
Software Security Course
Parsing and other file‐related bugs

Dimitrios A. Glynos
{ daglyn at unipi.gr }

Department of Informatics
University of Piraeus

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 1 / 39

Part I

Introduction

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 2 / 39

File‐related bugs

They are ubiquitous

They can be critical (may lead to privilege escalation, remote code
execution etc.)

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 3 / 39

Major categories of file‐related bugs

File handling
incorrect file permissions
insecure file open
..

File writing
exposure of sensitive information from uninitialized buffers
depletion of storage resources

File parsing
insecure copy of data structures found in files
arbitrary content injection attacks
insecure deserialization

We have examined some of these in previous lectures

A more focused look will be provided in this lecture

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 4 / 39

Part II

File handling bugs

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 5 / 39

Incorrect file permissions

CVE‐2005‐2962: ntlmaps is an NTLM authentication proxy server; the
post‐installation script of ntlmaps changes the permissions of the
ntlmaps configuration file to be world‐readable.

This configuration file typically contains the administrative username
and password of the Windows NT system that is used as the NTLM
authentication server, thus leaking these credentials to local users.

Does not follow the principle of least privilege.
Proposal: apply the correct / or more restrictive permissions.

In the above bug, only the user running the proxy server should be
permitted to have read access to the configuration file

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 6 / 39

Incorrect handling of file permission errors

CVE‐2004‐0148: wu‐ftpd 2.6.2 and earlier, with the restricted‐gid option
enabled, allows local users to bypass access restrictions by changing the
permissions to prevent access to their home directory, which causes
wu‐ftpd to use the root directory instead.

Proposal: Introduce code that handles all errors coming from
insufficient privileges (e.g. a failed call to open(2)) in a way that
adheres to the security requirements of the project (e.g. the action will
not be performed if the user lacks the required privileges).

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 7 / 39

Permission race condition during copy

The product, while copying or cloning a resource, does not set the
resource’s permissions or access control until the copy is complete,
leaving the resource exposed to other spheres while the copy is taking
place.

Note: data is written to a directory accessible by other spheres.

CVE‐2002‐0760: Archive extractor decompresses files with
world‐readable permissions, then later sets permissions to what the
archive specified.

Proposal: Limit the default permissions (umask(2)) assigned to newly
created files. Enforce the desired permissions during the creation of the
file (see mode argument of open(2) in C).

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 8 / 39

Path traversal

The software uses an improper mechanism to limit access to a specific
file or set of files. An attacker can influence the path from which files are
opened and can thus read or write to arbitrary locations on the
filesystem.

CVE‐2009‐1760: libtorrent would honor relative paths (e.g.
../.bashrc) found in .torrent files thus allowing attackers to
write/overwrite files at arbitrary locations on the user’s filesystem.
Proposal:

1 compose the path from the trusted base (e.g. /path/basedir) and the
untrusted input (e.g. ../../foo). Be sure that the composed path does
not exceed PATH_MAX.

2 Apply a function such as realpath(3) to determine the absolute path of
the file.

3 Check whether the resulting directory and filename are considered valid
for the intended operation.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 9 / 39

Improper handling of special files

The user is allowed to specify a non‐regular file resulting into
unintended program behaviour

Windows devices: AUX, CON, PRN, COM1, LPT1
Unix devices: /dev/zero, /dev/random
Windows ::DATA alternate data stream
application‐provided files: /dev/tcp/4.4.4.4/80 (allows connecting to port
80 of 4.4.4.4 from bash)

Example: Denial of service caused by reading from /dev/zero

Proposal: Check the type of the file before opening the file. On POSIX
systems use stat(2) for the check. On Windows check for special file
names¹ (as the type of file is deduced by the extension).

¹see Windows File Naming rules and NTFS reserved files
Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 10 / 39

https://learn.microsoft.com/en-us/windows/win32/fileio/naming-a-file#win32-file-namespaces
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/b04c3bd0-79dc-4e58-b8ed-74f19fc2ea0a

Insecure permissions and temporary files

Temporary files are usually written in world‐accessible directories (e.g.
/tmp).

