
Software Security
Avoiding bugs in cryptographic mechanisms

Panayiotis Kotzanikolaou
{ pkotzani at unipi dot gr }

Dimitrios Glynos
{ daglyn at unipi dot gr }

Department of Informatics
University of Piraeus

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 1 / 63

Part I

Terminology

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 2 / 63

Terminology

plaintext: the input data to an encryption process.
ciphertext: the data output by an encryption process.
preimage: the input to a hash function.
hash: the output of a hash function.
cipher: a reversible transformation (usually for encryption purposes)
requiring a key, where only a key-holder can reverse the
transformation and the transform bears no resemblance to the input
(Example: AES).
nonce: a random quantity used in transformations to produce
different results from the same input.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 3 / 63

Terminology (cont’d)

symmetric key cryptography: the same secret key is used for the
encryption of the plaintext and decryption of the ciphertext (Example:
AES).
asymmetric key cryptography (or public key cryptography):
encryption occurs with a public key and decryption with a private key
(Example: RSA).
block cipher: the transformation works on a block of data (with
padding if required) and where next blocks are generated according to
a mode of operation (e.g. AES in CBC mode with PKCS#5 padding).
stream cipher: a transformation based on a symmetric key scheme
that outputs bits that correspond to the input bits, encrypting bit by
bit (Example: ChaCha20).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 4 / 63

Terminology (cont’d)

cryptographic hash function: a one-way transformation that makes it
difficult to deduce the input that led to the transform and where the
transform has a very low probability for collisions (Example: SHA512).
HMAC: a keyed transform involving a cryptographic hash function
that mixes1 the secret key with the input in a way that only the key
holder will be able to produce a correct transform (Example:
HMAC-SHA512).

1Due to the fact that the mixing occurs with more than one application of the
cryptographic hash function, it is safe to say that the HMAC is stronger than the
cryptographic hash function it applies (i.e. HMAC-SHA1 is not necessarily broken due to
SHA1 being broken).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 5 / 63

Terminology (cont’d)

key derivation function: a transformation that perturbates a series of
bits (usually through a cryptographic hash function applied multiple
times) into a form that carries the desired properties for a
cryptographic key (Example: PBKDF2).
digital signature: a scheme where the cryptographic hash of a
document is encrypted with the private key of the author and the
document reader may later verify using the public key of the author
(Example: DSA).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 6 / 63

Part II

Good practices

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 7 / 63

Applied Cryptography: A useful tool

Applied Cryptography is commonly used as a tool for
Securely identifying actors to systems (authentication)
Securely transferring data over untrusted networks
Generating random numbers in the absence of a true random number
generator
Protecting data at rest
Protecting privacy attributes in online transactions
Protecting anonymity in sensitive transactions (e.g. voting)
Keeping peers honest on a multi-stakeholder system (e.g. blockchain)
Providing Attestation capabilities
Providing Confidential Computing capabilities

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 8 / 63

”Not invented here” (NIH) syndrome

NEVER ’invent’ your own cryptographic algorithm
(unless you are a cryptographer).

Use well-known and tested cryptographic algorithms and protocols.
Use well-known, tried, tested and preferably open-source
cryptographic libraries for the programming language you use (e.g.
bouncycastle).
Don’t reinvent the wheel, it is very dangerous!.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 9 / 63

On randomness

There are two major uses of random numbers
1 Scientific simulations and multi-player games, where we need the

new random states to have a fair distribution or exercise all states
equally in a system (within a period), and where we may need to
replay the generation of random numbers to audit our process.

Example - glibc random(3), a Linear Congruential Generator RNG2

2 Cryptography, where we need to generate unpredictable series of
bytes for key/nonce use.

Example - Linux kernel getrandom(2) system call, generating random
numbers from multiple sources incl. hardware (e.g. interrupts)
These are sometimes called Cryptographically Secure Random Number
Generators (CSRNG)

Do not use #1 where you need #2, or vice versa. You will end up with
unfair results and/or weak cryptography!

