
Software Security Course
Web Application Security

Dimitrios A. Glynos
{ daglyn at unipi.gr }

Department of Informatics
University of Piraeus

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 1 / 41

Part I

Web Applications

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 2 / 41

Terminology

Web server

Web application

Web browser (aka browser)

HTTP Header

Cookie

Mobile app

Web application server

Database server

DNS server

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 3 / 41

Classic Web Application Architecture

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 4 / 41

Web Application Stack

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 5 / 41

The protocol stack

IP for packet routing
IP information is processed by routing component of OS kernel

TCP for reliable data transport
TCP data is forwarded by OS kernel to browser / web server / mobile app
socket

SSL for transport confidentiality, data integrity and peer authentication
Implemented as library code, used in browser / web server / mobile app

HTTP for web transactions + content delivery
can be library code, used in browser / web server / mobile app

Application‐layer protocols for communication with web services (SOAP,
JSON etc.)

can be library code, used in
JavaScript of browser applications
code of web applications + mobile apps

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 6 / 41

A typical web request

1 User enters https://domain.net to browser
2 Browser makes DNS request and resolves domain.net to IP 1.1.1.1
3 Browser starts SSL negotiation with the service on port 443 of IP 1.1.1.1
4 Browser verifies the server certificate chain
5 Browser sends HTTP request through the SSL communication channel

GET / HTTP/1.1
Host: domain.net
...

6 Server responds with the content of the page through the SSL channel

HTTP/1.1 200 OK
Content-Length: 131
...

7 Browser makes further requests for other content that needs to be
displayed within the page (images etc.)

8 Browser finishes rendering the page
Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 7 / 41

Sessions

HTTP is stateless
But applications require state!

The web application keeps a session object to track a user’s session
Each session object is linked to a Session ID (a random number)
The web application passes the Session ID to the client

Usually by means of a cookie parameter
Server header
Set-Cookie: PHPSESSID=ec370dcbdc1bc7326c0eae19942e900f;
expires=Wed, 17 Apr 2024 05:49:35 GMT; Max-Age=86400;
path=/; domain=localhost; HttpOnly
Browser header
Cookie: PHPSESSID=ec370dcbdc1bc7326c0eae19942e900f

Each time the client wishes to perform a transaction within the same
session it transmits the relevant Session ID to the web application

By stealing a user’s session ID an attacker would be able to impersonate
that user to the server

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 8 / 41

Modern Web Application Stack

Internet

API
Gateway

Monolith
Application

Database
Server

DNS

Microservices

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 9 / 41

Microservices ‐ Going back to stateless

Amonolith is a web application where all functionalities could be
delivered by a single instance of the web application

Amicroservice is an instance that serves a specific functionality of the
web application

Keeping HTTP transactions stateless has its benefits. We could easily
scale up, by servicing requests throughmultiple instances of each
microservice.

Each type ofmicroservicemay communicate with its own database.

User requests are typically authenticated through a signed token

The API gateway provides a REST API to clients, hiding the microservice
interactions

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 10 / 41

User Authentication

HTTP provides for
Basic authentication

username, password is sent to server
password is kept hashed on the server

Digest Authentication
Server keeps client’s password in original form
Server challenges client with nonce
Client sends username, hash(password, nonce)

Most web applications implement their own authentication
Username and password are sent to login page
Server checks password against hashed (?) form in database
If password is verified, an authenticated session object (or a signed token)
is created for the user

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 11 / 41

Note: Automated browser reactions

Each time the browser visits a domain, it automatically sends
cookies it holds for this domain
Basic and Digest Authentication values (in the Authorization header, more
on this later)

Therefore if a web resource forces a browser to communicate with a
domain, the browser replays the above information without the user’s
explicit consent

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 12 / 41

Authorization

Check if an incoming request is tied to a session / token with the right
privileges before proceeding with the action described in the request.
Example authorization checks:

Is the session ID / token signature valid?
Does the session ID belong to a logged in user?
Is the session / token connected to an administrative account?
Is the user session in the required state (e.g. address details have been
verified) for this action to occur?

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 13 / 41

Web Application Attack Surface

Routing Transport* Application
Client MAC spoofing Eavesdropping Browser bug exploitation

DNS spoofing Session cookie theft XSS
BGP attacks MITM attack Clickjacking
...

Server MAC spoofing SYN DoS Authentication bypass
DNS spoofing Reflective DoS CSRF
Bad FW config Padding oracle attack SQL injection
...