If the temporary file has wrong permissions, it may be accessible by
other spheres.

If the temporary file is written inside a directory with wrong
permissions then it may be removed or replaced by other spheres.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 11 / 39

Insecure temporary file creation

Example:

// dump temporary data
fd = open("/tmp/temp", O_WRONLY | O_CREAT);
write(fd, buffer, count);
close(fd);

What happens if an attacker makes '/tmp/temp' a symbolic link
pointing to '/home/joe/.ssh/authorized_keys' and makes user
’joe’ execute the vulnerable application ?

A race condition!

Proposal: Use either the O_EXCLmode of open(2) or the mkstemp(3)
function to atomically create and return a descriptor belonging to a
unique temporary file.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 12 / 39

Part III

File writing bugs

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 13 / 39

Information leak caused by uninitialized buffer written to
file descriptor

Example:

struct person { char name[20]; unsigned char age; };

int writeperson(int fd, char *name, unsigned char age) {
struct person p;
p.age = age;
strncpy(p.name, name, 20);
return write(fd, &p, sizeof(struct person));

}

A buffer written out to a file may contain uninitialized data, exposing
sensitive information found in program memory (e.g. hints about ASLR
mappings, stack canaries, private keys etc.).

Proposal: Always initialize a buffer (with memset(3) etc.) before writing
its contents to a file. This also holds true for buffers written to sockets.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 14 / 39

Storage resource depletion

Storage depletion case: ZIP bomb

Example: A compressed ZIP archive contains a huge amount of zero
bytes that were efficiently compressed, making the ZIP file small in size.
A web service accepts to process the ZIP file because of its small size.
During decompression all available disk space is used leading to a denial
of service condition.
Proposal: Use a decompression algorithm that will fail to continue once
a specific amount of output bytes have been written to disk.

Example: see java.util.zip.inflater.inflate(.., int len)
method.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 15 / 39

https://docs.oracle.com/en%2Fjava%2Fjavase%2F11%2Fdocs%2Fapi%2F%2F/java.base/java/util/zip/Inflater.html

Part IV

File parsing bugs

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 16 / 39

Information leak caused by uninitialized buffer written to
file descriptor

Memory (and CPU time) consumption case: Billion Laughs attack

<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>
<lolz>&lol9;</lolz>

Denial of service due to exponential entity expansion
Proposal: FEATURE_SECURE_PROCESSING of SAX parsers sets
entityExpansionLimit and elementAttributeLimit

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 17 / 39

Buffer Overflow

Example:

int size;
char header[JPEG_HDR_SIZE];
read(fd, &size, 4);
read(fd, header, size);

What happens if an attacker supplies a malformed file where
size > JPEG_HDR_SIZE ?
Proposal

Check whether the ’size’ described in the file is within the bounds
described by the spec
If it’s not, it’s a malformed file and parsing should terminate

Check the “Memory Corruption” lecture material for more information
on the subject.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 18 / 39

Insecure Deserialization

Applications sometimes serialize² runtime objects (i.e. store them as a
series of memory‐location independent bytes) in order to:

store in a data store for later retrieval
share with clients, so that the server may process the data faster when
later received by the client
publish non‐trivial structures to the world (e.g. Machine Learning models)

Deserialization comes with two risks
Missing Object Value Sanity Check
Serialization format allows for Type Descriptors

²Object serialization is also known as object marshalling.
Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 19 / 39

Insecure Deserialization: Missing Object Value Sanity Check

Let’s imagine that a Python web application tracks user information
through User class objects.

class User:
is_admin = False
username = "unknown"

def set_username(self, username):
self.username = username

def set_admin_status(self, is_admin=False):
self.is_admin = is_admin

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 20 / 39

Insecure Deserialization: Missing Object Value Sanity Check

The application shares with clients the serialized form of their User
object, using the Pickle serialization module.