2Random Number Generator
Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 10 / 63

https://codebrowser.dev/glibc/glibc/stdlib/random_r.c.html#__random_r
https://www.win.tue.nl/~iadan/blockq/lecture6a.pdf
https://man7.org/linux/man-pages/man2/getrandom.2.html

random(3) PRNG vs getrandom(2) CSRNG

Comparing byte values of 65536 single-byte samples.

1 13 25 37 49 61 73 85 97 10
9
12
1
13
3
14
5
15
7
16
9
18
1
19
3
20
5
21
7
22
9
24
1
25
3
26
5
27
7
28
9

0

2

4

6

8

10

12

random(3) value frequency diagram

1 13 25 37 49 61 73 85 97 10
9
12
1
13
3
14
5
15
7
16
9
18
1
19
3
20
5
21
7
22
9
24
1
25
3
26
5
27
7
28
9
30
1

0

2

4

6

8

10

12

getrandom(2) value freq. diagram

Notice the values surrounding the optimal (fair) value of 256 occurrences
of the same value in random(3). If we wish to achieve fairness we must
be looking for a pointy and narrow bell curve around this value.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 11 / 63

random(3) PRNG vs getrandom(2) CSRNG

Comparing byte values of 65536 single-byte samples.

$ ent random-output
Entropy = 7.996972 bits per byte.

Optimum compression would reduce the size
of this 65536 byte file by 0 percent.

Chi square distribution for 65536 samples is 273.56,
and randomly would exceed this value 20.27 percent
of the times.

Arithmetic mean value of data bytes is 127.5532
(127.5 = random).

Monte Carlo value for Pi is 3.147408899
(error 0.19 percent).

Serial correlation coefficient is 0.004471
(totally uncorrelated = 0.0).

$ ent getrandom-output
Entropy = 7.996949 bits per byte.

Optimum compression would reduce the size
of this 65536 byte file by 0 percent.

Chi square distribution for 65536 samples is 276.80,
and randomly would exceed this value 16.64 percent
of the times.

Arithmetic mean value of data bytes is 127.5391
(127.5 = random).

Monte Carlo value for Pi is 3.115546603
(error 0.83 percent).

Serial correlation coefficient is 0.002647
(totally uncorrelated = 0.0).

Notice the low correlation coefficient between values in getrandom(2)
making new values more unpredictable.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 12 / 63

Sources of random numbers

True Random Number Generators (TRNG) - they collect random
quantities from physical phenomenons (e.g. number of electrons
passing through a gate), and we may need to remove bias in their
measurements.
Pseudo-Random Number Generators (PRNG) - they compute
random quantities using a discrete set of algorithms.
CSRNGs for keys, session IDs, nonces, unique identifiers etc. are more
and more relying on TRNGs, however where these are not available
they rely on PRNGs (using key-derivation techniques such as secure
hashing and HMAC, or ciphers).
At least one security agency was found to have actively undermined
the security of a standard CSPRNG3 (the Dual EC-DRBG case).

3Cryptographically Secure Pseudo Random Number Generator
Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 13 / 63

https://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220/

On entropy

Entropy is a measure of chaotic behaviour (read: unpredictability) in
information.
Information having a great amount of entropy is not subject to
patterns (i.e. cannot be compressed easily) and cannot be easily
guessed.
A password is low entropy information (i.e. ASCII characters coming
from a very narrow set of byte values, and words have predictable
patterns).
A secret key must be based on high entropy data so that it is
non-guessable.
If we consider that the bits of the key of an encryption algorithm
come from a high entropy source, then we sometimes refer to the key
length (or key strength) as key entropy, as it is easier to guess a 2-bit
key in comparison to a 160-bit one.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 14 / 63

Use appropriate entropy

Cryptographic algorithms may be secure in theory and well
implemented.
However security relies also on the entropy of the parameters / keys
used.
Consider which key sizes / parameter sizes are appropriate for the
security level of your application.

