
RISC-V tutorial

This tutorial will guide you to implement the RISC-V “neorv32” processor on the Zybo Z7 board and set the RISC-V compiler toolchain on

Ubuntu.

You can find additional information for the NEORV-32 microarchitecture in the following links

[Datasheet] The NEORV32 RISC-V Processor

[User Guide] The NEORV32 RISC-V Processor

https://github.com/stnolting/neorv32/tree/v1.7.2 Can't find link

Hardware implementation
First, we should download the VHDL source code of the NEORV-32.

Open a terminal and type the following:

Beautiful, we now have the source code for NEORV-32. Let’s open Vivado to implement the processor

Open Vivado

Create a new project. Click from Vivado menu File → New project and click on the next button

1 cd

2 mkdir -p wsp

3 cd wsp

4 git clone https://github.com/stnolting/neorv32.git

5 cd neorv32/

6 git checkout v1.8.0

1 cd

2 cd wsp

3 mkdir -p vivado_projects

4 cd vivado_projects

5 source /opt/Xilinx/Vivado/2016.4/settings64.sh

6 vivado &

https://stnolting.github.io/neorv32/
https://stnolting.github.io/neorv32/
https://stnolting.github.io/neorv32/ug/
https://stnolting.github.io/neorv32/ug/
https://github.com/stnolting/neorv32/tree/v1.7.2
https://github.com/stnolting/neorv32/tree/v1.7.2

Type neorv32 as the project name

Choose the RTL project

Choose as target language VHDL and click on the Add Directories button to add the VHDL source code of the NEORV-32

Choose the Directory → /home/fretz/wsp/neorv32/rtl/core/

Click on the Add Files button to add one more source code. Choose

/home/fretz/wsp/neorv32/rtl/test_setups/neorv32_test_setup_bootloader.vhd and click on the OK button

Tick the Scan and add RTL include files into the project, and finally click on the NEXT button

Click next on the Add Existing IP (optional)

Click on the Add Files on the Add Constraints window

Choose the /home/fretz/wsp/Downloads/digilent-xdc-master/Zybo-Z7-Master.xdc and press the OK button

Tick the copy constraints files into project and click the Next button

Click on Boards

Choose Zybo Z7-10 and press the next button

Finally, click on the Finish button

Select the Project Settings under the Project Manager

Rename the Default library xil_defaultlib with neorv32 . Close the Project Settings by pressing the Apply and OK buttons

Click on the Create Block Design

Give the name riscv_wrapper . Then press the OK button

Create the following block design

Next, create a VHDL wrapper for the block design

Select the Let Vivado manage and click the OK button

Next, set as the top module the wrapper you just created

Open the XDC file of the board to connect the NEORV32 ports to the appropriate pins of the FPGA.

You should modify the following pins

Save the XDC file and press the Generate Bitstream button. This will generate the bitstream after synthesis and implementation are

successfully finished.

1 ## RISC-V Reset

2 set_property -dict { PACKAGE_PIN K18 IOSTANDARD LVCMOS33 } [get_ports { ADD_PORT }]; #IO_L12N_T1_MRCC_35 Sch

3 # RISC-V LEDs

4 set_property -dict { PACKAGE_PIN M14 IOSTANDARD LVCMOS33 } [get_ports { ADD_PORT }]; #IO_L23P_T3_35 Sch=led[

5 ##Pmod Header JC

6 set_property -dict { PACKAGE_PIN V15 IOSTANDARD LVCMOS33 } [get_ports { ADD_PORT }]; #IO_L10P_T1_34 Sch=JC1_

7 set_property -dict { PACKAGE_PIN W15 IOSTANDARD LVCMOS33 } [get_ports { ADD_PORT}]; #IO_L10N_T1_34 Sch=JC1_N

When the bitstream generation finishes, open to see the implemented design

Board setup and run hello world software on the NEORV-32
In order to get UART access on NEORV-32, we need to connect a USB/TTL UART external board on the PMOD header JC.

Now, Programm the FPGA

Once you program the FPGA you should see that the LD0 blinks (left side of the photo) after you press the reset button (right side of the

photo). Also, the PGOOD and DONE leds should be ON.

Open a terminal and press cutecom

Click on settings and configure as follows and then click on open

Select None

In the input, add the character a , press the reset button of NEORV32-V on the board and then press enter on cutecom

Setup RISC-V compiler
Skip these steps if you have the Fretz virtual machine.

Open the Fretz VM and install cutecom , and the RISC-V compile flow

In a terminal type, the following

1 $ sudo apt install cutecom -y

2 $ cd ~/wsp/Downloads/

Create a folder where you want to install the toolchain, for example /opt/riscv (you will need sudo rights to create this folder and copy

data to it).

