
Software Security Course
An Introduction to Software Security

Dimitrios A. Glynos
{ daglyn at unipi.gr }

Department of Informatics
University of Piraeus

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 1 / 65

Part I

What is software security?

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 2 / 65

Software Security

Software Security: A set of practices that help protect a software’s
assets from attackers
What can we consider as assets in a piece of software?

The software’s functionality
The software’s proprietary algorithms and data (e.g. training set)
The software’s system data
The software’s user data
The software’s development environment
The software’s supply chain
...

Sometimes an asset is not under the complete control of the vendor
(e.g. AWS shared responsibility model¹ for deployment environment)

¹https://aws.amazon.com/compliance/shared-responsibility-model/
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 3 / 65

https://aws.amazon.com/compliance/shared-responsibility-model/

Where does security stand in the world of software?

Secure Software→ Quality Software→ Dependable Software

Security may bring features to a software project (privacy,
accountability, attestation, etc.)

Software security practices are quickly becoming a formal requirement
in all types of software development projects (i.e. not just the critical
ones) ² ³ ⁴ ⁵

²Automotive ISO‐SAE‐21434 cybersecurity requirements
³Medical Device Pre‐market cybersecurity requirements
⁴Directive for USA government contractors
⁵EU Radio Equipment Directive

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 4 / 65

https://www.synopsys.com/blogs/software-security/iso-sae-21434-automotive.html
https://www.ropesgray.com/en/insights/alerts/2023/10/fda-finalizes-guidance-on-medical-device-manufacturer-cybersecurity-responsibilities
https://www.pillsburylaw.com/en/news-and-insights/government-contractor-cybersecurity-requirements.html
https://www.sgs.com/en/news/2023/07/safeguards-9523-radio-equipment-directive-red-delegated-act-for-cybersecurity-officially-postponed

The C I A triad

Since Software Security lies in the realms of Information Security we are
mostly concerned with matters of:

Confidentiality

Integrity

Availability

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 5 / 65

Software Security

Software Security mainly deals with:

The identification of security defects

The implementation of security controls

The management of security issues within the lifecycle of a project

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 6 / 65

Software Security Defects

Software Security Defects appear in:

The architecture or protocol(s) of a project

The implementation of a project (security bugs)
The release format and distribution of a project’s resources

Default configuration ⁶
Packaging issues
Supply chain issues

⁶Patches are not usually shipped to address security defects that the end users may
introduce via bad configuration
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 7 / 65

Example types of security bugs

Missing Access Control

Buffer overflow

Dangling Pointer dereference bugs (Use‐after‐free, Double free, NULL
pointer dereference)

Unsafe Deserialization

Injection (XSS, Command Injection, SQL Injection, Prompt Injection etc.)

Race Condition

Parser Differentials

Business Logic errors

...

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 8 / 65

Impact of exploitation

To a System

Denial of service

Disclosure of
sensitive
information

Memory
corruption

Code execution

Privilege
escalation

Circumvention of
business logic

...

To an Organization

Financial losses

IP theft

Legal action

Reputation
damage

...

To an Individual

Financial losses

Identity theft

Property theft

Incrimination

Reputation
damage

...

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 9 / 65

Software Vulnerabilities

Security bugs are also called ”software vulnerabilities” because their
exploitation by attackers may lead to the compromise of the
confidentiality, integrity and/or availability of resources (services,
systems, data, etc.)
A piece of software that exploits a vulnerability is called an ”exploit”

A piece of software that demonstrates a vulnerability is called a
”proof‐of‐concept” (or PoC)

A ”zero‐day attack” is an attack that exploits a previously unknown
vulnerability

The software vendor either did not know this vulnerability existed or did
not have the necessary time to address it