NIST Transitioning the Use of Cryptographic Algorithms and Key
Lengths
ENISA Algorithm Key Size and Parameters Report
ENISA Study on Cryptographic Protocols

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 15 / 63

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.enisa.europa.eu/publications/study-on-cryptographic-protocols

Randomness issues

What does randomness affect?
Session ID’s and API keys
Temporary passwords (set after password reset)
Nonces
Public / Private key pairs, generated Secret keys, Session Keys

The case of Debian (CVE-2008-0166)
Analysis of the Debian OpenSSL predictable PRNG vulnerability
Someone patched an OpenSSL PRNG because “a static analysis tool
complained about an unitialized buffer”, forcing the PRNG to generate
values with low entropy. Affected Debian SSH keys got blacklisted.

Widespread weak keys in network devices
Research by Univ. of Michigan and UC San Diego found 9.6% of SSH
hosts are sharing public keys, possibly due to poor entropy sources.

G. Argyros and A. Kiayias found that many PHP applications issued a
guessable reset password due to the use of a Mersenne Twister PRNG.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 16 / 63

https://github.com/g0tmi1k/debian-ssh
https://factorable.net/
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final218.pdf

On selecting a PRNG

Make sure to use a Cryptographically Secure PRNG (with input from
a TRNG if possible) for

Session ID’s and API keys
Temporary passwords (set after password reset)
Nonces
Public / Private key pairs, generating Secret keys, Session Keys

Most modern operating systems expose a hardware-influenced
CSPRNG (e.g. Linux getrandom(2) based on ChaCha20)
This is then provided to applications by the standard library of the
programming language (e.g. java.security.SecureRandom in Java)
And is then used in frameworks (e.g. java.util.UUID.randomUUID()
uses java.security.SecureRandom under the hood)

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 17 / 63

https://words.filippo.io/dispatches/linux-csprng/

Verifying the authenticity of data

Systems may need to verify if data they are processing (e.g. firmware,
JWT token etc.) have been generated by a trusted source.

In asymmetric cryptography, we can digitally sign the data with a
private key at data generation time, and verify the signature with the
corresponding public key at data reception time.
When no PKI4 exists, and the generator of the data is also the receiver
of the data (e.g. when a server wishes to pass form data to the
browser) we can alternatively apply an HMAC with a secret key, to
verify whether the data were returned in their authentic form.

4Public Key Infrastructure
Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 18 / 63

Troubles with signatures

Sometimes the HMAC secret is the default one, is a simple
pass-phrase, or is hard-coded in the public source code of an online
service.
Due to known issues with RSA signatures and required large key
lengths (e.g. 4096) we nowadays opt for elliptic curve cryptography
signatures (ECDSA, EDDSA etc.).
ECDSA nonce reuse attack was used to break the signatures of
PlayStation 3
ECDSA implementation was broken in Java (verified invalid
signatures due to a multiplication by zero).
EDDSA is vulnerable to private key leakage if it exposes a signing
oracle that accepts arbitrary public keys (in EDDSA the author’s
public key is also used during the signature).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 19 / 63

https://huntr.com/bounties/29898a42-fd4f-4b5b-a8e3-ab573cb87eac
https://huntr.com/bounties/29898a42-fd4f-4b5b-a8e3-ab573cb87eac
http://www.crypto-uni.lu/jscoron/cours/mscrypto/cc3c.pdf
https://notsosecure.com/ecdsa-nonce-reuse-attack
https://www.youtube.com/watch?v=84WI-jSgNMQ
https://www.youtube.com/watch?v=84WI-jSgNMQ
https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/
https://arxiv.org/pdf/2308.15009.pdf

Troubles with signatures

One of the main concerns with signatures are replay attacks.
The Gnossis Safe wallet smart contract transaction signature did not
include the chain5 on which it was created (in the signed payload), so
it was used on Optimism (another chain) to steal 20 million OP tokens.

Many signed payloads (e.g. JWT) include a nonce, the expiry time
and audience for the server to detect replayed, outdated or
badly-addressed payloads.
On embedded systems, if the firmware version value is not protected
in hardware (e.g. through RPMB6), it may be possible to push older
(and possibly vulnerable) firmware versions7.

