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Part I

Memory corruption bugs
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Memory corruption bugs

Present in software developed in programming languages that
allow direct memory references (Assembly, C, C++, ...)

*p = value;

do not perform out‐of‐bounds checks in array‐type operations
a[++i] = 4;
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Memory corruption bugs

Also affect software that is based on components that are vulnerable to
memory corruption bugs. For example:

Java does not allow direct memory references and raises a runtime
exception on array index errors

However, the JVM is vulnerable to memory corruption bugs
The JDK native libraries are vulnerable to memory corruption bugs
Executing untrusted bytecode on a JVM could trigger such bugs (e.g.
browser applets)
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Memory corruption bugs are everywhere

Operating System Kernels

System libraries

System tools

Software for embedded systems (routers, TVs, mobile devices, ...)

Internet services

Native libraries

Web browsers

Software supporting SCADA systems

...
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Impact of memory corruption bugs

Program continues working with modified in‐memory data

Runtime change in business logic

Denial of Service (program crash)

Code execution

Security control bypass (runtime patch)

Disclosure of sensitive information
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Common memory corruption bugs

Buffer overflows

Off‐by‐one errors
Untrusted pointer dereference bugs

write something somewhere type of errors

Type Confusion¹ bugs

Format string bugs

¹for reasons of brevity we will not be exploring this type of bugs
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Buffer overflows

Data are written past the end of a buffer corrupting the contents of
adjacent memory locations.

Example:

/* attacker controls all img.hdr data */
memcpy(dest, &(img.hdr), img.hdr.size);

What if an attacker makes img.hdr.size larger than the size of the
dest buffer?
Common types

Stack buffer overflows (local variables etc.)
Heap buffer overflows (dynamically allocated variables / objects)

Other types
BSS buffer overflows (global writable variables)

Proposal: perform bounds checking operations / limit the copy
operation to the size of the destination buffer.
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Buffer overflows

Commonly due to the use of unsafe libc functions: gets(3), scanf(3),
sprintf(3), strcpy(3), strcat(3), ...

These functions stop copying data when they find a NULL byte in the
source buffer (or EOF for gets(3)), regardless of the size of the destination
buffer

char argument[100];
strcpy(argument, argv[2]);

Safe alternatives exist: fgets(3), snprintf(3), strncpy(3), strncat(3), ...
they allow programmers to specify the maximum number of bytes to be
written to the destination buffer
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Buffer overflows

Attackers can cause a buffer overflow when they control at least one of the
below parameters

the size of the data being copied

the location of the input buffer²

the data being copied (and software expects certain terminator symbol
in data)

the size of the output buffer

the location of the output buffer

²this, on its own, may lead to information leaks
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Exploiting a buffer overflow on the stack

Function Call Stack

high address ^ [ Function Parameters ]
| [ Return Address ]
| [ Saved Frame Pointer ]

low address | [ Local Variables ]

An overflow in a local variable may overwrite the function’s return
address

The return address specifies the instruction that will be executed once
the function exits
An attacker can exploit the overflow to redirect the program flow to:

code supplied as part of the overflow
other code within the memory space of the process

Note: x86_64 and ARM64 use by default registers to pass function
parameters
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Exploiting a buffer overflow on the heap

Overwrite heap metadata to cause an arbitrary memory write

Overwrite a function pointer

...

For more information see Phrack articles on heap exploitation subjects
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Terminology

Shellcode: instructions that are part of an exploit and typically provide
the attacker with a shell on the target system

Nopsled: NOP (No operation / Dummy) instructions used to drive the
program flow towards the shellcode when its exact location in memory
will not be known in advance
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Heap Buffer Overflow Example

DEMO with Heap Playground
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Off‐by‐one errors

Example:

void func(...)
{

char buf[255];
char data[255];
...
for (i = 0; i <= sizeof(buf); i++)

buf[i] = data[i];
...

