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A Survey of Privacy Attacks in Machine Learning
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As machine learning becomes more widely used, the need to study its implications in security and privacy
becomes more urgent. Although the body of work in privacy has been steadily growing over the past few
years, research on the privacy aspects of machine learning has received less focus than the security aspects.
Our contribution in this research is an analysis of more than 45 papers related to privacy attacks against
machine learning that have been published during the past seven years. We propose an attack taxonomy,
together with a threat model that allows the categorization of different attacks based on the adversarial
knowledge, and the assets under attack. An initial exploration of the causes of privacy leaks is presented,
as well as a detailed analysis of the different attacks. Finally, we present an overview of the most commonly
proposed defenses and a discussion of the open problems and future directions identified during our analysis.
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1 INTRODUCTION

Fueled by large amounts of available data and hardware advances, machine learning has experi-
enced tremendous growth in academic research and real-world applications. At the same time, the
impact on the security, privacy, and fairness of machine learning is receiving increasing attention.
In terms of privacy, our personal data are being harvested by almost every online service and are
used to train models that power machine learning applications. However, it is not well known
if and how these models reveal information about the data used for their training. If a model is
trained using sensitive data such as location, health records, or identity information, then an attack
that allows an adversary to extract this information from the model is highly undesirable. At the
same time, if private data has been used without its owners’ consent, the same type of attack could
be used to determine the unauthorized use of data and thus work in favor of the user’s privacy.

Apart from the increasing interest on the attacks themselves, there is a growing interest in un-
covering what causes privacy leaks and under which conditions a model is susceptible to different

This work was partially supported by Avast Software and the OP RDE funded project Research Center for Informatics No.
CZ.02.1.01/0.0./0.0./16_019/0000765.
Authors’ address: M. Rigaki and S. Garcia, Czech Technical University in Prague, Karlovo náměstí 13, Prague, Czech Re-
public, 120 00; e-mails: maria.rigaki@fel.cvut.cz, sebastian.garcia@agents.fel.cvut.cz.

$

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

© 2023 Copyright held by the owner/author(s).
0360-0300/2023/11-ART101
https://doi.org/10.1145/3624010

ACM Computing Surveys, Vol. 56, No. 4, Article 101. Publication date: November 2023.

https://orcid.org/0000-0002-0688-7752
https://orcid.org/0000-0001-6238-9910
https://doi.org/10.1145/3624010
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3624010
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624010&domain=pdf&date_stamp=2023-11-10


101:2 M. Rigaki and S. Garcia

types of privacy-related attacks. There are multiple reasons why models leak information. Some
of them are structural and have to do with the way models are constructed, while others are due
to factors such as poor generalization or memorization of sensitive data samples. Training for
adversarial robustness can also be a factor that affects the degree of information leakage.

The focus of this survey is the privacy and confidentiality attacks on machine learning algo-
rithms. That is, attacks that try to extract information about the training data or to extract the
model itself. Some existing surveys [8, 103] provide partial coverage of privacy attacks and there
are a few other peer-reviewed works on the topic [2, 52]. However, these papers are either too
high level or too specialized in a narrow subset of attacks.

The security of machine learning and the impact of adversarial attacks on the performance of the
models have been widely studied in the community, with several surveys highlighting the major
advances in the area [8, 72, 80, 104, 132]. Based on the taxonomy proposed in Reference [8], there
are three types of attacks on machine learning systems: (i) attacks against integrity, e.g., evasion
and poisoning backdoor attacks that cause misclassification of specific samples, (ii) attacks against
a system’s availability, such as poisoning attacks that try to maximize the misclassification error,
and (iii) attacks against privacy and confidentiality, i.e., attacks that try to infer information about
user data and models. While all attacks on machine learning are adversarial in nature, the term
“adversarial attacks” is commonly used to refer to security-related attacks and more specifically to
adversarial samples. In this survey, we only focus on privacy and confidentiality attacks.

An attack that extracts information about the model’s structure and parameters is, strictly
speaking, an attack against model confidentiality. The decision to include model extraction
attacks was made, because in the existing literature, attacks on model confidentiality are usually
grouped together with privacy attacks [8, 104]. Another important reason is that stealing model
functionality may be considered a privacy breach as well. Veale et al. [127] made the argument that
privacy attacks such as membership inference (Section 4.1) increase the risk of machine learning
models being classified as personal data under European Union’s General Data Protection

Regulation (GDPR) law, because they can render a person identifiable. Although models are
currently not covered by the GDPR, it may happen that they will be considered as personal
data, and then attacks against them may fall under the same scope as attacks against personal
data. This may be further complicated by the fact that model extraction attacks can be used as a
stepping stone for other attacks.

