
Software Security Course
Mobile App Security

Dimitrios A. Glynos
{ daglyn at unipi.gr }

Department of Informatics
University of Piraeus

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 1 / 48

Part I

Mobile App Security

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 2 / 48

Mobile Apps

Applications that can be installed by users on a mobile device
“smart” phone
tablet
vehicle “infotainment” system
...

Usually downloaded from a controlled “market place”

Packaged as a software “bundle”

Apps may run on a personal or business device and may thus handle
personal or other sensitive data

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 3 / 48

Mobile App Characteristics

HTML5 App: Installable app written in HTML5 / JavaScript / CSS, running
on top of a standard “web view”¹

Compare this to a Responsive HTML5 Web Application, that simply runs
on the mobile device browser

PWA²: A website that can register an “offline” version on the device
Homescreen
Native App: Mobile app developed on top of foundation libraries (e.g.
on top of Android Java libraries)

Native Apps may introduce system level components (native libraries etc.)

Hybrid App: An HTML5 installable app that also utilizes system
components (using a JavaScript‐to‐native‐code bridge³)

Note: App Clips or Instant Apps allow users to experience (limited)
capabilities of an app without installing the full app

¹A component provided by the platform mimicking the rendering of a browser tab
²Progressive Web App
³see WKScriptMessageHandler on iOS, and addJavascriptInterface or

WebMessagePort.postMessage on Android
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 4 / 48

https://developer.apple.com/app-clips/
https://developer.android.com/topic/google-play-instant
https://stackoverflow.com/a/47861130
https://developer.android.com/develop/ui/views/layout/webapps/webview#BindingJavaScript
https://developer.android.com/reference/android/webkit/WebMessagePort#postMessage(android.webkit.WebMessage)

Vulnerability Landscape

Buffer overflows in native components
custom C/C++ library
system library
browser vulnerabilities

Business logic errors / wrong implementation of security controls
CVE‐2013‐4787 duplicate filename in apk

Privacy issues
communication with server is susceptible to MITM attacks
user tracking
insecure storage of sensitive data

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 5 / 48

Risk

Modification of app state

Leakage of sensitive information

Complete device compromise

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 6 / 48

Threat Agents affecting an app

An actor performing an attack on a Wi‐Fi network

An actor that has pushed a malicious app to a store

An actor that has convinced a victim user to download a malicious
resource

An actor that has compromised another app on the victim’s device

An actor that has sent a malicious message to a victim user through the
cellular network

An actor that has compromised a service on the internet
An actor that lies in the vicinity of a victim device

NFC attacks

An actor that has short‐term access to the device
An ’evil maid’ having brief access to a locked device

An actor that has longer‐term access to the device
A thief

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 7 / 48

Computing on a mobile device

The OS and mobile device frameworks offer a number of security
controls for applications to use

Developers of critical applications consider mobile platforms as hostile
execution environments
“rooted” / “jailbroken” devices

Devices where the firmware has been modified by users in order to gain
administrative capabilities
Basic security controls like the execution of only signed binaries have
been disabled
Some software vendors consider these setups as insecure and do not
allow further execution
Others cannot overlook this growing customer base

Proactive Application Binary Protection
Obfuscation
Static and Dynamic Tamper protection

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 8 / 48

Security Tests for Mobile Apps

Black box application security tests to app and related web service(s)
Most of the time these require access to a rooted / jailbroken device, so
as to carry out in‐depth inspection of app artifacts and behaviour

Code reviews

Bundle audits

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 9 / 48

Part II

Android

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 10 / 48

Android

OS for smart phones based on the Linux kernel

Developed by Google

Based on standards set by the Open Handset Alliance⁴
Most popular OS for smart phones

In the first quarter of 2024, Android devices accounted for 71% of the
mobile device market share (source: statcounter)

Although Android is open source it is bundled with binary drivers and
closed source applications (e.g. Google Mobile Services)

⁴An initiative to align with the multiple Android device makers and chipset vendors
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 11 / 48

https://gs.statcounter.com/os-market-share/mobile/worldwide

Secure Boot and Firmware Upgrading

An Android OS installation typically consists of Google (and contributed)
Android code, Device maker code and Chipset vendor code

Android Project Treble wishes to separate the Chipset vendor code from
the rest of the OS code, to make it easier for a Google release to be
pushed to the Device maker (and thus to the End user)

Since Android 8, Android provides to vendors reference Android Verified
Boot code
Android Verified Boot aims to achieve the following:

Verifying that the signed firmware that is loaded is one that the Device
maker considers as authentic.
Verifying that the pushed firmware version is not an old one (protection
via RPMB⁵ hardware).