Navigate to the download folder. Decompress your toolchain (replace TOOLCHAIN with your toolchain archive of choice). Again, you might

have to use sudo if your target directory is protected.

Now add the toolchain's bin folder to your system's PATH environment variable (or add this line to your .bashrc if applicable):

Test the toolchain:

Continue from here: Compile your first hello world example!!!!
Let's download some application examples. Open a terminal and type

On cutecome enter the character u and press enter

On cutecome click the send file button

3 $ wget https://github.com/stnolting/riscv-gcc-prebuilt/releases/download/rv32i-2.0.0/riscv32-unknown-elf.gcc-10.2

1 $ sudo mkdir /opt/riscv

1 $ sudo tar xzfv riscv32-unknown-elf.gcc-10.2.0.rv32i.ilp32.newlib.tar.gz -C /opt/riscv/

1 $ export PATH=$PATH:/opt/riscv/bin

1 $ riscv32-unknown-elf-gcc -v

1 cd ~/wsp/neorv32/sw/example/hello_world

2 make clean_all

3 make

1 CMD:> u

2 Awaiting neorv32_exe.bin...

If everything goes fine, OK will appear in your terminal:

The executable is now in the instruction memory of the processor. To execute the program right now, run the "Execute" command by

typing e in cutecome and press the Enter on your keyboard:

Read [User Guide] The NEORV32 RISC-V Processor section 6

6. Installing an Executable Directly Into Memory

If you do not want to use the bootloader (or the on-chip debugger) for executable upload or if your setup does not provide a serial interface

for that, you can also directly install an application into embedded memory.

This concept uses the "Direct Boot" scenario that implements the processor-internal IMEM as ROM, which is pre-initialized with the

application’s executable during synthesis. Hence, it provides non-volatile storage of the executable inside the processor. This storage

cannot be altered during runtime and any source code modification of the application requires to re-program the FPGA via the bitstream.

Using the IMEM as ROM:

for this boot concept the bootloader is no longer required

this concept only works for the internal IMEM (but can be extended to work with external memories coupled via the processor’s bus

interface)

make sure that the memory components (like block RAM) the IMEM is mapped to support an initialization via the bitstream

1. At first, make sure your processor setup actually implements the internal IMEM: the MEM_INT_IMEM_EN generics has to be set to true :

Listing 8. Processor top entity configuration - enable internal IMEM

2. For this setup we do not want the bootloader to be implemented at all. Disable implementation of the bootloader by setting the

INT_BOOTLOADER_EN generic to false . This will also modify the processor-internal IMEM so it is initialized with the executable during

synthesis.

Listing 9. Processor top entity configuration - disable internal bootloader

1 CMD:> u

2 Awaiting neorv32_exe.bin... OK

 See datasheet section Direct Boot for more information.

1 -- Internal Instruction memory --

2 MEM_INT_IMEM_EN => true, -- implement processor-internal instruction memory

https://umarcor.github.io/neorv32/ug/#_installing_an_executable_directly_into_memory
https://umarcor.github.io/neorv32/ug/#_installing_an_executable_directly_into_memory
https://stnolting.github.io/neorv32/#_direct_boot

3. To generate an "initialization image" for the IMEM that contains the actual application, run the install target when compiling your

application:

4. The install target has compiled all the application sources but instead of creating an executable (neorv32_exe.bit) that can be

uploaded via the bootloader, it has created a VHDL memory initialization image core/neorv32_application_image.vhd .

5. This VHDL file is automatically copied to the core’s rtl folder (rtl/core) so it will be included for the next synthesis.

6. Perform a new synthesis. The IMEM will be build as pre-initialized ROM (inferring embedded memories if possible).

7. Upload your bitstream. Your application code now resides unchangeable in the processor’s IMEM and is directly executed after reset.

The synthesis tool / simulator will print asserts to inform about the (IMEM) memory / boot configuration:

1 -- General --

2 INT_BOOTLOADER_EN => false, -- boot configuration: false = boot from int/ext (I)MEM

1 neorv32/sw/example/demo_blink_led$ make clean_all install

2 Memory utilization:

3 text data bss dec hex filename

4 1004 0 0 1004 3ec main.elf

5 Compiling ../../../sw/image_gen/image_gen

6 Executable (neorv32_exe.bin) size in bytes:

7 1016

8 Installing application image to ../../../rtl/core/neorv32_application_image.vhd

1 NEORV32 PROCESSOR CONFIG NOTE: Boot configuration: Direct boot from memory (processor-internal IMEM).

2 NEORV32 PROCESSOR CONFIG NOTE: Implementing processor-internal IMEM as ROM (1016 bytes), pre-initialized with app