5read: blockchain
6Replay Protected Memory Block
7Firmware Downgrade Attack

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 20 / 63

https://slowmist.medium.com/intro-to-smart-contract-security-audit-signature-replay-b71c23910629
https://www.researchgate.net/publication/318488121_Downgrade_Attack_on_TrustZone
https://www.researchgate.net/publication/318488121_Downgrade_Attack_on_TrustZone

Storing Secrets

To protect arbitrary secrets at storage time we need to encrypt them.
Symmetric encryption is good at encrypting large quantities of data
(so we prefer it to asymmetric encryption).
We need to take special care of how we handle the encryption key.

One option is to not persist the key, but generate it each time through
a key derivation function (e.g. PBKDF2) applied to a user supplied
password.
Another option is to persist the key in wrapped form (see AES-KW
key wrapping algorithm) where a Key Encryption Key is used for the
wrapping.

The Key Encryption Key may be derived from user input, or managed
solely by hardware (TPM).

Another option is to request the key dynamically from a key vault
service (see Hashicorp Vault, Amazon KMS etc.).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 21 / 63

Storing Secrets

Protect filesystem blocks at kernel level
A key resident in kernel memory is used to encrypt filesystem blocks
with block-optimized encryption (e.g. AES-XTS)

Protect arbitrary data at application level
AES-GCM or AES-GCM-SIV are good candidates, as they guaranty
both confidentiality and integrity (more on this later)

Protect stored passwords (e.g. PCI-DSS requirements4)
Use password hashed the right way (secure hash function, salt).
Examples of good password hashing functions: Argon2, Bcrypt,
PBKDF2.

Protect stored keys in web applications servers.
Keys stored in separate encrypted file, are decrypted via passphrase in
config file. Used for symmetric decryption of database data.

Storing secrets in memory
Memory lock pages so that they don’t end up in swap!

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 22 / 63

Secure wipe of sensitive data

In memory: overwrite actual buffer data
Immutable Strings problem (Java/.NET): Strings are never allowed to
change at runtime.

Updating a String (e.g. concatenating new characters) allocates new
memory on the heap with the updated version of the string.
The old copy remains until de-allocation.
Passing a string into functions in other layers of code can increase the
exposure by allocating an additional copy of that string in the heap.

On-disk (overwrite with random bytes)

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 23 / 63

Protecting the integrity - Message Authentication Codes

HMAC: Keyed version of a hash function, used for integrity protection.
Let m be the message, K be the session secret key and hash be a secure
hash function. Then, (depending on the implementation):

HMACK(m) =


hash(m|K), or
hash(K|m|), or
hash(K|m|K)

Three known options of using encryption and integrity protection
1 Encrypt-and-MAC
2 MAC-then-encrypt
3 Encrypt-then-MAC (why this is better)

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 24 / 63

...Protecting the integrity: (1) Encrypt-and-MAC

Let E be the encryption function. The ciphertext is generated by
encrypting the plaintext and then appending a MAC of the plaintext

EK(m) → c
HMACK(m) → h
Send c, h
SSH works approximately this way
An attacker can attack the encryption function and the hash function
independently and in parallel

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 25 / 63

...Protecting the integrity: (2) MAC-then-encrypt

First produce the HMAC and then encrypt everything
HMACK(m) → h
EK(m, h) → c
Send c
SSL (until TLS 1.0) worked this way.
An attacker can ”fool” the receiver to decrypt random messages
Vulnerable to padding oracle attacks8,9.

8
https://research.nccgroup.com/2021/02/17/cryptopals-exploiting-cbc-padding-oracles/

9
https://github.com/mpgn/Padding-oracle-attack

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 26 / 63

https://research.nccgroup.com/2021/02/17/cryptopals-exploiting-cbc-padding-oracles/
https://github.com/mpgn/Padding-oracle-attack

Padding Preliminaries

Block ciphers require |m| = n × BlockSize
Padding is used to ensure proper message length
The plaintext can be padded in a number of different ways
PKCS#5 and PKCS#7 padding: adds between 1 to n whole bytes (n
is the block length). The value of each byte is equal to the number of
bytes added
ANSI X9.23 padding: all padding bytes are zero except the last one,
which is equal to the number of bytes added

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 27 / 63

Padding oracle attacks

Problem:
Padding depends (on some way) on the plaintext
Padding depends on the actual length of the plaintext

Attack: Since padding is checked during decryption, the attacker flips
some bits in ciphertext to modify padding

The attacker can then examine changes in behavior and time
This may lead to full disclosure of plaintext!