Some Device makers (incl. Google) allow users to flash⁶ the bootloader
(and thus any firmware to the device)

⁵Replay Protected Memory Block
⁶aka unlocked bootloader

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 12 / 48

https://source.android.com/docs/security/features/verifiedboot/avb
https://source.android.com/docs/security/features/verifiedboot/avb
https://en.wikipedia.org/wiki/Replay_Protected_Memory_Block

Android Virtualization Framework

Android 13 introduced the Android Virtualization Framework
Part of Android’s kernel code, the Protected Kernel‐based Virtual
Machine (pKVM), is executed at boot time as a hypervisor at a higher
privilege level (EL2 ARM exception level) than the Android kernel (EL1)
Android may now execute sensitive workflows, such as upgrade‐time
system rebuilds, in a protected guest VM.

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 13 / 48

https://source.android.com/docs/core/virtualization

Confidentiality Controls

Instead of full disk encryption, Android supports file‐based encryption
Files are encrypted with AES‐256‐XTS⁷
Credential Encrypted storage, is the default app storage and is only
available after first unlock.
Device Encrypted storage, is an app storage that is available just after
boot (before device unlock).

Android supports the use of a TEE⁸ or SE⁹
The TEE (or SE) handles cryptographic material, and makes sure sensitive
data (like fingerprint data) are not exposed to the untrusted world of the
main processor context.
Trusty is a reference implementation of a TEE OS and TEE services.

Apps may request to generate / maintain keys in a KeyStore (framework
component) which utilizes the hardware‐backed KeyMaster (service).

⁷or Adiantum if no hardware acceleration is possible
⁸Trusted Execution Environment
⁹Secure Element

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 14 / 48

Android Architecture

Source: http://www.slideshare.net/opersys/inside-androids-ui
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 15 / 48

http://www.slideshare.net/opersys/inside-androids-ui

APK file

Container of application resources (application “bundle”)

Usually downloaded through Google’s market place (Google Play)

A signed (by developer) and compressed archive of files

$ jarsigner -verbose -verify foo.apk
...
sm 367112 Tue Oct 01 10:38:02 EEST 2013 assets/fonts/arial.ttf
sm 292616 Tue Oct 01 10:38:02 EEST 2013 classes.dex
sm 139340 Fri Sep 20 16:09:54 EEST 2013 lib/armeabi/libjpeg.so
sm 13024 Tue Oct 01 10:38:02 EEST 2013 AndroidManifest.xml
sm 80292 Tue Oct 01 10:37:46 EEST 2013 resources.arsc
sm 4247 Fri Sep 20 16:10:28 EEST 2013 res/drawable/aa.png

9728 Tue Oct 01 10:38:02 EEST 2013 META-INF/MANIFEST.MF
9781 Tue Oct 01 10:38:02 EEST 2013 META-INF/CERT.SF
863 Tue Oct 01 10:38:02 EEST 2013 META-INF/CERT.RSA

jar verified.

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 16 / 48

Android App Runtime

Android Java code is compiled to class files which are then translated to
DEX files (bytecode suitable for the Dalvik register‐based VM)

Dalvik’s allocation, garbage collection and JIT compilation times were
hurting performance

In version 5, Android moved from a Dalvik VM‐based runtime to ART¹⁰

In ART, DEX files are Ahead‐of‐Time compiled to ELF64 OAT shared
libraries (with eager object pre‐initialization)

The ART runtime is now a mixture of loaded native code, a VM to
interpret DEX code, and a JIT mechanism to compile parts of DEX based
on usage profiling

¹⁰Android RunTime
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 17 / 48

Android App Runtime

Source: Google I/O 2014 presentation “The ART runtime”

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 18 / 48

https://www.youtube.com/watch?v=EBlTzQsUoOw

APK signing

Google does notmaintain a Certificate Authority to verify Developer
signing certificates

In recent years, Google recommends to developers to have Google
manage their signing key