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 10 / 65

Recorded damages from vulnerability exploitation

Damages connected to software vulnerability exploitation
Morris/Internet worm, 1988
Exploitation of sendmail / finger / rsh (and weak passwords!),
6000 hosts infected, $100,000–10,000,000 estimated damages
Stuxnet worm, 2010
Exploitation of 4 vulnerabilities in Microsoft Windows,
targeted SCADA systems, damaged Iran’s uranium enrichment program
RSA SecurID breach, 2011
Exploitation of 0‐day bug in Adobe Flash,
$66 million in damages
SolarWinds breach, 2020
Attack to software distribution point led to data breaches in federal
systems
Solana Wormhole Attack, 2022
0‐day attack to Solana ETH signatures,
$326 million lost

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 11 / 65

The 0‐day industry

Even if the vendors / community did their best to protect users..
Not everyone will play nice: a growing market behind 0‐day exploits

2005: WMF vulnerability sold by individual in black market for $4000
Response: Zero‐day initiatives from various infosec vendors (acquisition
and disclosure of vulnerabilities coming from independent researchers)

2012: Forbes on 0‐day market and $250,000 sell of iOS exploit by broker
Response: Bug bounties for researchers by major software vendors
(Microsoft, Apple, Google, Facebook, ...)

2015: French 0‐day supplier VUPEN is forced to shutdown due to
Wassenaar export controls, becomes US‐based Zerodium
2016: details about the US Government (USG) Vulnerabilities Equity
Program (VEP) are made public

“the discovery of vulnerabilities may present competing equities for USG
offensive and defensivemission interests”.

2023: Appeals court sides with Corellium (Vulnerability Research SaaS
Platform) in Apple Copyright Case

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 12 / 65

Can we win the 0‐day race?

The Wolves of Vuln Street ‐ The First System Dynamics Model of the 0day
Market⁷

A joint study between HackerOne, MIT and Harvard

Important outcome: Creating incentives for tools and techniques that
support (black box) vulnerability discovery is a more efficient way for
defenders to drain the offensive stockpile of 0‐day vulnerabilities.

Reverse
Engineering

Fuzzing
& Black

Box
Testing

Source
Code

Auditing &
Static

Analysis

Attacker
Techniques

Vendor
Techniques

⁷https://www.hackerone.com/vulnerability-management/
wolves-vuln-street-first-system-dynamics-model-0day-market
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 13 / 65

https://www.hackerone.com/vulnerability-management/wolves-vuln-street-first-system-dynamics-model-0day-market
https://www.hackerone.com/vulnerability-management/wolves-vuln-street-first-system-dynamics-model-0day-market

Why do we care?

Leaving security defects unpatched undermines

the quality of a software product

the trust users place in a system

the importance of the information being processed

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 14 / 65

Can we find all of these defects automatically?

The short answer is ”NO”.
We need all the help we can get

People
Processes
Technology

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 15 / 65

Security: An ongoing process

There’s no such thing as 100% secure software

Security is a process, not a goal

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 16 / 65

Part II

Security in the SDLC

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 17 / 65

Revelations from 60+ years of software engineering

Security is often considered too late in the product lifecycle
Danger due to complexity: may be difficult to fix an architectural flaw
Danger due to increased cost: may be too costly to fix something
outside of the development plan
Danger due to bad timing: a security fix may delay a planned release
creating business risks
Danger due to IP theft: important data about a product may leak to
competitors
Danger due to legal action: users may sue the vendor due to insufficient
measures taken in protecting their assets
Danger due to reputation damage: the vendor / provider might not
recover from its handling of a breach

Requ
ireme

nts

Design

Deve
lopme

nt

Testing
Review

Deplo
ymen

t

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 18 / 65

Secure Software Development Lifecycle (S‐SDLC)

To neutralize such project risks, a Secure SDLC (or S‐SDLC) framework is
applied that runs security processes throughout all phases of the SDLC
Example S‐SDLC Frameworks

Microsoft SDL⁸
OWASP SAMM⁹
NIST SSDF¹⁰

The security processes make sure that the phase deliverable is also fine
from the perspective of security

Requ
ireme

nts✓

Design✓

Deve
lopme

nt✓

Testing✓

Review✓

Deplo
ymen

t✓

⁸https://www.microsoft.com/en-us/securityengineering/sdl/
⁹https://owaspsamm.org
¹⁰https://csrc.nist.gov/projects/ssdf