}

Very popular bugs due to C semantics or API semantics (e.g. strncpy
does not terminate the output string with NULL, copies up to n bytes)

Proposal: Do not copy more bytes than the size of the destination buffer.
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Exploiting off‐by‐one errors

One byte overwrite of saved frame pointer

An off‐by‐one overflow to the variable right next to the saved frame
pointer will change one byte in the saved frame pointer address

This address may point to a fake stack frame within the attacker
provided data

At the epilogue of the vulnerable function: ESP = EBP, EBP = modified
frame pointer

At the epilogue of the caller: ESP = modified frame pointer, but the ret
instruction will use an address found in the fake stack frame!
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Non‐executable pages

The W ^ X philosophy
Writable pages should not be executable

Modern CPUs allow pages to be marked as non‐executable
AMD NX bit
Intel XD bit

An executable file or a library can describe which sections are to be
loaded at non‐executable pages
W ^ X can also be emulated in software

use of CS register to limit the executable part of a segment
ExecShield project

Proactive security feature: Can stop attackers from executing code on
the stack etc.
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Stack protection

Making the stack non‐executable
Reordering variables to protect function pointers

Function pointers are placed in lower memory addresses to protect them
from overflows of arrays or other variables

Canaries
A random value (canary) is placed right after the local arguments of a
function
If the function exits and the canary has changed, it is a sign of an overflow
and the application immediately exits
gcc ‐fstack‐protector‐all
Visual Studio /GS compiler option
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Heap protection

Making the heap non‐executable

Performing sanity checks on heap metadata during memory allocation /
deallocation
Canaries

Guard values to protect heap metadata
They are checked only during allocation / deallocation calls
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Return oriented programming

If the address of some part of the program code (executable / library /
other code) can be guessed, then an attacker can borrow (read: jump
to) that code to execute commands (or bypass memory protections)

For example, if the address of system() can be guessed then the
attacker can perform a “return to libc” attack, by effectively calling
system with the right arguments

Return oriented programming (ROP): next address to execute is popped
off the stack due to a ret instruction
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Return oriented programming

Alternatively, by using snippets of borrowed code (called ’gadgets’) an
attacker can chain an exploit that:

allocates a new executable memory page
writes shellcode on that page
executes the shellcode

Chaining techniques:
providing the program code with addresses of gadgets (e.g. through a
buffer overflow on the stack)

each gadget executes and returns (so that the next return address will be
used)

instead of return statements, other techniques (jumps etc.) can also be
used
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Address space layout randomisation (ASLR)

Proactive security feature
The OS loads the stack, heap, mmap‐ed pages, program text/data and
libraries to random memory locations each time an application is
executed

Thus code and data are no longer accessible at static addresses

Requires position independent code (PIC) for executable segments

Executables that load their code segment to random addresses are
called PIE (Position Independent Executables)

If all pieces of a process are loaded at random addresses, ROP /
ret‐to‐libc attacks can be thwarted (provided that the attacker cannot
write data to executable pages)
Brute force attacks are sometimes possible

Forked processes share the same memory layout
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Untrusted pointer dereference bugs

a[attacker_controlled] = value;

*(a + attacker_controlled) = value;

Opera CVE‐2011‐1824
mov DWORD PTR [ebx+edx*1], eax

The attacker controls
the memory position where data will be written
and in some cases the data (and length) as well

An arbitrary memory write operation

Example exploitation: overwrite a function pointer!

Proposal: perform input sanitization before using untrusted input in
pointer arithmetic
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Format string bugs

Sometimes programmers allow user input to enter format strings

strcpy(fmt_buf, "user id: %i user: ");
strcat(fmt_buf, username);
sprintf(formatted_str, fmt_buf, id);

Or allow users full control of format strings

printf(username);

If an attacker places a %s specifier, the next address in the stack will be
considered as pointing to a string and all contents there (leading to a
NULL) will be dumped as part of the call.
%n specifier: The number of characters written so far is stored into the
integer indicated by the int * (or variant) pointer argument. No
argument is converted.