Transport here covers all the non‐routing functionality that is
responsible for delivering data as is to the browser and web application.

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 14 / 41

Web Application Security

Many of our every day processes have moved to a web service
implementation

Web applications are processing the data of millions of users

There are ongoing attacks to every layer of the web application stack
Proactive security

Development best practices
Code Audits + Security Testing
Web Application Firewalls
Contracts for DoS incident response by ISPs

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 15 / 41

Part II

OWASP Top 10 Vulnerabilities

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 16 / 41

OWASP Top 10

OWASP : Open Web Application Security Project
not‐for‐profit organization focused on improving the security of web
applications
https://www.owasp.org

OWASP Top 10 project
Yearly listing of most critical web application security flaws

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 17 / 41

https://www.owasp.org

OWASP Top 10

1 Injection
2 Broken Authentication and Session Management
3 Cross‐Site Scripting (XSS)
4 Insecure Direct Object References
5 Security Misconfiguration
6 Sensitive Data Exposure
7 Missing Function Level Access Control
8 Cross‐Site Request Forgery (CSRF)
9 Using Components with Known Vulnerabilities
10 Unvalidated Redirects and Forwards

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 18 / 41

Injection

Untrusted data is sent to an interpreter as part of a command or query
The hostile data trick the interpreter into executing unintended
commands or accessing unauthorized data

SQL injection
Blind SQL injection
PHP file inclusion
OS command injection
LDAP injection
XPATH injection
...

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 19 / 41

SQL Injection

Example code:

String query = "SELECT * FROM customers WHERE custID='" +
request.getParameter("id") +"'";

// stmt is a previously instantiated Statement object

ResultSet rs = stmt.executeQuery(query);

Example trigger:

https://domain.net/custView?id=' or '1'='1

rs will get all data found in customers table!

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 20 / 41

Injection

Recommendations

Use prepared statements with parameterized queries

Use a white list if only specific parameter values should be allowed

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 21 / 41

Broken Authentication and Session Management

Leaked (or enumerable) usernames

Credentials can be changed / guessed via ’recover password’

Predictable session IDs

Session IDs in URLs

Logout not working correctly (e.g. session IDs are not invalidated after
timeout)

Session IDs don’t change after successful login

Credentials / Session IDs are transmitted in cleartext (no SSL/TLS)

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 22 / 41

Broken Authentication and Session Management

Example
1 Authenticated user A provides user B with a link to an item which they

just bought from an e‐shop
2 The link happens to contain the session ID of the first user:

https:
//domain.net/items?id=CAMERA100&sess=CB233240FACF1423

3 The session ID enables user B to operate the web application as if she is
user A (i.e. make payments, order more items etc.)

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 23 / 41

https://domain.net/items?id=CAMERA100&sess=CB233240FACF1423
https://domain.net/items?id=CAMERA100&sess=CB233240FACF1423

Broken Authentication and Session Management

Recommendations

Authentication forms must not report whether a username is correct or
not

Use a well tested framework for generating session IDs, password
recovery tokens etc.

Store session IDs in cookies

Protect cookie with ’HttpOnly’ (i.e. not accesible via browser JavaScript)
and ’secure’ flag (only transmittable over SSL)

Change session ID after login

Invalidate session ID on the server‐side after timeout & logout

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 24 / 41

Cross‐Site Scripting (XSS)

Web application presents unsanitized content (think malicious JavaScript) to
victim browser

Stored XSS

Reflected XSS

DOM‐based XSS

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 25 / 41

Cross‐Site Scripting (XSS)

Reflected XSS example

page += "Listing products of category " +
request.getParameter("cat");

Trigger: A victim user visits the URL below

https://domain.net/list?cat=<script>...</script>

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 26 / 41

Cross‐Site Scripting (XSS)

A strategy for defending against XSS

Are you generating HTML pages or HTML fragments on the server side
dynamically?