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 19 / 65

https://www.microsoft.com/en-us/securityengineering/sdl/
https://owaspsamm.org
https://csrc.nist.gov/projects/ssdf

OWASP Software Assurance Maturity Model (SAMM)

SAMM is organized in 5 domains

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 20 / 65

Comments on SAMM

Developed by OWASP

Has common roots with another industry framework (BSIMM¹¹)

It’s easy to map practices with SDLC phases

Code Audit is part of the “Deep understanding” practice and only
applicable to high‐risk components

SAMM provides self‐assessment spreadsheets¹² for organizations to
measure their security posture

¹¹https://www.synopsys.com/software-integrity/
software-security-services/bsimm-maturity-model.html

¹²https://owaspsamm.org/assessment/
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 21 / 65

https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html
https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html
https://owaspsamm.org/assessment/

Roles and Responsibilities

A Secure SDLC is typically managed by a Product Security Officer (PSO)

Security procedures are typically executed by Security Engineers

The Data Protection Officer (DPO) examines the data flows to make
sure that personal and other sensitive information is handled correctly
(see GDPR¹³)

The Chief Information Security Officer (CISO) is typically responsible for
maintaining a Secure Development Environment (see ISO27001¹⁴)

¹³https://eur-lex.europa.eu/eli/reg/2016/679/oj
¹⁴https://www.isms.online/iso-27001/annex-a/

8-25-secure-development-life-cycle-2022/
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 22 / 65

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.isms.online/iso-27001/annex-a/8-25-secure-development-life-cycle-2022/
https://www.isms.online/iso-27001/annex-a/8-25-secure-development-life-cycle-2022/

DevSecOps

Security expertise comes at too costly a price for most businesses

To lower the costs but maintain an acceptable level of security, some
security procedures could be infused in an automated manner within
the DevOps practices of an Agile flow

This practice is called DevSecOps
DevOps engineers will employ automated means to:

Identify the product components
Isolate (where possible) product components
Standardize security features of product components
Identify known vulnerabilities in the product components
Identify previously unknown vulnerabilities in the product components
Apply security patches to the product
Govern security attributes of the project (e.g. identities, encryption keys
etc.)
Monitor the security of the product

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 23 / 65

Part III

Methods for the identification of security
issues in software

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 24 / 65

Terminology: Threat vs Vulnerability

A Threat is the possible danger of a malicious actor exercising a
particular offensive technique to attack a project asset

e.g. An attacker will draw secrets from the database through an SQL
injection attack
For a list of offensive techniques see the “Common Attack Pattern
Enumeration and Classification Project” (CAPEC¹⁵)

A Vulnerability is a threat that can be realized due to the existence of a
security defect

e.g. An attacker can draw secrets from the XYZ database due to an SQL
injection bug in versions≤ 2.5.0

¹⁵https://capec.mitre.org/
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 25 / 65

https://capec.mitre.org/

Terminology: White box vs Black box methodology

White box examination
Bugs discovered by studying the implementation/specifications of the
system

Black box examination
Bugs discovered by studying the behaviour of the system

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 26 / 65

Terminology: Static vs Dynamic Analysis

Static analysis
Analysis of software at rest

Dynamic analysis
Analysis of software at execution time

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 27 / 65

Method #1: Threat Modeling

Threat Modeling is an analytical process that enumerates the threats
that a software system (or component) is exposed to, due to its nature
of operation

It is carried out early on in the Requirements Analysis / Design phases of
the target feature

Once developers recognize the inherent threats, they build security
controls to proactively eliminate vulnerabilities

This allows for better planning of security controls

Can be performed by non‐experts (e.g. by developers) as a table‐top
exercise using a Threat Generation methodology, such as STRIDE¹⁶

Threats can be prioritized using a risk assessment model, such as
DREAD¹⁷

¹⁶https://en.wikipedia.org/wiki/STRIDE_(security)
¹⁷https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 28 / 65

https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)