u = User()
u.set_username('baxter')
u.set_admin_status(is_admin=False)
serialized = pickle.dumps(b)

serialized becomes

Hex Representation |Printable Bytes |
--
80 04 95 39 00 00 00 00 00 00 00 8c 04 75 73 65 |...9.........use|
72 94 8c 04 55 73 65 72 94 93 94 29 81 94 7d 94 |r...User...)..}.|
28 8c 08 75 73 65 72 6e 61 6d 65 94 8c 06 62 61 |(..username...ba|
78 74 65 72 94 8c 08 69 73 5f 61 64 6d 69 6e 94 |xter...is_admin.|
89 75 62 2e |.ub.|

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 21 / 39

Insecure Deserialization: Missing Object Value Sanity Check

But an adversary is free to forge on the client side the username and
administrative level information found in the payload.

80 04 95 39 00 00 00 00 00 00 00 8c 04 75 73 65 |...9.........use|
72 94 8c 04 55 73 65 72 94 93 94 29 81 94 7d 94 |r...User...)..}.|
28 8c 08 75 73 65 72 6e 61 6d 65 94 8c 06 62 61 |(..username...ba|
78 74 65 72 94 8c 08 69 73 5f 61 64 6d 69 6e 94 |xter...is_admin.|
89 75 62 2e |.ub.|

is transformed to

80 04 95 39 00 00 00 00 00 00 00 8c 04 75 73 65 |...9.........use|
72 94 8c 04 55 73 65 72 94 93 94 29 81 94 7d 94 |r...User...)..}.|
28 8c 08 75 73 65 72 6e 61 6d 65 94 8c 06 6d 61 |(..username...ma|
73 74 65 72 94 8c 08 69 73 5f 61 64 6d 69 6e 94 |ster...is_admin.|
88³ 75 62 2e |.ub.|

³Notice how 0x89 became 0x88 to reflect a True boolean value.
Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 22 / 39

Insecure Deserialization: Missing Object Value Sanity Check

If the application blindly instantiates the object, incorrect privileges may
be assigned to the session.
obj = pickle.loads(serialized)
print("username = %s" % obj.username) → username = master
print("admin_status = %s" % obj.is_admin) → admin_status = True

Solution: Check each of the object members (just as you would do for
uninitialized values) for their type and value. Any inconsistencies found
should be treated as an error!

Example: Our cookie says this is session XYZ, and the database says that
this session belongs to user John who is a simple user, so why is the
serialized data referring to another user or user of different privilege?

Alternate solution: in client‐server scenarios, add session information to
the serialized data and sign the serialized payload at the server, so that
when later received (during a client request) the session information
and signature can be validated.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 23 / 39

Insecure Deserialization: Serialization format allows for
Type Descriptors

Serialization formats come in various forms (e.g. binary, XML, JSON etc.).

If the serialization format (or the deserializer configuration) accepts
Type Descriptors, then it is possible for an attacker to perform remote
code execution on the system that unmarshals the data.

The attacker will modify the serialized form, inserting a reference to a
class that will be used for malicious purposes⁴.

Some serialization formats are so expressive that you can simply insert
the full code to be executed!

Malicious code execution may occur before the developer has a chance
to inspect Object members (i.e. during object instantiation⁵).

⁴see ysoserial project for malicious payload generation for various framework gadgets.
⁵this used to be the case with the default serialization of objects in Java.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 24 / 39

https://github.com/frohoff/ysoserial
https://snyk.io/blog/serialization-and-deserialization-in-java/

Insecure Deserialization: Serialization format allows for
Type Descriptors

Example: The web application has an Exec class in its exec.py Python
module which the attacker will use as a gadget.

class Exec:
command = "/bin/rm"
parameter = "/tmp/temporary-output"

This is called on object destruction time
def __del__(self):

subprocess.run([self.command, self.parameter])

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 25 / 39

Insecure Deserialization: Serialization format allows for
Type Descriptors

The attacker first modifies a Type Descriptor in the serialized data to
refer to the Exec class of the exec.pymodule.

