
Web Application
Penetration
Testing

OWASP TOP 10

Panayiotis Kotzanikolaou –

 Christos Grigoriadis

Web
Application
Stack

Example
Technology
Stack
Implementing
Component

The
Protocol
Stack

IP for packet routing

• IP information is processed by routing component of OS kernel

TCP for reliable data transport

• TCP data is forwarded by OS kernel to browser / web server /
mobile app socket

SSL for transport confidentiality, data integrity and peer
authentication

• Implemented as library code, used in browser / web server /
mobile app

HTTP for web transactions + content delivery

• Can be library code, used in browser / web server / mobile app

Application-layer protocols for communication with web
services (SOAP,JSON etc.) Can be library code, used in:

• JavaScript of browser applications

• code of web applications + mobile apps

A Typical
Web
Request

1. User enters https://domain.net to browser

2. Browser makes DNS request and resolves domain.net to IP 1.1.1.1

3. Browser starts SSL negotiation with the service on port 443 of IP 1.1.1.1

4. Browser verifies the server certificate chain

5. Browser sends HTTP request through the SSL communication channel

• GET / HTTP/1.1

• Host: domain.net

• ...

6. Server responds with the content of the page through the SSL channel

• HTTP/1.1 200 OK

• Content-Length: 131

• ...

7. Browser makes further requests for other content that needs to be

displayed within the page (images etc.)

8. Browser finishes rendering the page

Sessions
• HTTP is stateless

• But applications require state!

• The web application keeps a session object to track a

user’s session

• Each session object is linked to a Session ID (a

random number)

• The web application passes the Session ID to the

client, usually by means of a cookie parameter

• Each time the client wishes to do a transaction within

the same session ittransmits the relevant Session ID to

the web application

• By stealing a user’s session ID an attacker would

be able to impersonate that user to the server

User
Authentication

HTTP provides for

• Basic authentication

• username, password is sent to server

• password is kept hashed on the server

• Digest Authentication

• Server keeps client’s password in original form

• Server challenges client with nonce

• Client sends username, hash(password, nonce)

Most web applications implement their own authentication

• Username and password are sent to login page

• Server checks password against hashed (?) form in database

• If password is verified an authenticated session object is created

for the user

Authorization • Check if an incoming request is tied to a session

with the right privileges before proceeding with

the action described in the request.

• Example authorization checks:

• Is the session ID valid?

• Does it belong to a logged in user?

• Is the session connected to an administrative account?

• Is the session in the required state (e.g. address

details have been verified) for this action to occur?

Web
Application
Attack
Surface • Transport here covers all the non-routing

functionality that is responsible for

delivering data as is to the browser and

web application.

Web
Application
Security

• Many critical services have moved to a web service

implementation

• Web applications are processing the data of

millions of users

• There are ongoing attacks to every layer of the

web application stack

• Proactive security

➢ Development best practices

➢ Audits + Pen. Tests

➢ Web Application Firewalls

➢ Contracts for DoS incident response by ISPs

OWASP
Top 10
&
BWAPP

1. Injection

2. Broken Authentication and Session

Management

3. Cross-Site Scripting (XSS)

4. Insecure Direct Object References

5. Security Misconfiguration

6. Sensitive Data Exposure

7. Missing Function Level Access Control

8. Cross-Site Request Forgery (CSRF)

9. Using Components with Known Vulnerabilities

10. Unvalidated Redirects and Forwards

Injection
• Untrusted data is sent to an interpreter as part of a

command or query

• The hostile data trick the interpreter into executing

unintended commands or accessing unauthorized

data

➢ SQL injection

➢ Blind SQL injection

➢ PHP file inclusion

➢ OS command injection

➢ LDAP injection

➢ XPATH injection

➢ ...

HTML
Injection
Reflected
(GET/POST)

HTML
Injection
Reflected
(GET/POST)

MITIGATION

GET and POST are the methods of HTML used for the requesting data from sever,

Mitigation for these methods can be added as blocking of special characters like < > /

etc also

• Using of html=html.replace(/</g, “<”).replace(/>/g, “gt;”); in javasrcipt

• Using of jQuery functions like

 function (html) {

 return $($.parseHTML(html)).text();

 }

• If a string contains a potential html code than developer can use

 $msg = “<div></div>”;

 $safe_msg = htmlspecialchars($msg, ENT_QUOTES);

 echo $safe_msg;

• DOM Objects are sanitized in user input fields.