Threat Modeling

Threat Modeling steps
1 Collect documentation and feedback on important flows and assets
2 Map assets, flows, trust boundaries and actors
3 Generate Threats
4 (Optionally) suggest mitigations and prioritize threats

There are many tools available for Threat Modeling
Microsoft Threat Modeling Tool¹⁸
OWASP Threat Dragon¹⁹
OWASP Pythonic Threat Modeling ²⁰

¹⁸https:
//learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

¹⁹https://owasp.org/www-project-threat-dragon/
²⁰https://owasp.org/www-project-pytm/

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 29 / 65

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-pytm/

Threat Modeling Example

Flow Diagram for Login Actors

- User
- Unauthenticated User
- Web App Administrator

- Web App
- User Credentials
- User Browser
- Database

Assets

ID Threat Mitigation STRIDE Category

T1 Username fingerprinting through “invalid login”
oracle

Opaque error response
to login

Information Disclosure

T2 Password bruteforce attack Login throttling control Elevation of Privilege

T3 Denial of service attack via multiple login
attempts

Login throttling control Denial of Service

T4 SQL injection during username validation Use of prepared
statement with
parameterized query

Tampering

Example threats based on STRIDE

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 30 / 65

Method #2: Design Review

Design Review (aka Security Design Review) is a process where security
experts analyze project design documents and identify potential threats
affecting the product design

The experts provide suggestions for security controls that mitigate the
identified risks

This process is an alternative to Threat Modeling, and is suitable for the
Requirements Analysis / Design phase
This is much faster than Threat Modeling, but requires security
expertise

One may say that the experts run threat modeling in their heads, based
on their experience :‐)

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 31 / 65

Method #3: Software Composition Analysis (SCA)

A process that identifies the “ingredients” of a piece of software

Usually a White box process
The output of this process is a Software Bill of Materials (SBOM)

Popular SBOM formats: SPDX²¹ and CycloneDX²²
The US require an SBOM for all software projects deployed to federal
government systems²³

Most SCA tools also identify known vulnerabilities and license
compatibility issues for the ingredients identified

Popular data sources for known vulnerabilities: NVD for all software, OSV
for OSS projects

²¹https://spdx.dev/
²²https://cyclonedx.org/
²³https://www.whitehouse.gov/briefing-room/presidential-actions/2021/

05/12/executive-order-on-improving-the-nations-cybersecurity/
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 32 / 65

https://nvd.nist.gov
https://osv.dev
https://spdx.dev/
https://cyclonedx.org/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Software Composition Analysis Example

$ ~/apps/snyk test --file=package.json
Testing yeoman-doctor...
Tested 22 dependencies for known issues, found 1 issue,
1 vulnerable path.

Issues to fix by upgrading:
Upgrade latest-version@3.1.0 to latest-version@6.0.0 to fix
x Open Redirect [Medium Severity][https://security.snyk.io/vuln/SNYK-JS-GOT-2932019] in got@6.7.1
introduced by latest-version@3.1.0 > package-json@4.0.1 > got@6.7.1

$ npm sbom --sbom-format spdx
{
"spdxVersion": "SPDX-2.3",
...
"name": "some-software-js@0.0.1",
...
"packages": [

{
"name": "@ampproject/remapping",
"SPDXID": "SPDXRef-Package-ampproject.remapping-2.3.0",
"versionInfo": "2.3.0",
...
"description": "Remap sequential sourcemaps through transformations to poi

nt at the original source code",
"downloadLocation": "https://registry.npmjs.org/@ampproject/remapping/-/re

mapping-2.3.0.tgz",
"homepage": "https://github.com/ampproject/remapping#readme",
"licenseDeclared": "Apache-2.0",
...

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 33 / 65

SCA Troubles

SCA is sometimes difficult to perform with accuracy when an ingredient
has been “absorbed” by the project
Example: A developer has placed an MD5 implementation found on the
world‐wide‐web within the file "md5.c" of his project

What is the origin of this software?
What is its version?
Is this affected by vulnerabilities?