Google also recommends uploading the original APK artifact for
publishing, using (another managed) upload key
As of 2024, the APK v4 signature scheme is the default one used

v4 supports the (optional) use of a Merkle Tree¹¹ to efficiently hash
progressive APK downloads
v3 signatures allowed for signing key rotation
v2 signatures verified¹² the whole of the APK zip archive
v1 signatures verified the file contents of the zip archive, but not the zip
directory.. (Java’s default JAR signing)

¹¹Merkle Tree data stored in separate signature file apk‐name.apk.idsig
¹²Introduced a signing block within the APK zip structure

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 19 / 48

On Merkle Trees

Data
Blocks

Hash
1
Hash 1-0

+
Hash 1-1

hash()

Hash
0
Hash 0-0

+
Hash 0-1

hash()

Hash 0
+

Hash 1
hash()

Top Hash

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

L1 L2 L3 L4

Source: Wikipedia article on Merkle Tree
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 20 / 48

https://en.wikipedia.org/wiki/Merkle_tree

Merkle Tree and APK Signing block

Source: Android documentation on APK signing

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 21 / 48

https://source.android.com/docs/security/features/apksigning/v2#integrity-protected-contents

App, System and Device Integrity Checks

Critical applications need to know the application, operating system and
device integrity (e.g. unlocked bootloader) status

If the application has been tampered with, then the application’s web API
must not accept critical transactions
If the OS has been tampered with, then the application must not rely on
its controls to handle critical data
If the device configuration is not at a secure state, then any attestation
provided by the OS may be false

Google offers the Play Integrity API to receive such an attestation
regarding the device, system and app integrity

Google is planning to also roll out an install‐time integrity test to select
(opt‐in) partners in Android 15

Heuristics for such controls have traditionally been provided by Binary
Protection Suites

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 22 / 48

https://developer.android.com/google/play/integrity/overview
https://www.youtube.com/watch?v=RccJYep2v5I

Application Sandboxing

Applications of different authors run on the same device

Android needs to contain their execution to protect other apps (and the
system)

Containment is implemented through Application Sandboxing
Application Sandboxing in Android is implemented in three levels

UNIX File Permissions
SELinux Mandatory Access Control
SECCOMP sandbox

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 23 / 48

UNIX File Permissions

No /etc/passwd or /etc/group

Hard‐coded UserIDs and GroupIDs (#define AID_SYSTEM 1000)

Each application receives new UserID dynamically upon installation

Capabilities (members of AID_INET_ADMIN are allowed to configure
network interfaces)
“Sandboxing” through tight file permissions, employing the principle of
least privilege

In Android 6.0 the default permissions of an app home directory changed
to 0700 (from 0751).
Since Android 10, files in the SD Card now have app‐ownership
permissions¹³

¹³As most devices today come with an embedded SD card which need not be FAT32
mountable by other devices.
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 24 / 48

Example UNIX File Permissions

$ adb shell
shell@android:/ $ ls -al
...
drwxrwx--x radio radio 2014-06-30 14:43 modemfs
drwxr-xr-x root root 2014-06-14 11:47 system
dr-xr-x--- system sdcard_r 2012-01-01 08:17 storage
...
shell@android:/ $ cat /proc/mounts
...
/dev/block/mmcblk0p3 /system ext4 ro,noatime,user_xattr,acl,barrier=1,
data=ordered 0 0
/dev/block/mmcblk0p5 /data ext4 rw,nosuid,nodev,noatime,user_xattr,acl,
barrier=1,journal_async_commit,data=ordered,noauto_da_alloc,discard 0 0
...
$ ps
...
root 949 2 0 0 ffffffff 00000000 S binder
gps 1648 1 10928 964 ffffffff 00000000 S /system/bin/gpsd
u0_a20 15599 1643 487112 45000 ffffffff 00000000 S
com.sec.android.app.clockpackage

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 25 / 48

SELinux on Android

SELinux is a Mandatory Access Control system developed by the NSA
In Mandatory Access Control systems, the kernel keeps a policy of how
processes may interact with resources (typically, files) and this cannot
be changed¹⁴ during system runtime

Compare this to the typical UNIX DAC¹⁵ system where file permissions
may change through chmod(1)

SELinux associates security labels with “subjects” and “objects”
Android separates processes in more than 60 SELinux security domains