Known practical attacks based on padding oracles include BEAST and
Lucky 13 (vulnerable until TLS 1.1).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 28 / 63

...Protecting the integrity: (3) Encrypt-then-MAC

First produce the ciphertext and then generate a MAC of the ciphertext
EK(m) → c
HMACK(c) → h
Send c, h
IPSec works this way
This mode is the only mode that is provably secure
An attacker cannot fool a receiver to decrypt a random message
(why?)

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 29 / 63

Protecting the blocks - Block encryption

Block ciphers can operate in various modes
ECB: electronic codebook mode
CBC: cipher-block chaining mode
PCBC: propagate ciper-block chaining
CFB: cipher feedback mode
OFB: output feedback mode
CTR: Counter mode
XTS mode for disk encryption
CCM: CTR+CBC-MAC (integrity and confidentiality)
OCB: Offset codebook mode (integrity and confidentiality)
GCM: Galois/Counter Mode (integrity and confidentiality)

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 30 / 63

Electronic Code Booke (ECB) mode

Let Pi denote the i-th block of the plaintext and Ci denote the
corresponding ciphertext block.
Encryption: Ci = EK(Pi)
Decryption: Pi = DK(Ci)

In ECB each block is encrypted independently of the others
Problem: two identical plaintext blocks will produce the same
ciphertext
1-1 mapping betwee the plaintext and the corresponding ciphertext
block for any particular key!
Completely insecure when encrypting more than one block with a key

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 31 / 63

Cipher Block Chaining (CBC) mode

Improves ECB by making the encryption of each block dependent on
the ciphertext of the previous block
Since eack block of ciphertext depends on all the previous plaintext
blocks, it prevents parallelization of the encryption process
(decryption can still be parallerized)
Any error can propagate to the subsequent block
CBC is vulnerable to bit flipping attacks
Padding is still necessary in CBC

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 32 / 63

...CBC mode
Encryption:

Ci =

{
EK(Pi

⊕
Ci−1), i ≥ 1

IV, i = 0

Decryption:

Pi =

{
DK(Ci)

⊕
Ci−1, i ≥ 1

IV, i = 0

Each plaintext block is XORed with the previous ciphertext block
before it is encrypted
Thus, each ciphertext block depends on all previous plaintext blocks
To make each message unique, a unique initialization vector (IV)
must be used in the first block
MANY developers forget to set a unique IV...
Possible solutions: the developer friendly AES-GCM-SIV

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 33 / 63

PCBC mode

Encryption:

Ci =

{
EK(Pi

⊕
Pi−1

⊕
Ci−1), i ≥ 1

P0
⊕

IV, i = 0

Decryption:

Pi =

{
DK(Ci)

⊕
Pi−1

⊕
Ci−1, i ≥ 1

C0
⊕

IV, i = 0

Close to CBC mode
It produces self-synchronizing stream cipher

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 34 / 63

Cipher Feedback (CFB) mode

Encryption:

Ci =

{
EK(Ci−1)

⊕
Pi, i ≥ 1

IV, i = 0

Decryption:

Pi =

{
DK(Ci)

⊕
Ci−1, i ≥ 1

IV, i = 0

Similar to synchronized CBC but it is self-synchronizing. If one block
is lost, it does not affect decryption of the others
Encryption and decryption functions are identical
It does not require padding of the plaintext data
The initialization vector (IV) must still be used

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 35 / 63

Output Feedback (OFB) mode

Encryption: Cj = Pj
⊕

Oj
Decryption: Pj = Cj

⊕
Oj

where, Oj = EK(Ij) and Ij = Oj−1 and I0 = IV.
Similar to synchronized CBC but it is self-synchronizing. It turns a
block cipher into a synchronous stream cipher
Based on the key and an IV, it genrates keystream bits (in blocks)
which are then XORed with the plaintext
Encryption and decryption functions are identical
It does not require padding of the plaintext data
Problem: OFB (and CTR) behave like stream ciphers and are more
vulnerable to IV attacks
Reusing an IV leads to key bitstream reuse, breaking security!