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 34 / 65

Method #4: Source Code Audit

A manual line‐by‐line source code examination for security bugs

A White box approach

Also known as ’Code Review’ or ’Security Code Review’

Most complete method of locating security bugs

High confidence in reported bugs

Slow process

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 35 / 65

Method #5: Static Analysis Security Testing

A Whitebox method: Variables, functions/methods, calls are all
available during the analysis

Static analysis tools may compile the source code to their own format
for faster/deeper analysis

Will not be able to follow indirections occuring at runtime (calls to
methods of abstracted objects etc.)

Ability to look for patterns²⁴ of language‐specific vulnerabilities

Handy for code auditors

Tools in this space are not perfect: vulnerabilities found require
(manual) verification

Examples: Infer, PMD, Clang Static Analyzer, ...

²⁴see semgrep, for a simpler language‐aware ‘grep’ of vulnerabilities
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 36 / 65

https://github.com/semgrep/semgrep

Method #6: Dynamic Analysis Security Testing

Audits actual execution path of program

Can follow external input across possibly vulnerable functions

Capable of detecting memory management errors (double free’s etc.)

May aid an auditor in indentifying a complex issue

Examples: Valgrind, Purify, AddressSanitizer, ...

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 37 / 65

Method #7: Reverse Engineering

A Black box method

Trying to understand the structure of a program by looking at the binary
and its behaviour during execution

Map functions and callers

Identify the semantics behind certain parts of the software

Most debuggers also offer tools to aid in reverse engineering (e.g. IDA)

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 38 / 65

Method #8: Fuzz Testing (aka Fuzzing)

The process of feeding specially crafted data (protocol data, files etc.) to
a piece of software in order to expose vulnerabilities

A black box methodology

Capable of quickly exposing both simple and complex vulnerabilities

Each finding (typically a program crash) requires manual verification

An exploratory method, where campaigns may need to be time‐boxed

Protocol‐agnostic fuzzers show poor code coverage statistics

Examples: Peach Fuzzer, libfuzzer, AFL++, AFL, ...

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 39 / 65

Method #9: Vulnerability Scanning

Use of tools to automatically test for the existence of a set of specific
vulnerabilities in a software setup

Tools use database of ”known” vulnerabilities

Heuristics used to find similar vulnerabilities

Vulnerabilities discovered require manual verification (due to false
positives)

Very popular with web application security tests

Example tools: Nessus, Acunetix etc.

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 40 / 65

Method #10: Functional Security Testing

Manual and tool‐assisted testing of a live application (e.g. a web
application API)

Thorough testing to identify bugs in the exposed software functions

Black box methodology

Example tools: Burp Suite, ZAP etc.

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 41 / 65

Method #11: Packaging tests

Pre‐release Quality Assurance testing

Checks through manual and automated means, whether the software
has been built / configured correctly before it is passed to the users

Checks whether all security controls have been applied correctly (digital
signatures, tamper protection etc.)

Checks whether any sensitive information is present in the released
format

Example Tools: MobSF for mobile apps

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 42 / 65

Part IV

Popular Types of Software Security
Assessments

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 43 / 65

Software Security Assessments

A Software Security Assessment is a project whose goal is to identify
security vulnerabilities in the software and/or deployment environment
of a product
Notable types of assessments are:

Source Code Auditing
Application Security Testing
Penetration Testing

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 44 / 65

Source Code Auditing

Its goal is to cover as much of the codebase as possible through a
manual security review
Although complete code coverage may be requested through manual
code review methods, security engineers are also free to employ:

Static Analysis Security Testing tools
Dynamic Analysis Security Testing tools
Functional Security Testing tools
Fuzz Testing and other exploratory methods

Auditor produces report with:
Description of each security bug and root cause analysis, with reference
to the exact point where the bug was found
Possible impact and rating
Proposed fix

Example report: Lisk SDK 6.1 Sapphire, NFT and PoA modules Code
Audit by Trail Of Bits