80 04 95 39 00 00 00 00 00 00 00 8c 04 75 73 65 |...9.........use|
72 94 8c 04 55 73 65 72 94 93 94 29 81 94 7d 94 |r...User...)..}.|
28 8c 08 75 73 65 72 6e 61 6d 65 94 8c 06 62 61 |(..username...ba|
78 74 65 72 94 8c 08 69 73 5f 61 64 6d 69 6e 94 |xter...is_admin.|
89 75 62 2e |.ub.|

is transformed to

80 04 95 39 00 00 00 00 00 00 00 8c 04 65 78 65 |...9.........exe|
63 94 8c 04 45 78 65 63 94 93 94 29 81 94 7d 94 |c...Exec...)..}.|
28 8c 08 75 73 65 72 6e 61 6d 65 94 8c 06 62 61 |(..username...ba|
78 74 65 72 94 8c 08 69 73 5f 61 64 6d 69 6e 94 |xter...is_admin.|
89 75 62 2e |.ub.|

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 26 / 39

Insecure Deserialization: Serialization format allows for
Type Descriptors

Now the attacker may (optionally) influence how Exec is used, by
changing Exec object attribute values.

command="echo", parameter="Remote Code Execution"

80 04 95 39 00 00 00 00 00 00 00 8c 04 65 78 65 |...9.........exe|
63 94 8c 04 45 78 65 63 94 93 94 29 81 94 7d 94 |c...Exec...)..}.|
28 8c 08 75 73 65 72 6e 61 6d 65 94 8c 06 62 61 |(..username...ba|
78 74 65 72 94 8c 08 69 73 5f 61 64 6d 69 6e 94 |xter...is_admin.|
89 75 62 2e |.ub.|

is transformed and extended to

80 04 95 39 00 00 00 00 00 00 00 8c 04 65 78 65 |...9.........exe|
63 94 8c 04 45 78 65 63 94 93 94 29 81 94 7d 94 |c...Exec...)..}.|
28 8c 07 63 6f 6d 6d 61 6e 64 94 8c 04 65 63 68 |(..command...ech|
6f 94 8c 09 70 61 72 61 6d 65 74 65 72 94 8c⁶ 15 |o...parameter...|
52 65 6d 6f 74 65 20 43 6f 64 65 20 45 78 65 63 |Remote Code Exec|
75 74 69 6f 6e 75 62 2e |utionub.|

⁶Notice how the Boolean type (0x94 0x89) type was converted to a String type (0x94 0x8c).
Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 27 / 39

Insecure Deserialization: Serialization format allows for
Type Descriptors

Finally the web application will execute the Exec destructor once the
deserialized object needs to be freed.

obj = pickle.loads(serialized)
print("username = %s" % obj.username)
print("admin_status = %s" % obj.is_admin)

gives

Traceback (most recent call last):
File "unmarshal.py", line 6, in <module>
print("username = %s" % obj.username)

AttributeError: 'Exec' object has no attribute 'username'
Remote Code Execution

The malicious code is executed successfully, despite the AttributeError.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 28 / 39

Insecure Deserialization: Serialization format allows for
Type Descriptors

Solutions
Avoid using at all costs deserialization frameworks that allow for Type
Descriptors (or configure the framework to ignore Type Descriptors
when possible).

For ML models in particular, avoid using Python Pickle and try the ONNX
format.

Again, use session‐binding and signing in client‐server scenarios.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 29 / 39

https://onnx.ai/

Parser Differentials: Two independent parsers parse the
same data

CVE‐2013‐4787: Android 1.6 Donut through 4.2 Jelly Bean did not
properly check cryptographic signatures in application packages (APK),
as a zip entry that appeared twice, had its file signature checked against
the signature of the first entry while the zip extraction occurred based
on the contents of the second entry.

In this way, attackers could tamper with system packages / resources,
gaining root privileges on Android.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 30 / 39

Parser Differentials: Two independent parsers parse the
same data

Whenmultiple parsers (e.g. the signature check and the zip extraction
parsers) parse a document theymay treat values / errors in a different
manner. This may enable an attacker to overcome a security control.

Similar attack on the web: HTTP Request Smuggling attack (exploiting
differences in the front‐end and backend server HTTP parser logic).

