
Chapter 3 - Artefact
Analysis Fundamentals –
A Defender’s Perspective

By Alex Zacharis

Content:
•Static Analysis & Tools

•Dynamic Analysis & Tools

•Automation of Dynamic Analysis
●Evaluating Automated Analysis Platforms

•YARA & Rules

•H/W

• A process that uses various tools and techniques to
determine how the malicious code works.

• No single algorithm to indicate how to analyse code

• Analysts tend to have their own favorite techniques
and preferred tools

Malware Analysis

• Assess damage

• Identify vulnerability

• Discover IOCs

• Mitigate

• Detect Data Exfiltration

• Identify other infected hosts

• Catch the perpetrator

• Prevent it from happening again

• ….

Malware Analysis - Why ?

Malware analysis

Static Analysis

Static
analysis

Behavioural
analysis

Network
analysis

Automated
analysis

Precautions

• Create a safe Analysis Environment

• When executing samples, make sure there is no direct
access to the local network

Malware sample is analysed without being executed

Static Analysis

• strings list

• import and export tables

• list of file sections

• file resources

• signatures of well-known packers

Static Analysis Advantages

• Code is not executed (safer)

• Can provide useful information on malware
functionality and the algorithms used

• Possible to analyse parts of the code that are not
executed during dynamic analysis

Static Analysis Advantages

If (isChristmas()) {

 doBadThing();

}

Static Analysis Disadvantages

• Time consuming

• Obfuscation=Headache

• Requires good reverse engineering skills

• Hard to predict the execution path and follow registry
and stack changes

Static Analysis Tools

• PEID: detects packers, cryptors and compilers found
in PE executable files

• ExeInfo PE: used to view various information on any
executable file.

• PE Studio: a tool that performs static analysis of
32-bit and 64-bit Windows executable files

PEiD – Exeinfo – PeStudio

Static Analysis Tools (contd.)

• CFF Explorer: multiple features such as hex editor,
import adder, signature scanner, signature manager,
extension support, scripting, disassembler, dependency
walker etc.

• BinText: finds ASCII, Unicode and Resource strings
in a file.

CFF Explorer - BinText

Static Analysis Tools (contd.)
IDAPro: the most widely use disassembler

Ghidra (ghidra-sre.org)

Latest malware-analysis topics - because-security

https://ghidra-sre.org/
https://blog.because-security.com/tag/malware-analysis

Behavioural Analysis

Static
analysis

Behavioural
analysis

Network
analysis

Automated
analysis

The malicious code is intentionally executed in a controlled
environment to observe what changes it makes to the operating system

Behavioural Analysis

• File system

• Registry

• Process list

• System resources usage

• Visible anomalies (e.g. disappearing files).

• …

Behavioural Analysis Advantages

• Can be less time consuming than static
analysis

• Ability to understand behavior caused by
dynamically loaded code

• Analysed behavior might be used to identify
and disinfect other infected workstations.

Behavioural Analysis Disadvantages

• Non-executed code will not be analysed
(think isChristmas())

• Requires a certain level of expertise

• Static analysis is ‘safer’

Behavioural Analysis Tools

• Process Monitor (sysinternals)–
records info about File system, Registry,
and Process/Thread activity

• Virtualisation/Emulator Tools

• Network analysis tools

• Droidbox
• ….

Network Analysis

Static
analysis

Behavioural
analysis

Network
analysis

Automated
analysis

• During network analysis, the malware sample is
executed in a controlled environment while all
network traffic is captured.

• Hosts the malware was communicating with

• Well-known network traffic patterns

• Payload

• Which Exploit Kit was used

• ….

• Source of infection

Network Analysis

• Port Mirroring/Span Network tap

Network Analysis - Data Acquisition

Usually performed alongside behavioral analysis

Network Analysis - Data Acquisition

Virtualisation Tools

tcpdump
tcpdump –vv –c 10000 –s0 –A –w badboys.pcap –n -i eth0 not port 22

Tshark
tshark -i eth0 -w capture-output.pcap

Wireshark

Network Analysis Advantages

• It is often possible to identify addresses of C&C
servers and specific botnet to which a malware
belongs.