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 45 / 65

https://github.com/trailofbits/publications/blob/master/reviews/2023-09-lisksdk-securityreview.pdf
https://github.com/trailofbits/publications/blob/master/reviews/2023-09-lisksdk-securityreview.pdf

Application Security Testing

Its goal is to expose all possible vulnerabilities in an application

One may consider this as a test in breadth

Methods of testing (white box / black box) depend on the details
provided

The software may be setup in a testing environment
Tester produces report:

With a description of each vulnerability
With a rating of each vulnerability’s severity
With suggestions for risk mitigation

Access to different user roles may be required

Example report: Pomerium Security Testing by Cure53

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 46 / 65

https://github.com/juliocesarfort/public-pentesting-reports/blob/master/Cure53/analysis-report_Pomerium.pdf

Penetration Testing

An emulated attack towards infrastructure belonging to an organization

Highlights which organization assets will be compromised in an attack
and which are the more likely attack paths

Exploits vulnerabilities found in this environment

This is essentially a test in depth, within the context of an organization

Requires access to the live environment
Report includes:

Vulnerabilities identified during the attack and their related risks
Vulnerabilities exploited during the attack
Possible attack paths and compromised assets

Internal / External

Black box / White box

Example report: DinoBank Penetration Testing by CPTC

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 47 / 65

https://github.com/juliocesarfort/public-pentesting-reports/blob/master/CPTC/2019/nationalsA-report-redacted.pdf

Part V

Handling Software Vulnerabilities

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 48 / 65

Who finds security defects?

An ecosystem of reporters

The software developers

The systems administrators

The security engineering team of the software vendor

Information security companies

Independent security researchers

The software users

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 49 / 65

Vulnerability Timeline

External
Reporter

Ticket is
opened

Vulnerability
Report

Bug is
Triaged

Severity is
evaluated

Fix is
prioritized

Bug is
Accepted

Fix is
implemented

Reporter
allows a 90
day period
before public
disclosure
(Responsible
Disclosure)

Fix is
evaluated

New version
containing
the fix is
released

Vendor
Advisory is
published

Reporter can
make public
disclosure

Vendor may
reward

Reporter
(through Bug

Bounty
program)

Reporter allows a 7 day period for a vulnerability report
receipt (ISO/IEC 29147:2014)

Note: steps marked in orange are the same for internal reporters as well.
Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 50 / 65

Special Case: A security control becomes obsolete

Sometimes security mechanisms become obsolete because of new
developments in research, hardware or software

e.g. a weak hashing scheme (MD5) is used to check the integrity of a
certificate

Management must allocate resources to examine alternatives

Changes may need to be made to security documentation of the product

It is good practice to let users know which updates change security
controls

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 51 / 65

Security Bug Disclosure

Security bugs affect software that may be used by millions of users

Security bugs are disclosed publicly (as advisories) in order to aid in
coordinated patching procedures
Where are security bugs disclosed?

Full Disclosure Mailing List²⁵
OSS Security Mailing list²⁶ (for bugs concerning open source projects)
Open Cloud Vulnerability & Security Issue Database²⁷ (for cloud provider
vulnerabilities)

²⁵https://seclists.org/fulldisclosure/
²⁶https://www.openwall.com/lists/oss-security/
²⁷https://www.cloudvulndb.org/

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 52 / 65

https://seclists.org/fulldisclosure/
https://www.openwall.com/lists/oss-security/
https://www.cloudvulndb.org/

CWE: An Ontology of Security Vulnerability Types

CWE (Common Weakness Enumeration) is an online database of
vulnerability types

e.g. CWE‐121: Stack‐based Buffer Overflow

Available online at https://cwe.mitre.org/

Can be used in a security advisory to better classify the bug in question

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 53 / 65

https://cwe.mitre.org/

CVE: A registry of Vulnerabilities

CVE (Common Vulnerabilities Enumeration) is a numbering scheme that
acts as a registry for software vulnerabilities

e.g. CVE‐2014‐1270: WebKit, as used in Apple Safari before 6.1.2 and
7.x before 7.0.2, allows remote attackers to execute arbitrary code or
cause a denial of service (memory corruption and application crash) via
a crafted web site