A particular domain has access to specific resources and all further access
is denied
Android 5 separated system resources (for system services) from app
resources through different security domains
Android 6 separated app resources across physical users
Android 9 introduced per‐app security domains

¹⁴SELinux enforcingmode
¹⁵Discretionary Access Control

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 26 / 48

SELinux example on Android

$ adb shell

Show SELinux context of the /dev/wlan device file

$ ls -alZ /dev/wlan

crw-rw-rw- 1 system system u:object_r:wlan_device:s0 486, 0 1972-12-01 22:38 /dev/wlan

Show the point where this was designated in the SELinux policy

$ grep -r wlan_device /vendor/etc/selinux/vendor_file_contexts

/dev/wlan u:object_r:wlan_device:s0

What is allowed to use the wlan_device resource

$ grep wlan_device /vendor/etc/selinux/vendor_sepolicy.cil

...

(allow hal_wifi_ext wlan_device (chr_file (ioctl read write getattr lock append map open

watch watch_reads)))

Which process holds (transitions to) the hal_wifi_ext attribute?

$ grep -r hal_wifi_ext /vendor/etc/selinux/vendor_sepolicy.cil |grep typetransition

(typetransition init_33_0 hal_wifi_ext_exec process hal_wifi_ext)

Which executable file(s) take the hal_wifi_ext_exec attribute during execution?

$ grep hal_wifi_ext_exec /vendor/etc/selinux/vendor_file_contexts

/vendor/bin/hw/vendor\.google\.wifi_ext@1\.0-service-vendor u:object_r:hal_wifi_ext_exec:s0

/vendor/bin/hw/vendor\.google\.wifi_ext@1\.0-service-vendor-lazy

u:object_r:hal_wifi_ext_exec:s0

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 27 / 48

seccomp‐bpf on Android

SECCOMP is a Linux kernel facility that limits the system calls that are
available to a process

seccomp-bpf uses the Berkeley Packet Filter language to implement
the system call filtering, achieving O(log n) complexity (due to the use of
a binary search tree)
Android applies a seccomp‐bpf filter at the Zygote, the creator of all app
processes

On Android 8 seccomp-bpf blocks 17 out of 271 Linux kernel system calls
on the ARM64 architecture¹⁶

¹⁶https://android-developers.googleblog.com/2017/07/
seccomp-filter-in-android-o.html
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 28 / 48

https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html

Example rules of Android’s seccomp‐bpf

Disabled system calls from https://android.googlesource.com/platform/bionic/+/

8dc9f46a3f1a47cddfbb22c89a939239378f42f8/libc/SECCOMP_BLOCKLIST_APP.TXT

int setgid:setgid32(gid_t) lp32
int setgid:setgid(gid_t) lp64
int setuid:setuid32(uid_t) lp32
int setuid:setuid(uid_t) lp64
int setregid:setregid32(gid_t, gid_t) lp32
int adjtimex(struct timex*) all
int clock_adjtime(clockid_t, struct timex*) all
int clock_settime(clockid_t, const struct timespec*) all
int settimeofday(const struct timeval*, const struct timezone*) all
int chroot(const char*) all
int mount(const char*, const char*, const char*, unsigned long,

const vid*) all
int umount2(const char*, int) all
int swapon(const char*, int) all
int swapoff(const char*) all
...

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 29 / 48

https://android.googlesource.com/platform/bionic/+/8dc9f46a3f1a47cddfbb22c89a939239378f42f8/libc/SECCOMP_BLOCKLIST_APP.TXT
https://android.googlesource.com/platform/bionic/+/8dc9f46a3f1a47cddfbb22c89a939239378f42f8/libc/SECCOMP_BLOCKLIST_APP.TXT

App Permissions

App Permissions are described in a per‐app AndroidManifest.xml

Permission android.permission.CAMERA grants the app access to
camera functionalities

android.permission.CAMERAmaps to UNIX group “camera”

Other examples:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.CALL_PHONE" />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 30 / 48

Permissions for Intent Filters

Intent filters for Activities, Broadcast Receivers, Services
An Intent is a messaging object you can use to request an action from
another app component.
An Activity is an application component that provides a screen with which
users can interact in order to do something, such as dial the phone, take a
photo, send an email, or view a map.
Broadcast receivers are implicit event receivers
A Service is an application component that can perform long‐running
operations in the background and does not provide a user interface.
Developers may apply intent filters to Activities, Broadcast Receivers and
Services using Android or custom Permissions. Example:
<permission android:name="org.foo.permission.UNPACK_FILE"
android:protectionLevel="signature" />

...
<activity android:name=".InstallWidgetActivity"
android:permission="org.foo.permission.UNPACK_FILE"/>
...