• Detect Exfiltrated Data

• Understand Malware Behavior

Network Analysis Disadvantages

• Requires Networking knowledge

• Encryption

• Network activity may differ significantly within
enclosed environment

• Not easy/possible to simulate response (hostfile,
dnsmasq ….)

Network Analysis Disadvantages

response =
Http.get(www.cnc.coms/dosomething.php);

If (response == “OK_DOSOMETHING”) {

 doBadThing();

}

Our Sample: File Exfiltration

• Wireshark / tshark / tcpdump/ngrep

• Dshell

• Nfdump/Nfsen

• Network Miner

• Fiddler

• Omnipeek

• Xplico / CapAnalysis

• Etc.

Network Analysis Tools

Linux distro based on Ubuntu
●Snort – Network IDS/IPS
●Suricata – Network IDS/IPS
●Bro – Network IDS/IPS
●OSSEC – Host based IDS
●Sguil – Network Security Monitoring tool
●ELSA – Log receiver, archiver, indexer, and web

frontend for incoming syslog
●Networkminer – Network Forensics Tool

Security Onion

Automated Analysis

Static
analysis

Behavioural
analysis

Network
analysis

Automated
analysis

•Cuckoo Sandbox (malwr.ee)

•VirusTotal - Home

•Free Automated Malware Analysis
Service - powered by Falcon Sandbox
(hybrid-analysis.com)

•Automated Malware Analysis - Joe
Sandbox Cloud Basic

•Scan Maldoc | Document+PDF Malware
Analysis (tylabs.com)

Online Sandboxes

https://malwr.ee/
https://www.virustotal.com/gui/home/upload
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.joesandbox.com/#windows
https://www.joesandbox.com/#windows
https://scan.tylabs.com/
https://scan.tylabs.com/

• Open source automated malware analysis system
• Uses virtualization (VirtualBox, KVM, VMWare)
• Python based, easy to customize
• Multiple report types (JSON, HTML, PDF, XML)

Results:
• Traces of calls performed by all processes spawned by the
malware.

• Files being created, deleted and downloaded by the
malware during its execution.

• Memory dumps of the malware processes.
• Network traffic trace in PCAP format.
• Screenshots taken during the execution of the malware.
• Full memory dumps of the machines

Cuckoo Sandbox

Basic Architecture- Cuckoo Example

Cuckoo Homepage

Considerations

Modular Malware

• Easy to handle redundant work

• Workload due to large amount of samples becomes manageable

• User friendly

• Excellent for quick wins

Automated Analysis Advantages

• Pre-defined boundaries

• Techniques against automated malware analysis

• Modular malware a no go?

Automated Analysis Disadvantages

• Can you mention some simple techniques?

Automated Analysis Disadvantages

If (isSandbox()) {

 doNotDoBadThing();

}

• Can you mention some simple techniques?

Automated Analysis Disadvantages

If (isSandbox()) {

 doNotDoBadThing();

}

sleep(86400000);

Type of Automated Analysis platform

What to look for:

∙ Availability (Open or closed)
∙ Output (verbose or binary)
∙ Resources dedicated to analysis
∙ Sample submission and search

functions
∙ Support or simulate human

interaction or fully static.