Can be used to track which security bugs are patched in a software
update

CVE ProgramWebsite: https://www.cve.org/

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 54 / 65

https://www.cve.org/

CVE numbering (where vendor meets the reporter)

CVE numbers are issued by CNAs (CVE Numbering Authorities)

Main CNA is MITRE (some vendors act a CNA for their products)

Once a bug has been acknowledged, the bug reporter may ask for a CVE
number

CVE number is shared with vendor

Vendor publishes software update and advisory with a link to the CVE
number

Reporter may publish advisory with a link to the CVE number

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 55 / 65

An example (vendor) advisory

Subject: CVE-2024-27439: Apache Wicket: Possible bypass of CSRF protection
Severity: moderate

Affected versions:
- Apache Wicket 9.1.0 through 9.16.0
- Apache Wicket 10.0.0-M1 before 10.0.0

Description:

An error in the evaluation of the fetch metadata headers could allow a bypass of the CSRF protection in
Apache Wicket. This issue affects Apache Wicket: from 9.1.0 through 9.16.0, and the milestone releases
for the 10.0 series. Apache Wicket 8.x does not support CSRF protection
via the fetch metadata headers and as such is not affected.

Users are recommended to upgrade to version 9.17.0 or 10.0.0, which fixes the issue.

Credit:
Jo Theunis (finder)

References:
https://wicket.apache.org/
https://www.cve.org/CVERecord?id=CVE-2024-27439

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 56 / 65

Part VI

Conclusion

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 57 / 65

Recap: Important Concepts

Software Assets, Threats and Vulnerabilities

Proof‐of‐concept, Exploit and 0‐day attacks

Secure SDLC

PSO, Sec. Engineer, DPO, CISO

Threat Modeling, Software Composition Analysis, Source Code Auditing,
Application Security Testing, Fuzz Testing

DevSecOps

CAPEC, CWE, and CVE

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 58 / 65

Further reading material

“This is how they tell me the world ends: The Cyber Weapons Arms Race”

“Agile Application Security”

“Threat Modeling: Designing for Security”

“Securing DevOps: Security in the Cloud”

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 59 / 65

https://www.goodreads.com/en/book/show/49247043
https://www.oreilly.com/library/view/agile-application-security/9781491938836/
https://www.goodreads.com/en/book/show/18379732
https://www.manning.com/books/securing-devops

Part VII

About this course

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 60 / 65

Course Goals

Ability to apply security‐related best practices in software development

Ability to identify security bugs in software

Ability to demonstrate a security bug

Ability to assess the risk associated with a bug

Ability to manage vulnerabilities within a product lifecycle

Acquaintance with latest research on software security topics

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 61 / 65

Coursework

Four (4) exercises requiring both personal and team effort
40% of exercise marks will also be redeemable through successful
publishing of CVEs

No exams

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 62 / 65

Prerequisites

C

Java

Linux
Not strictly required, but useful skills

Microsoft Windows
Ability to use a scripting language (Python, UNIX shell, Powershell,
VBScript, etc.)
x86 assembly skills

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 63 / 65

Course Outline

1 Software security principles & SDLC integration
2 Security bugs related to the environment of execution
3 Memory related bugs
4 Web Application Security
5 Web Application Security Workshop (Extra!)
6 Dealing with parsing and other file‐related bugs
7 Workshop on black‐box vulnerability research
8 Avoiding bugs in cryptographic mechanisms
9 Mobile App Security
10 Static Analysis with CodeWeTrust
11 DevSecOps principles

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 64 / 65

Questions?

Dimitrios A. Glynos (Univ. of Piraeus) Software Security Principles 65 / 65

	What is software security?
	Security in the SDLC
	Methods for the identification of security issues in software
	Popular Types of Software Security Assessments
	Handling Software Vulnerabilities
	Conclusion
	About this course