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 31 / 48

Permissions for Content Providers

Content providers manage access to a structured set of data. They
encapsulate the data, and provide mechanisms for defining data
security.
Permissions may be applied to content providers. Example:
<provider android:name="org.foo.SeriesProvider"
android:writePermission="org.foo.permission.WRITE"
android:authorities="org.foo.data" />

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 32 / 48

Types of Permissions

Install‐time Permissions
Normal permissions ‐ low risk permissions
Signature permissions ‐ making sure only package with same signature (or
OEM package) may perform the action

Run‐time permissions
Dangerous permissions ‐ user is challenged to accept these dangerous
permissions
Special permissions ‐ for OEM or privileged apps (e.g. drawing over other
apps), enabled through Settings

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 33 / 48

Binder

Binder is an Inter‐Process Communication (IPC) mechanism for Android
apps and services
The binder kernel module exposes three devices that allow for message
passing over shared memory

/dev/binder ‐ for framework/app communication
/dev/hwbinder ‐ for framework/vendor hardware‐related communication
/dev/vndbinder ‐ for vendor/vendor communication

Binder facilitates the transfer of intent data to Activities, content from
Content Providers etc.

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 34 / 48

Android Deep Links

Deep‐links are URIs that an app A (or website B) may present to have the
user open an Activity in app C

<activity
android:name="com.example.myapp.TestActivity" ...>
...
<intent-filter>

<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="myapp" android:host="test" />

</intent-filter>
</activity>

In this example, clicking a “myapp://test” URI in app A (or website B)
will start the TestActivity in app C

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 35 / 48

From Deep Links to verified Android App Links

a single Deep Link URI scheme may be registered with multiple apps on
a mobile device

e.g. a “pdf://” scheme for opening PDF files with Google Drive, Adobe
Acrobat Reader etc.

Android will by default let the user select which app will handle the
scheme
An Android App Link is a URI from a website B, that when triggered
Android will automatically select a particular app C on the mobile device
(based on information found in website B) to handle the Activity Intent

Requires JSON file¹⁷ with app signer’s certificate digest, hosted on site B
Requires the autoVerify attribute on the intent-filter
<activity ...>

<intent-filter android:autoVerify="true">

...

</intent-filter>

</activity>

¹⁷found under “https://website‐b.domain.name/.well‐known/assetlinks.json”
Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 36 / 48

Part III

Android App Vulnerabilities

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 37 / 48

OWASP Mobile Top 10

OWASP maintains a top 10 list of Mobile App Risks
M1: Improper Credential Usage
M2: Inadequate Supply Chain Security
M3: Insecure Authentication / Authorization
M4: Insufficient Input / Output Validation
M5: Insecure Communication
M6: Inadequate Privacy Controls
M7: Insufficient Binary Protections
M8: Security Misconfiguration
M9: Insecure Data Storage
M10: Insufficient Cryptography

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 38 / 48

https://owasp.org/www-project-mobile-top-10/

OWASP MASVS

OWASP also maintains the Mobile Application Security Verification
Standard (MASVS) which covers the following areas

MASVS‐Storage
MASVS‐Cryptography
MASVS‐Authentication (and Authorization)
MASVS‐Network (Communication)
MASVS‐Platform (Interaction)
MASVS‐Code (Quality)
MASVS‐Resilience
MASVS‐Privacy

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 39 / 48

https://mas.owasp.org/MASVS/
https://mas.owasp.org/MASVS/

Trouble with permissions

Incorrect permissions on event triggers
Any app may trigger a particular sensitive action (e.g. bring up an app’s
password dialog)

Incorrect app file permissions

App requires excessive permissions

Incorrect system component permissions

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 40 / 48

Bad use of Android API

Caching sensitive form data

Enabling Javascript on a WebView

Dangerous Javascript bridge to Java code

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 41 / 48

Communication channel issues

Content delivered over HTTP (i.e. no SSL)