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 36 / 63

Counter (CTR) mode

Encryption: Cj = Pj
⊕

Oj
Decryption: Pj = Cj

⊕
Oj

where, Oj = EK(IV||counterj).
Similar to OFB.
It genrates the keystream bits (next keystream block) by encrypting
successive values of IV|counter
Encryption and decryption functions are identical
Problem: OFB and CTR behave like stream ciphers and are more
vulnerable to IV attacks
Reusing an IV leads to key bitstream reuse, breaking security!

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 37 / 63

XTS mode

IEEE has approved XTS-AES mode for the protection of information
stored on block storage devices.
The key material consists of a data encryption key (used by the AES
cipher) as well as an independent ”tweak key”, used to incorporate
the logical position of the data block into the encryption.
The XTS-AES addresses threats such as copy-and-paste attack.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 38 / 63

CCM mode

Provides both confidentiality and authentication.
Combines Counter mode encryption with CBC-MAC (message
authentication code) authentication.
Applied in authenticate-then-encrypt mode, thus the same key can be
used for both operations.
It requires two cipher operations on each block.
It is less efficient than OCB (but OCB is pattent-protected).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 39 / 63

OCB mode

Provides both confidentiality and authentication.
Based on Integrity Aware Parallelizable Mode (IAPM).
It integrates a MAC into the block cipher process.
Only one block cipher operation is needed, but OCB is pattented.
Variations OCB1(2001) and OCB3(2011) are considered secure.
An existential forgery attack against OCB2 was published in 201810

10
https://eprint.iacr.org/2018/1040

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 40 / 63

https://eprint.iacr.org/2018/1040

GCM mode

Provides both confidentiality and authentication
Combines Counter mode encryption with Galois-MAC (message
authentication code) authentication
It requires one cipher operation + one Galois field 128-bit
multiplication on each block
Easiliy parallelized operations
Proven secure in the Concrete Security Model
Used by Amazon for all cloud storage by default.
AES-GCM-SIV no longer requires a random IV from developers.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 41 / 63

AEAD ciphers

Authenticated Encryption with Associated Data
AES GCM supports AEAD
AEAD allows appending to the ciphertext a plaintext, but integrity
protected, tag
You can use this tag as a developer to understand if the software is
trying to decrypt the data in the wrong context

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 42 / 63

Key exchange

Diffie Hellman (Elliptic Curve DH)
PAKE

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 43 / 63

Transport cryptography

How SSL/TLS works (recall the network security course)
BEAST / CRIME / BREACH / Lucky 13
heart-bleed attack
Weak key sizes, ciphers and hashing algorithms (supported by bad
web server config - google for ”SSL labs server test”)
Issues of ECB, CBC modes

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 44 / 63

Anonymity issues

Tricks for protecting the user’s anonymity.
Example: to check if a site is known to be of malicious nature,
browsers’ hash the URL the user visits and make a lookup on the
online db of vulnerable sites according to this hash.
Not very anonymized is it?

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 45 / 63

Part III

Cryptographic Security models

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 46 / 63

Provable security

AdHoc protocols should not be used
A security protocol be considered adequately secure, only if it comes
with formal security proof
There exist many security models around

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 47 / 63

The standard security model

The adversary is usually a polynomial bounded ppt (probabilistic
polynomial time) Turing machine
Security relies on known hard problems
A (new) crypto protocol must be shown by reduction, to be (at least)
as hard as a known hard problem
The capabilities of the adversary must be well defined (what he knows
and what he can do)
The adversary is modeled through a security experiment, during which
the adversary has access to one or more oracles

