort
	2.6 PowerSort and PeekSort
	2.7 Alternative Constructions and Variants

	3 Worst-Case Analysis of Adaptive ShiversSort
	3.1 A First Upper Bound
	3.2 A Finer Upper Bound

	4 Best-Case and Worst-Case Merge Costs
	4.1 Best-Case Merge Cost
	4.2 Optimality of Worst-Case Merge Costs

	5 Approximately Optimal Sorting Algorithms
	5.1 Inapproximability Bounds
	5.2 Approximability Bounds

	6 Implementation Details and Simplifications
	6.1 Comparing the Two Versions of bold0mu mumu cccccc-Adaptive ShiversSort
	6.2 Scale Invariance
	6.3 Stack Size
	6.4 Switching from TimSort to (Length-)adaptive ShiversSort in Python and Java

	References