Each %n format specifier supplied by an attacker will write to an address
found in the stack which can be controlled by the attacker!
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Format string bugs

32‐bit exploitation payload³ for printf(buf) with buf on stack:
"\x94\x90\x04\x08" // GOT[free]'s address
"\x96\x90\x04\x08" //
"\x98\x90\x04\x08" // jumpcode address
"%.37004u" // complete to 0x9098 (0x9098-3*4)
"%8$hn" // write 0x9098 to eighth param. (0x8049094)
"%.30572u" // complete to 0x10804 (0x10804-0x9098)
"%9$hn" // write 0x0804 to nineth param. (0x8049096)
"%.47956u" // complete to 0x1c358 (0x1c358-0x10804)
"%10$hn" // write code (pop eax - ret) @10th param. (0x8049098)

Proactive protections: gcc -Wformat=2, VS2005 has %n disabled

Proposal: Never allow user‐controlled data to enter format strings.
Always supply a constant format string argument to calls allowing one
(sprintf, printf, scanf etc.).

³from Advances in Format String Exploitation
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Part II

Invalid pointer dereferences
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NULL pointer dereferences

Example:

x = userinput();
p = malloc(x * sizeof(struct FILE_OPS));
fop = &(p[FILE_TYPE]);
fop->remove(file);

What if the call to malloc fails?

This is a dangerous bug for system call code (in systems that have a
unified address space between kernel and userland) as a user process
may map the first pages of memory to malicious executable code.

Proposal: Always check the return value of memory allocation functions.

Proactive measure for Kernel bugs: prohibit access to the first few
memory pages.
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Use after free

A previously allocated object is referenced after deallocation
CVE-2013-4560 for lighttpd:

if (!dir_node) {
if (0 != FAMMonitorDirectory(...)) {

/* fam_dir de-allocation */
fam_dir_entry_free(&sc->fam, fam_dir);

} else {
sc->dirs = splaytree_insert(sc->dirs, dir_ndx, fam_dir);

}
} else {

fam_dir = dir_node->data;
}

if (fam_dir) {
sce->dir_version = fam_dir->version;

}
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Use after free

An attacker may be able to control data in the arena of the dynamic
allocator

after the deallocation but before the reference

The attacker may achieve code execution if the reference is a call to a
function pointer
Proposal: Use best practices to produce clean object tracking code

Allocate and deallocate objects within the same code / context
Use a single policy for deallocation (free() and set to NULL) and existence
check (check for NULL)
Also, use static + dynamic analysis tools to identify use‐after‐free bugs
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Heap spraying and Heap Feng Shui

Use after free bugs are very common in web browsers
e.g. an HTML component is removed from the DOM (via javascript) but is
later referenced (via javascript)

To gain reliable exploitation, attackers use the following techniques:
Heap spraying

1 Fill a large portion of the browser allocator’s arena with shellcode (e.g.
200MB)

2 Overwrite the function pointer with an address that is likely to fall on the
shellcode (e.g. 0x0c0c0c0c). By the way 0x0c0c0c0c itself can act as a
nopsled (or al, 0x0c) !

Heap Feng Shui
1 The browser’s allocator is deterministic
2 Trigger specific allocations and deallocations to produce consecutive blocks

(i.e. blocks that don’t have metadata or other objects between them)
3 Make exploitation more reliable by writing the shellcode to these

consecutive blocks

For more info see Alexander Sotirov’s “Heap Feng Shui in JavaScript”
presentation

Dimitrios A. Glynos (Univ. of Piraeus) Memory‐related vulnerabilities 30 / 53

http://www.phreedom.org/research/heap-feng-shui/


Double free

A special case of a use‐after‐free bug

The program erroneously calls a second free() on an already free’d
object
The attacker will try to overwrite the allocator’s metadata

after the first free but before the second free

Due to the mechanism of putting a newly free’d chunk to the free list
the attacker can trigger an arbitrary write to process memory

For example, an arbitrary write to the .dtors section where code will
later be executed before the program exits

Proactive protection: ’Safe unlinking’ techniques can be used by
deallocators to test chunk pointers before doing a free()

Proposal: Use best practices for object tracking code
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Part III

Integer‐related issues
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Signedness issues

Example:

int x = userinput();
if (x < MAX_SIZE) {

memcpy(dest, src, x);
} else {

/* Handle the error condition ... */
}

memcpy expects an unsigned integer for its 3rd parameter

x is a signed integer that will be casted to an unsigned one

e.g. ‐1 will be casted to 4,294,967,295

Proposal: Avoid using signed integers where unsigned ones are required
(and the reverse). Perform strict integer validation checks.
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Integer Overflows

Example:

unsigned int num = userinput();
p = malloc(num * sizeof(struct HEADER));
for(i=0; i<num; i++) {

p[i] = src[i];
}

What happens if num * sizeof(struct HEADER) is larger than the
maximum integer value?