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 48 / 63

Other security models: The Universal Composibility model

The goal of the UC model is to formally analyze the security of
protocols composed of other protocols
It assumes an Ideal World and a Real Word function
The goal is to deduce the capabilities of the ideal world function to
the real world one.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 49 / 63

Formal verification tools

SAW is such a tool that:
can check mathematical properties of a function at the machine level
(using LLVM)
allows one to write a hypothesis with a cryptographic Domain Specific
Language (DSL) called Cryptol
allows one to verify that a hypothesis holds true for a function in
question using a solver (such as Z3)

Has been used for the verification of many cryptographic libraries
including Amazon’s s2n TLS library.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 50 / 63

https://github.com/aws/s2n-tls

Part IV

Modern Challenges for Cryptography

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 51 / 63

Side Channel Attacks

On devices with physical access
Measure the delay in processing and deduce a secret key (timing
attack)
Measure the power consumption and deduce the secret key (differential
power analysis)
Measure the electromagnetic emissions and deduce the secret key (EM
side channel)

On the cloud or over the network (e.g. through Javascript in the
victim browser)

TLS timing attacks (Lucky 13 TLS protocol issue, OpenSSL issues etc.)
Measure microarchitectural side-channels to leak system secrets (cache
side channel, Meltdown, Spectre, etc.)

There is a trick with HTTP/2 that allows for 100ns-level delay
measurements (regardless of the network jitter) and could thus be
abused to perform timing attacks to remote web applications...

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 52 / 63

https://ieeexplore.ieee.org/document/6547131
https://eprint.iacr.org/2011/232.pdf
https://meltdownattack.com/
https://tom.vg/papers/timeless-timing-attack_usenix2020.pdf

An example Timing issue

int compare_secret(char *secret1, char *secret2,
size_t secret_len)

{
size_t i;
for (i=0; i<secret_len; i++) {

if (secret1[i] != secret2[i]) {
return 0; // false

}
}
return 1; // true

}

What’s the problem here?
Early function return when a byte is different; we can infer the byte
sequence with secret_len × 28 tries (which is << 2secret_len×8).

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 53 / 63

Side Channel Attacks

To avoid timing attacks, use constant-time algorithms (or random
delay workarounds) for key comparison11, encryption etc.
Microarchitectural attacks require chip redesign, chip microfirmware
updates or OS workarounds (e.g. see Linux retpoline measure).
Differential power analysis attacks and EM side channel attacks may
be impacted by algorithm re-design and hardware re-design efforts.
We expect to find many more types of side channels in the future, so
it is good practice:

to avoid exposing secret key material on shared computing
environments (shared cloud, browser JavaScript runtimes etc.) as
much as possible.
consider any keys placed on embedded devices to be exposed (thus
generate device specific keys whose access can be revoked).

11for example see OpenSSL’s CRYPTO_memcmp(3)
Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 54 / 63

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.openssl.org/docs/man1.1.1/man3/CRYPTO_memcmp.html

Fault Injection Attacks

For devices where the attacker has physical access
input clock glitching attack (skip instruction)
temperature (heating) attack (modification of data in memory or
stored in CPU)
input voltage glitching attack (skip instruction, set register to zero etc.)
EM pulse attack (skip instruction, change value etc.)
laser attack (skip instruction, change value etc.)

For remote systems
Rowhammer allows Javascript payloads (or VM guest code) to flip
nearby bits in physical memory that is based on DRAM chips. This
brings down any form of isolation on the system.

Fault injection can be used to aid the extraction of secret keys or to
bypass cryptographic checks.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 55 / 63

https://www.mdpi.com/1424-8220/24/2/592

Fault Injection Attacks

For general fault injection there’s a number of hardware measures
that aim to make fault experiments less likely to succeed.
In the software domain there are similar measures, such as checking
for a condition twice (see DOUBLECHECK pattern).
For rowhammer, a number of DRAM chips have introduced proactive
protections (see TRR).
It is best to consider that a fault injection will eventually be
possible on a captured device and thus that the cryptographic code
will not always run as expected.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 56 / 63

https://www.secure-ic.com/products/issp/security-ip/anti-tamper/digital-sensor/
https://riscureprodstorage.blob.core.windows.net/production/2017/08/Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf

Post Quantum Cryptography

Most of the asymmetric cryptography we use today is based on the
integer factorization problem, the discrete logarithm problem or the
elliptic-curve discrete logarithm problem.
All of these difficult mathematical puzzles can be solved easily on a
sufficiently powerful Quantum Computer (using Shor’s algorithm or
other approaches).
Symmetric cryptography may be slightly sped up through Grover’s
algorithm in Quantum Computers.
Governments and the industry fear of a “harvest now, decrypt later”
threat.
Post Quantum Cryptography12 deals with the introduction of new
quantum-safe algorithms for cryptographic use.

12follow PQCrypto conference for all the latest news on Post-Quantum Cryptography.
Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 57 / 63

https://pqcrypto.org/

Post Quantum Cryptography

As of 2024
Many of NIST’s PQC finalists were characterized as not safe.
The current best practice is to deploy hybrid approaches relying on
both a PQC13 and a legacy cryptographic algorithm for asymmetric
cryptography.

See X25519Kyber768 used for key agreement in Google Chrome.
There are A LOT of projects going on in the industry right now to
adopt such hybrid approaches.

AES-256 or similar strength algorithms should be used for symmetric
encryption.
SHA-384 or greater strength algorithms should be used for
cryptographic hashing.

13see liboqs library by the Linux Foundation
Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 58 / 63

https://www.idquantique.com/new-vulnerability-threatens-three-finalists-nist-pqc-contest/
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-09
https://openquantumsafe.org/

As developers what should we do?

Side Channel Attacks, Fault Injection Attacks and Post Quantum
Cryptography are open problems.
Deduce a suitable threat model for your application

What is at stake and how well resourced are your likely opponents?
Don’t use shared hosting and watch out for timing attacks, if you
manage sensitive data (e.g. secret key to sign JWT tokens).
Plan for key compromise by legal owners of sold devices.
Plan for a transition to a hybrid PQC approach for key agreement,
key transport and digital signatures.

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 59 / 63

Part V

Conclusions

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 60 / 63

Important Concepts

PRNG vs CSRNG
Entropy
Signatures and replays
Key Management and Key Wrapping
Padding Oracles and Encrypt-then-MAC
Encryption for filesystems with AES-XTS
Integrity protected encryption with AES-GCM (or AES-GCM-SIV)
AEAD
Security Models and Formal Proofs
Side Channel and Fault Injection attacks
Post Quantum Cryptography

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 61 / 63

Further Reading Material

Jonathan Katz and Yehuda Lindell: Introduction to Modern
Cryptography. CRC Press (2011)
https://www.enisa.europa.eu/publications/
algorithms-key-size-and-parameters-report-2014

https://www.enisa.europa.eu/publications/
study-on-cryptographic-protocols

https://www.pcisecuritystandards.org/security_standards/
documents.php?association=PA-DSS

Serious Cryptography

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 62 / 63

 https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-repo rt-2014
 https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-repo rt-2014
 https://www.enisa.europa.eu/publications/study-on-cryptographic-protocols
 https://www.enisa.europa.eu/publications/study-on-cryptographic-protocols
 https://www.pcisecuritystandards.org/security_standards/documents.php?associatio n=PA-DSS
 https://www.pcisecuritystandards.org/security_standards/documents.php?associatio n=PA-DSS
https://nostarch.com/seriouscrypto

Questions?

Kotzanikolaou & Glynos (Univ. of Piraeus) Cryptographic Security 63 / 63

	Terminology
	Good practices
	NIH Syndrome
	Entropy and Random Number Generation
	Verifying the authenticity of data
	Storing Secrets
	Protecting the integrity of the ciphertext
	Block cipher operation modes
	Key Exchange
	Transport Security
	Anonymity Issues

	Cryptographic Security models
	Modern Challenges for Cryptography
	Side Channel Attacks
	Fault Injection Attacks
	Post Quantum Cryptography
	Building a strategy

	Conclusions