White Box

• Public and
open

• Verbose
reporting

Grey Box

• Public, but
closed

forensics
engine

• Binary
reporting

Black Box

• Unknown
resources

• Unknown
capabilities
• Unknown

reporting

• Online:

• Malwr, https://malwr.ee (Cuckoo based)

• Virus Total, https://www.virustotal.com/

• Hybrid Analysis, https://www.hybrid-analysis.com

• Offline/Tools:

• Cuckoo Sandbox

Examples of Automated Analysis
Platforms

https://www.virustotal.com/
https://www.hybrid-analysis.com/
http://www.cuckoosandbox.org/

● Submission Phase

● Modular Malware Support
● MD5 collision

● Analysis Phase

● Fingerprinting
● Verbose Output

● Registry Writing
● File Dropping

● Blind Fingerprinting Human Guessing
● Heat Mapping

● Meaningful Stalling
● Reporting Phase

● Social Engineering
● Decoys

Automated Malware Analysis
Phases & Checks

Holistic

Submission

Analysis Reporting

SUBMISSION PHASE

Submission Phase

Our own examples
https://malwr.ee/analysis/3157912/

https://malwr.ee/analysis/3157913/summary/

https://malwr.ee/analysis/3157912/
https://malwr.ee/analysis/3157913/summary/

Problem: How do we check malware functionality if it is modular?

Common Modules: anti-VM / anti-sandbox / Anti AV / browser hook /
webinject / keylogger / screenshot grabber / certificate grabber / application
monitoring / remote-access tool (RAT) / bot-control (DDOS)/ RAM Scrapping /
….

Format: Dll, Scripts ,Executables

File Number: Multiple files

Submission phase - Modular
Malware

What to look for….

Give the analyst the option to :

• Upload multiple files (No files should be renamed during this phase)

• Choose paths for each file

• Choose which will be executed first and with what parameter

• Choose period of execution

• Add Scheduled tasks and tamper Registry on Demand

Submission phase - Modular
Malware

Having two different executable files with totally different functionality but
identical md5 hashes (YES IT IS POSSIBLE *)

• hello.exe. MD5 Sum: cdc47d670159eef60916ca03a9d4a007 (decoy)

• erase.exe. MD5 Sum: cdc47d670159eef60916ca03a9d4a007 (malicious)

Submission phase – MD5 collisions

*http://www.mathstat.dal.ca/~selinger/md5collision/

http://www.mathstat.dal.ca/~selinger/md5collision/hello.exe
http://www.mathstat.dal.ca/~selinger/md5collision/erase.exe

ANALYSIS PHASE

Analysis Phase - Fingerprinting
Fingerprinting: the act of identifying constants on the system
that can act as strong indicators that a sample has landed in an
analysis environment.

Analysis Phase – Fingerprinting
–Registry Writing

Monitoring how a sample manipulates Registry

Elements. This may lead to the discovery of

malicious behavior so analysis platforms are

eager to report all Registry Key creation activity

but also can be used to expose internal
information of the platform.

Analysis Phase – Fingerprinting –
File Dropping

When registry writing is not possible or the
reports are not available due to lack of
monitoring, file dropping might be
implemented. By naming files based on the
identified fingerprinting variable an attacker
can easily extract valuable information

• Registry Keys artifacts

• Virtual devices

• Adapter name

• Network shares

• MAC Address

• Directories artifacts

(This list is far from exhaustive and is used as an example of possible finger-printable indicators)

Other Fingerprinting Techniques

Analysis Phase – Blind
Fingerprinting

Malicious Indicator: Number of Cores Check_1

Blind Fingerprinting Process aka no Output

Submit sample;

if (System Memory <= 133677056) trigger
Check_1;
else print hello2;

Examine output;

Analysis Phase – Human Guessing
Heat Mapping
• Key strokes
• Mouse movement
User Habitation
• File Creation
• OS Startup time, Running Time
• USB Sticks
Social Media Evidence Check
-Personal Info (FB, Twitter, Instagram)

Basic Checks

Environmental
Checks

Human Checks

Social checks

Solution (hard to implement with little results)

Give the analyst the option to:

• Use realistic environment (No 800*600 Screen Resolution!!!)