Solution: Apply the langsec paradigm and generate all parser code from
the same specification (see protobuf).

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 31 / 39

https://portswigger.net/web-security/request-smuggling
https://langsec.org/bof-handout.pdf
https://protobuf.dev/

XXE ‐ XML External Entity processing

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM
"file:///etc/passwd" >]><foo>&xxe;</foo>

An external entity is included during the processing of the file.

Many Java XML parsers are prone to XXE due to their default settings!

Abused to draw file data, scan ports, send Windows process credentials
to malicious service via UNC path (e.g. “\\malicious‐host\D$”), DoS etc.
Proposal

Enable disallow-doctype-decl in Xerces 2 parsers
Alternatively, provide a custom (whitelisting) implementation for External
Entity Resolution.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 32 / 39

Part V

Fuzz Testing

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 33 / 39

Fuzz Testing (aka Fuzzing)

An automated technique that sends extraneous values to a piece of
software and monitors whether the software will handle these well.

Output: a set of unique payloads that produce a crash at a different point
in the program code.
Root cause analysis of a software crash may lead to the discovery of a
security vulnerability.

Very efficient method for finding file parsing errors.

Coverage‐guided fuzzers optimize their generated values so that they
exercise as many different program paths as possible.
Context‐aware fuzzers understand the structure of the file they fuzz to
yield better coverage

e.g. in generating PNG files, they correctly recompute the file CRC.

Example fuzzers: afl, afl++, libfuzzer, JQF, peach

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 34 / 39

Program Instrumentation and Fuzz Testing

If we are interested in specific types of problematic behaviours
(e.g. undefined behaviour, buffer overflow etc.) we can instrument a
piece of software so that (measured) erroneous behaviour leads to a
program crash.

Instrumentation is usually performed by applying extra code before or
during compilation (static instrumentation). However there are
frameworks that apply instrumentation while loading the software
(dynamic instrumentation).

Then, we can use a fuzzer to drive program execution to interesting
paths.

Example static instrumentation software: Google sanitizers
(AddressSanitizer, MemorySanitizer etc.)

Example dynamic instrumentation software: DynamoRIO

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 35 / 39

https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://dynamorio.org/

On the program inputs generated by Fuzzers

The inputs generated by fuzzers may be:
completely random values
boundary values (very small, or very large)
based on user templates

Optimizing a value for a certain goal may occur through the application
of a genetic algorithm.

Finding the right value to exercise a certain path may be deduced
through symbolic execution.

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 36 / 39

https://en.wikipedia.org/wiki/Genetic_algorithm
https://www.fuzzingbook.org/html/SymbolicFuzzer.html#Simple-Symbolic-Fuzzing

Part VI

Conclusions

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 37 / 39

Important Concepts

Handling special files and file permissions

File creation race conditions

Path Traversal

Information Leaks

Resource consumption (storage, CPU, memory)

Insecure Deserialization

Langsec and Parser Differentials

XXE

Fuzz Testing and Program Instrumentation

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 38 / 39

Further Reading Material

The Art of Software Security Assessment

File handling issues at CWE

Annual Language Theoretic Security Workshop (LangSec)

Fuzzing: Brute Force Vulnerability Discovery

The Fuzzing Book (online)

“Using program instrumentation to identify security bugs” presentation
by D. Glynos

Dimitrios A. Glynos (Univ. of Piraeus) Parsing and other file‐related bugs 39 / 39

https://www.amazon.com/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
https://cwe.mitre.org/data/definitions/1219.html
http://langsec.org/
https://www.amazon.com/Fuzzing-Brute-Force-Vulnerability-Discovery/dp/0321446119
https://www.fuzzingbook.org/
https://census-labs.com/news/2020/12/10/using-program-instrumentation-to-identify-security-bugs-o%CF%80en-conf-2020/
https://census-labs.com/news/2020/12/10/using-program-instrumentation-to-identify-security-bugs-o%CF%80en-conf-2020/

	Introduction
	File handling bugs
	File writing bugs
	File parsing bugs
	Fuzz Testing
	Conclusions