Proposal: In integer arithmetic take into account overflows and
underflows.
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Integer Overflows

Checking for an overflow:

if ((a+b) < a) {
...

}

Checking for an underflow:

if ((a-b) > a) {
...

}
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Part IV

Memory and Information Leaks
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Memory leak

A bug in memory management that eventually eats up the available
process memory (denial of service)

Consider the case where an attacker may influence the hdr.sections
value in the code below:

for(i=0; i<hdr.sections; i++){
cur_section->next = malloc(SECTION_SIZE);
cur_section = cur_section->next;

}

Proposal: Whenever possible, limit the allocation size and number of
allocated chunks that are associated with a user action.
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Information leak

A bug causing the unintended exposure of information

We’ll focus on data coming from application or kernel memory

Example:

write(sock, buf, nbytes);

What happens if an attacker can control the nbytes variable, providing
a value that is larger than the size of buf ?
Information leaks such as this may expose:

sensitive data (e.g. private keys, passwords etc.)
security tokens (e.g. canary values)
memory addresses (i.e. deduce ASLR mappings)

Proposal: Always make sure that the data being copied from a buffer are
less or equal to the data available in the buffer. Do buffer initialization
with calloc, memset etc.
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Pointer obfuscation

It is very common for an API to return the address of an object as the
object identifier

Wait, that’s an information leak!

Solution: pass an obfuscated pointer to the user

Once the obfuscated pointer is passed back to the API, it is deobfuscated

An example from the Linux kernel:

static long kptr_obfuscate(long v, int type)
{

return (v ^ cookies[type][0]) * cookies[type][1];
}
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Part V

Minimizing the vulnerability handling work
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Software Design vs Memory Corruption Vulnerabilities

Memory‐related vulnerabilities stem from bad (or difficult) design
decisions

They provide us with a perfect example of vulnerabilities we are
exposed to when we choose a certain ecosystem of technologies

Let’s discuss how we could go about minimizing this vulnerability
handling work
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Minimizing the vulnerability handling work

To minimize the risk and costs associated with vulnerability handling, a
project needs to follow three parallel strategies:

Identify and fix security defects as early as possible
Eliminate security defects and related bug classes by design
Prefer third party components offering better security
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The Shift Left Paradigm

As security practices come with considerable cost, they are often left to
the last minute (if ever performed)

e.g. Threat Modeling after the project prototype has been formed
e.g. Manual Security Testing after the product has been released

The Shift Left paradigm highlights the advantages of performing security
activities early on in the SDLC so as to minimize project risks

Security Requirements Analysis
Early Threat Modeling or Design Review
Source Code Auditing

Requ
ireme
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Design

Deve
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nt

Testing
Review
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Dimitrios A. Glynos (Univ. of Piraeus) Memory‐related vulnerabilities 43 / 53



Eliminating security defects by design

We will cover two approaches for eliminating security defects through
design efforts

Attack Surface Reduction
Using Better Building Blocks
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Attack Surface Reduction

The Attack Surface of a target system consists of the
points that an attacker may abuse to achieve a goal
In the Design/Implementation Phase of projects, it is
customary to reduce the software attack surface

Remove unnecessary components / functionalities
See wolfi (container) and unikernel (VM) runtimes

Employ authentication and authorization checks
Execute flows under the Principle of Least Privilege

Grant flow the least privilege possible to perform its
task

Stop further compromise through Zero TrustModel
Containerize components; assume any component
may be compromised.
Always perform explicit authentication and
authorization checks on all available data points; do
not consider any peer component / user‐flow as
trusted.