Anything that should appear as text should have HTML special characters
be replaced by HTML literals (e.g. ’>’ becomes ’>’) on the server side
Anything that should be retained in HTML form must first be sanitized
through a library like HTMLpurifier on the server side

Is the web server supplying JSON data to the browser front‐end code?
If the data is to be presented as text, use a DOM element’s text node
(e.g. element.text = ...) to hold the data
If the data is to be presented as HTML, it must first be sanitized by a
front‐end library like DOMPurify

If the item cannot be adequately controlled (e.g. an uploaded SVG
shown inline), you can use CSP rules to enforce which will be considered
as valid JavaScript sources in the page

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 27 / 41

http://htmlpurifier.org/
https://github.com/cure53/DOMPurify
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Insecure Direct Object References

Access to an object is readily provided (to valid sessions)

Example

https://domain.net/user_profile?ID=123124

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 28 / 41

Insecure Direct Object References

Recommendations

Define access rights for each accessible object
Use indirect (but unguessable) object references ‐ refer to the object
through a UUIDv4 mapping (rather than its database ID)

1940e17d-bb62-4805-b9e0-7b60c539ad9c→ database ID 123124

Use per user (or per session) indirect object references
IDs that map only to objects that are valid for the session context

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 29 / 41

https://www.ietf.org/rfc/rfc4122.txt

Security Misconfiguration

Example
An attacker finds a default installation of a CMS

1 Locates the admin panel at the default location
2 Logs in with the default credentials

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 30 / 41

Security Misconfiguration

Recommendations

distribute applications with safe defaults (e.g. randomly generated
passwords for default accounts)

perform proactive hardening when rolling out systems

verify security of web application configuration through a security
testing procedure

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 31 / 41

Sensitive Data Exposure

Example
1 Web application stores passwords in unsalted MD5 form
2 Attacker uses SQL injection vulnerability to retrieve the hashes
3 Using a rainbow table the attacker collects the original form of the

passwords
4 Attacker now has access to the web platform content
5 May try the same user passwords on other services (mail etc.)
6 May collect sensitive user data

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 32 / 41

Sensitive Data Exposure

Recommendations

Create a threat model for the application

Store only necessary data

Follow security policies for the storage of sensitive data

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 33 / 41

Missing Function Level Access Control

Example: Any authenticated user can add a new user
https://domain.net/adm/add_user?name=john&group=admins

Recommendation: gather all authorization policy rules in one place
(table) and control access to all components of the web application
through that policy

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 34 / 41

https://domain.net/adm/add_user?name=john&group=admins

Cross‐Site Request Forgery (CSRF)

1 Victim authenticates to web application
2 Application relies on authenticated request to fulfil a state‐changing

user request X
In some applications, an authenticated request is a mere presence of the
session cookie which is transferred involuntarily

3 Attacker tricks the victim in visiting a malicious page that triggers the
above request

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 35 / 41

Cross‐Site Request Forgery (CSRF)

Example

An e‐shop changes user address details in the following way

GET /shop/address_change?new_address=58
...
Cookie data
...

ID 58 references an address record in the database

The attacker being a customer of the shop knows his address record id
(YY)

The attacker sends spam emails with the following URL

https://domain.net/shop/address_change?new_address=YY

If an authenticated user visits the link his mailing address will
automatically be changed!

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 36 / 41

Cross‐Site Request Forgery (CSRF)

Recommendations
Require an unpredictable, unique per request token

Token will be delivered by server (CSRF token)
Note: token can be stolen if page has an XSS vulnerability!

Stateless solution: OWASP signed double submit cookie approach (copy
a server‐signed secret value held in a cookie, to a header value)

Lower the exposure: Use the cookie attribute SameSite=Strict to
allow only content from the valid domain to trigger a session cookie
submission

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 37 / 41

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Using Components With Known Vulnerabilities

1 A CMS uses component XYZ that has a known vulnerability
2 An attacker exploits the vulnerability and gains access to the hosting

server

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 38 / 41

Using Components With Known Vulnerabilities

Track the updates and security advisories on all used components

Establish an update policy

Use as little customized code as possible

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 39 / 41

Unvalidated Redirects and Forwards

Attacker uses a site’s URL redirection functionality to send users to a
malicious website (e.g. for phishing)

https://popular.com?redir=http://myphishing.com/page

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 40 / 41

Unvalidated Redirects and Forwards

Recommendations:

Avoid providing the redirection functionality

Don’t use parameters in redirect pages

See if parameter belongs to whitelist (if a parameter is strictly required)

Dimitrios A. Glynos (Univ. of Piraeus) Web Application Security 41 / 41

	Web Applications
	OWASP Top 10 Vulnerabilities
	Injection
	Broken Authentication and Session Management
	Cross-Site Scripting (XSS)
	Insecure Direct Object References
	Security Misconfiguration
	Sensitive Data Exposure
	Missing Function Level Access Control
	Cross-site Request Forgery (CSRF)
	Using Components With Known Vulnerabilities
	Unvalidated Redirects and Forwards