No Certificate Pinning

Bad certificate validation code

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 42 / 48

Hiding Data

KeyStore can be used to manage cryptographic keys

Sensitive assets should be (symmetrically) encrypted before they are
stored on disk

Sensitive DB data must be encrypted before stored

Whole DB’s can also be encrypted through projects such as SQLCipher

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 43 / 48

Hiding Code

Android Class files are transformed to DEX bytecode for Dalvik VM

Tools like dex2jar transform DEX bytecode to JARs with class files

Java code that has no obfuscation can be trivially reversed to something
that resembles the original source code

Obfuscated Java code requires some more work during reversing

In all cases, however, DEX disassemblers (like baksmali) produce
output which is easier to follow than, say, x86 / ARM assembly

Many vendors choose to move sensitive code to native libraries for
which there exist better obfuscation methods

Tamper protection software suites are also applied to such critical
applications

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 44 / 48

Part IV

Conclusions

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 45 / 48

Other Important Considerations

Some important concepts that we have not covered in this lecture

Rooting / Jailbreaking a device, and maintaining a fleet of such devices
for testing

Removing certificate pinning during testing

Bypassing binary protections during testing

Testing services requiring an authentic binary and/or environment
(e.g. Platform wallet services)

Static patching and resigning

Dynamic patching of app, framework component and/or native
component

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 46 / 48

Conclusions

Mobile apps bring a unique personalized experience to software
applications

The security features offered by mobile platforms (e.g. managed
keystore etc.) have made some software vendors gradually switch from
web app implementations to mobile app implementations
In the same time, mobile apps bring new issues to the vulnerability
landscape due to

the unique features offered by the mobile platforms
their exposure to potentially hostile networks and actors
their exposure to an untrusted execution environment that may
potentially contain malicious 3rd party apps

The app security model is continually changing and is expected to
change even more in the next few years..

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 47 / 48

Further reading material

Android Security Paper, 2023 edition

Android Application Secure Design/Secure Coding Guidebook by JSSEC

Android Internals::Developer’s View

Android Internals::Power User’s View

The Mobile Application Hacker’s Handbook

Android Security Internals (2014, N. Elenkov)

Android Hacker’s Handbook (2014, J. Drake et al)

Dimitrios A. Glynos (Univ. of Piraeus) Mobile App Security 48 / 48

https://services.google.com/fh/files/misc/android-enterprise-security-paper-2023.pdf
https://www.jssec.org/dl/android_securecoding_en.pdf
https://www.amazon.com/dp/0991055543?&_encoding=UTF8&tag=newosxbookcom-20&linkCode=ur2&linkId=bb5d8363ae5c9a2be1dceb1745a229b8&camp=1789&creative=9325
https://www.amazon.com/gp/product/0991055586/refdivadowloadd=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0991055586&linkCode=as2&tag=newosxbookcom-20&linkId=dee63bd17b404113dd16f234b5b904eb
https://www.amazon.com/Mobile-Application-Hackers-Handbook/dp/1118958500
https://www.amazon.com/Android-Security-Internals-Depth-Architecture/dp/1593275811/ref=pd_bxgy_d_sccl_2/146-2297411-8545319?pd_rd_w=0rDXh&content-id=amzn1.sym.c51e3ad7-b551-4b1a-b43c-3cf69addb649&pf_rd_p=c51e3ad7-b551-4b1a-b43c-3cf69addb649&pf_rd_r=KCXJZZMQRHHQSK4CVDDH&pd_rd_wg=sdCD7&pd_rd_r=601535ac-6907-4b0c-83f4-da38174231c4&pd_rd_i=1593275811&psc=1
https://www.amazon.com/Android-Hackers-Handbook-Joshua-Drake/dp/111860864X/ref=pd_bxgy_d_sccl_1/146-2297411-8545319?pd_rd_w=0rDXh&content-id=amzn1.sym.c51e3ad7-b551-4b1a-b43c-3cf69addb649&pf_rd_p=c51e3ad7-b551-4b1a-b43c-3cf69addb649&pf_rd_r=KCXJZZMQRHHQSK4CVDDH&pd_rd_wg=sdCD7&pd_rd_r=601535ac-6907-4b0c-83f4-da38174231c4&pd_rd_i=111860864X&psc=1

	Mobile App Security
	Android
	Android App Vulnerabilities
	Conclusions