SMS / MMS attacks
GSM / 3G / 4G attacks
Malicious App attacks

Bluetooth / NFC attacks

Wi-Fi attacks

Bootloader attacks

MTP attacks

Browser attacks

Media Framework
attacks
USB attacks
...
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Using Better Building Blocks

It is possible to eliminate certain types of bugs by carefully choosing the
ingredients (“building blocks”) of the project

Formally Verified Algorithms

Memory‐safe Languages

LangSec and Framework‐based security⁴

⁴we will discuss these topics later in the lectures
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Formally Verified Algorithms

Algorithms have mathematical properties that can be proven to hold
true

We can exploit this characteristic of algorithms to prove that a certain
implementation carries all the desired properties of a certainmodel⁵
Automated verification usually involves symbolic execution and SAT/SMT
constraint solving

Problems
Real world programs have complex constructs that are not easily
modelled by mathematical formulas (e.g. side‐effects such as printing to
the console)
Real world programs may require vast amounts of memory to analyze
(e.g. state explosion of a loop depending on a variable)

We generally “relax” the constraints by ignoring/disabling some parts of
the program or by simplifying/transforming some parts of the program

⁵See seL4 for a formally verified microkernel, or s2n for formally verified TLS crypto
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Memory‐safe Languages

Systems software (bootloaders, kernels, libraries, services,
performance‐critical applications etc.) have been plagued for decades
by memory corruption bugs (e.g. buffer overflows, double frees etc.)

Such software typically requires direct memory access for hardware
manipulation or to achieve high performance
It is highly likely that large pieces of software written in languages with
direct memory access capabilities will carry memory corruption bugs

Memory‐safe languages such as Python, Java and Rust default to not
allowing the programmer to access memory directly (but only through
an explicit escape hatch) and are thus not prone to these types of bugs
Rust⁶ in particular, comes with such a minimal runtime (similar to C) that
makes it also ideal for Systems Programming tasks

The Rust compiler performs simplified⁷ static analysis on code and errors
out if the code would lead to memory violations or race conditions

⁶https://www.rust-lang.org/
⁷Rust code comes with variable ownership and lifetime restrictions
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Choosing Third Party Components through Security Metrics

How do you evaluate third party components based on security
metrics? This question poses an open problem!

Use software quality metrics⁸ (Isn’t security⊂ quality?)
Rate the software’s security design decisions?
Count instances of known but unfixed vulnerabilities?
Run static / dynamic analysis and count potential vulnerabilities?
Run exploratory testing (e.g. fuzz testing) and measure the coverage?
Measure the mean‐time between a security defect report and its patch?
Measure the reported number of vulnerabilities?
Perform a code audit?
Measure the time since the last (complete) audit?
Measure the parts of the code that have not been audited?
Count sec. best practices employed through automation (CI/CD)?

There is an initiative⁹ that attempts to provide a scorecard for
opensource software by the OpenSSF project of the Linux Foundation

⁸see Measurement Based Open Software Quality Evaluation, by Samoladas, Spinellis et al.
⁹https://securityscorecards.dev
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Part VI

Conclusion
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Recap: Important Concepts

Memory Safety and Memory Safe Languages

Buffer Overflows

Invalid Pointer Dereferences

Integer Overflows

Memory vs Information Leaks

Shift Left paradigm

Attack Surface Reduction

Principle of Least Privilege and Zero Trust paradigms

Formally Verified Algorithms
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Further reading material

The Art of Software Security Assessment: Identifying and Preventing
Software Vulnerabilities

The shellcoder’s handbook: discovering and exploiting security holes, 2nd

edition

Hacking: The Art of Exploitation (2nd Edition)

Blue Fox: Arm Assembly Internals and Reverse Engineering
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https://www.amazon.com/Shellcoders-Handbook-Discovering-Exploiting-Security/dp/047008023X
https://www.amazon.com/Shellcoders-Handbook-Discovering-Exploiting-Security/dp/047008023X
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https://www.amazon.in/Blue-Fox-Assembly-Internals-Analysis/dp/1119745306


Questions?
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