• Randomize environment (hostname, username, services
running, background image)

• Never tamper samples (file names, location etc)

• Generate realistic inputs and content directly in the analysis
platform (mouse movement etc)

Analysis phase – Fingerprinting

• Don’t just Sleep – Easy to detect and bypass

• Meaningfully Stall: Doesn’t stop execution but rather
performs a task which:
● Is time consuming
● Doesn’t consist of a code loop
● Is perceived as normal user behavior
● Looks Innocent

Analysis Phase – Meaningful Stalling

Typical one-liner example:
system(“findstr /s "computer help" *.txt”);

Some of the common fingerprinting attacks can be checked
with the following tools:

• https://github.com/LordNoteworthy/al-khaser

• https://github.com/a0rtega/pafish

Tools to Use

https://github.com/LordNoteworthy/al-khaser
https://github.com/a0rtega/pafish

REPORTING PHASE

Malware knows it is being analyzed:

• Convinces the analyst to visit a website or download file (ex.
C&C command set)

• Alarm is set to the malware writer that his malware is
being analyzed

• Uniquely encoded URL strings can be created to explicitly
inform their owner on which platform the sample has been
uploaded.

Reporting phase – Social
engineering

Malware knows it is being analyzed:

• Acts as if it was of a different family

Outcome:

• Inexperienced malware analyst can be tricked into believing it’s a less
dangerous sample

• Wrong disinfection decisions

• Disorientation of the forensics investigation process

How:

• Dropping files with filenames related to known malware

• Creating traffic towards C&C servers or domains related to known malware

• Including strings in different languages

Reporting phase – Decoys

Evaluation Method

Holistic

Submission

Analysis Reporting

Modularity
check MD5 Checks

Fingerprinting

Stalling

Social
Engineering

Decoys

• YARA is a tool aimed at helping malware researchers to
identify and classify malware families. With YARA you can
create descriptions of malware based on textual or binary
patterns.

• Source:
● http://plusvic.github.io/yara/

• Download:
● https://github.com/plusvic/yara/releases/tag/v3.4.0
● http://yara.readthedocs.org/en/latest/writingrules.html
● http://yara.readthedocs.org/en/latest/commandline.html

Introducing to YARA

http://plusvic.github.io/yara/
https://github.com/plusvic/yara/releases/tag/v3.4.0
http://yara.readthedocs.org/en/latest/writingrules.html
http://yara.readthedocs.org/en/latest/commandline.html

•rule [RULE NAME]

• {

• strings:

• [PATTERNS]

• conditions:

• [LOGICAL SENTENCES]

• }

Yara rule structure

• rule hello_yara

• {

• strings:

• $first_pattern = “Hello”

• condition:

• $first_pattern

• }

My first ‘hello world’ YARA rule

• rule PE_files

• {

• strings:

• $mz = “MZ”

• $pe = “PE”

• condition:

• $mz and $pe

• }

My first meaningful YARA rule

• mindless rules can lead to overhead

Keep note!

• rule PE_files_refined

• {

• strings:

• $mz = “MZ”

• $pe = “PE”

• condition:

• ($mz at 0) and

• ($pe at XXXXXX)

• }

My first YARA rule

• rule UPXPacked

• {

• strings:

• $ind1 = "UPX0"

• $ind2 = "UPX1"

• condition:

• $ind1 and $ind2

• }

UPX rule (basic)

• rule upx {
• meta:
• description = "UPX packed file"
• strings:
• $mz = "MZ"
• $upx1 = {55 50 58 30 00 00 00}
• $upx2 = {55 50 58 31 00 00 00}
• $upx_sig = "UPX!"
• condition:
• $mz at 0 and $upx1 in (0..1024) and
• $upx2 in (0..1024) and $upx_sig in (0..1024)
• }

UPX rule (advanced)

• rule 2_out_of_3_ver1:

• {

• strings:

• $a = “time"

• $b = “money“

• $c = “energy”

• condition:

• ($a and $b) or ($b and $c) or ($a and $c)

• }

2 out of 3

• rule 2_out_of_3_ver2:

• {

• strings:

• $a = “time"

• $b = “money“

• $c = “energy”

• condition:

• 2 of ($a, $b, $c)

• }

2 out of 3

• rule 2_out_of_3_ver2:

• {

• strings:

• $a = “time"

• $b = “money“

• $c = “energy”

• condition:

• 2 of them

• }

2 out of 3

• rule The_Jetsons:

• {

• strings:

• $member1 = “Judy"

• $member2 = “Elroy“

• $member3 = “George”

• $member4 = “Jane”

• $family = “Jetson”

• condition:

• $family and 2 of ($member*)

• }

Wildcards

• rule SleepDetected_1:

• {

• strings:

• $a = “GetTickCount"

• $b = “Sleep“

• $c = “CreateTimerQueueTimer”

• condition:

• 1 of them

• }

Of/any

• rule SleepDetected_2:

• {

• strings:

• $a = “GetTickCount"

• $b = “Sleep“

• $c = “CreateTimerQueueTimer”

• condition:

• any of them

• }

Of/any

• rule PowerShell_Download:

• {

• strings:

• $a = “powershell"

• $b = “http“

• $c = “New-Object”

• condition:

• all of them

• }

Of/any

• 111111BAD1111111111BAD111111111111111111BAD1111111111111111
11111111111111BAD11111111111111111111BAD1111111111BAD111111
11111111111111BAD1111111111BAD111111BAD111111111111111111B
AD1111111BAD111111111111111111BAD1111111BAD111111111111111
111BAD1111111BAD111111111111111111BAD1111111BAD11111111111
1111111BAD1111111BAD111111111111111111BAD1111111BAD1111111
11111111111BAD1111111BAD111111111111111111BAD1111111BAD111
111111111111111BAD1111111BAD111111111111111111BAD1111111BA
D111111111111111111BAD1111111BAD111111111111111111BAD11111
11BAD111111111111111111BAD1111111BAD1111BAD1111111BAD1111
11111111111111111111

Patterns

• rule pattern_bad_1:

• {

• strings:

• $a = “BAD"

• condition:

• #a == 27

• }

Patterns

• rule pattern_bad_2:

• {

• strings:

• $a = “BAD"

• condition:

• #a > 5

• }

Patterns

• rule pattern_bad_3:

• {

• strings:

• $a = “BAD"

• condition:

• #a[1] == 7

• }

Patterns

• rule pattern_bad_4:

• {

• strings:

• $a = “BAD"

• condition:

• $a at 7

• }

Patterns

• rule text1:

• {

• strings:

• $a = “powershell“ nocase

• condition:

• $a /* powershell POWERSHELL pOwErSheLL */

• }

Modifiers

• rule text2:

• {

• strings:

• $a = “rational“ fullword

• condition:

• $a /* rational = good; irrational = bad*/

• }

Modifiers

• rule hex1:

• {

• strings:

• $h = {A9 12 7? ?? 91 B?}

• condition:

• $h /* A9 12 78 00 91 B5 */

• }

Hexstrings

• rule hex2:

• {

• strings:

• $h = {A9 12 [3] 91 B5}

• condition:

• $h /* A9 12 78 10 11 91 B5 */

• }

Hexstrings

• rule hex3:

• {

• strings:

• $h = {A9 12 [0-3] 91 B5}

• condition:

• $h /* A9 12 78 91 B5 */

• }

Hexstrings

• rule hex4:

• {

• strings:

• $h = {A9 12 [5 -] 91 B5}

• condition:

• $h /* A9 12 EE EE EE 78 78 91 B5 */

• }

Hexstrings

Homework

• Context:
● Given the test.lnk sample

• Objectives:
● Create a rule to detect the dropper
● Create a rule to detect the final payload based on the IP communicated

•Download: https://pithos.okeanos.grnet.gr/public/79coTq2L5qXfcNFLV8cxY

Mission

Questions ?