HTML
Injection
Reflected
(GET/POST)

Injection
BWAPP-
SSI
Injection

Mitigation:

• Disable SSI execution on pages that do not require

it. For pages requiring SSI ensure that you perform

the following checks

• Only enable the SSI directives that are needed for

this page and disable all others.

• HTML entity encodes user supplied data before

passing it to a page with SSI execution

permissions.

• Use SUExec to have the page execute as the

owner of the file instead of the web server user.

Injection
BWAPP-
SSI
Injection <!--#exec cmd="cat /etc/passwd"-->

Injection
BWAPP-
SQL Injection
(GET/Search)

Injection
BWAPP-
SQL Injection
(GET/Select)

Injection
BWAPP-
SQL Injection
(GET/Select)

Broken
Authentication
and Session
Management

Broken
Authentication
and Session
Management

1

2

3

Cross-Site
Scripting
(XSS)

Similar Idea With HTML Injection

• When doing a XSS attack, you might create the

usual popup with alert(), while doing a HTML

injection you might put some fancy text onto the

webpage.

Insecure
Direct
Object
References

Security
Misconfigur
ation

Sensitive
Data
Exposure-
Heartbleed

The Heartbleed Bug is a serious vulnerability in the

popular OpenSSL cryptographic software library.
• This weakness allows stealing the information protected,

under normal conditions, by the SSL/TLS encryption used

to secure the Internet.

• SSL/TLS provides communication security and privacy

over the Internet for applications such as web, email,

instant messaging (IM) and some virtual private networks

(VPNs).

The Heartbleed bug allows anyone on the Internet to

read the memory of the systems protected by the

vulnerable versions of the OpenSSL software.
• This compromises the secret keys used to identify the

service providers and to encrypt the traffic, the names and

passwords of the users and the actual content.

• This allows attackers to eavesdrop on communications,

steal data directly from the services and users and to

impersonate services and users.

Sensitive
Data
Exposure
Heartbleed

Sensitive
Data
Exposure
Heartbleed

Missing
Function
Level Access
Control -
Directory
Traversal

Missing
Function
Level Access
Control -
File
Traversal

Cross-Site
Request
Forgery
(CSRF)

Cross-Site
Request
Forgery
(CSRF)
Transfer
Amount

Using
Components
with Known
Vulnerabilities
Shellshock/CGI

Using
Components
with Known
Vulnerabilities
SQLiteManager
Local File
Inclusion

Unvalidated
Redirects
and
Forwards

Unvalidated
Redirects
and
Forwards

	Slide 1: Web Application Penetration Testing
	Slide 2: Web Application Stack
	Slide 3: Example Technology Stack Implementing Component
	Slide 4: The Protocol Stack
	Slide 5: A Typical Web Request
	Slide 6: Sessions
	Slide 7: User Authentication
	Slide 8: Authorization
	Slide 9: Web Application Attack Surface
	Slide 10: Web Application Security
	Slide 11: OWASP Top 10 & BWAPP
	Slide 12: Injection
	Slide 13: HTML Injection Reflected (GET/POST)
	Slide 14: HTML Injection Reflected (GET/POST)
	Slide 15: HTML Injection Reflected (GET/POST)
	Slide 16: Injection BWAPP- SSI Injection
	Slide 17: Injection BWAPP- SSI Injection
	Slide 18: Injection BWAPP- SQL Injection (GET/Search)
	Slide 19: Injection BWAPP- SQL Injection (GET/Select)
	Slide 20: Injection BWAPP- SQL Injection (GET/Select)
	Slide 21: Broken Authentication and Session Management
	Slide 22: Broken Authentication and Session Management
	Slide 23: Cross-Site Scripting (XSS)
	Slide 24: Insecure Direct Object References
	Slide 25: Security Misconfiguration
	Slide 26: Sensitive Data Exposure- Heartbleed
	Slide 27: Sensitive Data Exposure Heartbleed
	Slide 28: Sensitive Data Exposure Heartbleed
	Slide 29: Missing Function Level Access Control - Directory Traversal
	Slide 30: Missing Function Level Access Control - File Traversal
	Slide 31: Cross-Site Request Forgery (CSRF)
	Slide 32: Cross-Site Request Forgery (CSRF) Transfer Amount
	Slide 33: Using Components with Known Vulnerabilities Shellshock/CGI
	Slide 34: Using Components with Known Vulnerabilities SQLiteManager Local File Inclusion
	Slide 35: Unvalidated Redirects and Forwards
	Slide 36: Unvalidated Redirects and Forwards