This article is, as far as we know, the first comprehensive survey of privacy-related attacks against
machine learning. It reviews and systematically analyzes over 50 research papers. The papers have
been published in top tier conferences and journals in the areas of security, privacy, and machine
learning during 2014–2022. An initial set of papers was selected in Google Scholar using keyword
searches related to “privacy,” “machine learning,” and the names of the attacks themselves (“mem-
bership inference,” “model inversion,” “property inference,” model stealing,” “model extraction,”
etc.). After the initial set of papers was selected, more papers were added by backward search
based on their references as well as by forward search based on the papers that cited them.

The main contributions of this article are:

• The first comprehensive study of attacks on privacy and confidentiality of machine learning
systems.
• A unifying taxonomy of attacks against machine learning privacy.
• A discussion on the probable causes of privacy leaks in machine learning systems.
• An in-depth presentation of the implementation of the attacks.
• An overview of the different defensive measures tested to protect against the different

attacks.
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1.1 Organization of the Article

The rest of the article is organized as follows: Section 2 introduces some basic concepts related to
machine learning that are relevant to the implementation of the attacks, which are presented in
Section 6. The threat model is presented in Section 3 and the taxonomy of the attacks and their
definition are the focus of Section 4. In Section 5, we present the causes of machine learning leaks
that are known or have been investigated so far. An overview of the proposed defences per attack
type is the focus of Section 7. Finally, Section 8 contains a discussion on the current and future
research directions and Section 9 offers concluding remarks.

2 MACHINE LEARNING

Machine learning (ML) is a field that studies the problem of learning from data without being
explicitly programmed. The purpose of this section is to provide a non-exhaustive overview of
machine learning as it pertains to this survey and to facilitate the discussion in the subsequent
chapters. We briefly introduce a high level view of different machine learning paradigms and cat-
egorizations as well as machine learning architectures. Finally, we present a brief discussion on
model training and inference. For the interested reader, there are several textbooks such as Refer-
ences [9, 33, 88, 113] that provide a thorough coverage of the topic.

2.1 Types of Learning

At a very high level, ML is traditionally split into three major areas: supervised, unsupervised, and
reinforcement learning. Each of these areas has its own subdivisions. Over the years, new categories
have emerged to capture types of learning that cannot easily fit under these three areas such as
semi-supervised and self-supervised learning, or other ways to categorize models such as generative
and discriminative ones.

2.1.1 Supervised Learning. In a supervised learning setting, a model f with parameters θ is a
mapping function between inputs x and outputs y = f (x;θ ), where x is a vector of attributes or
features with dimensionality n. The output or label y can assume different dimensions depending
on the learning task. A training set D used for training the model is a set of data points D =
{(xi , yi )}mi=1, wherem is the number of input-output pairs. The most common supervised learning
tasks are classification and regression. Examples of supervised learning algorithms include linear re-
gression, logistic regression, decision trees, support vector machines, and many more. The vast ma-
jority of the attack papers thus far are focused in supervised learning using deep neural networks.

2.1.2 Unsupervised Learning. In unsupervised learning, there are no labels y. The training set
D consists only of the inputs xi . Unsupervised algorithms aim to find structure or patterns in the
data without having access to labels. Usual tasks in unsupervised learning are clustering feature
learning, anomaly detection, and dimensionality reduction. In the context of this survey, attacks on
unsupervised learning appear mostly as attacks on language models.

2.1.3 Reinforcement Learning. Reinforcement learning concerns itself with agents that make
observations of the environment and use these to take actions with the goal of maximizing a reward
signal. In the most general formulation, the set of actions is not predefined and the rewards are
not necessarily immediate but can occur after a sequence of actions [123]. To our knowledge, no
privacy-related attacks against reinforcement learning have been reported, but it has been used to
launch other privacy-related attacks [98].

2.1.4 Semi-supervised Learning. In many real-world settings, the amount of labeled data can be
significantly smaller than that of unlabeled ones, and it might be too costly to obtain high-quality
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labels. Semi-supervised learning algorithms aim to use unlabeled data to learn higher level
representations and then use the labeled examples to guide the downstream learning task. An
example of semi-supervised learning would be to use an unsupervised learning technique such as
clustering on unlabeled data and then use a classifier to separate representative training data from
each cluster. Other notable examples are generative models such as Generative Adversarial

Networks (GANs) [34].

2.1.5 Generative and Discriminative Learning. Another categorization of learning algorithms is
that of discriminative vs generative algorithms. Discriminative classifiers try to model the condi-
tional probability p (y |x), i.e., they try to learn the decision boundaries that separate the different
classes directly based on the input data x. Examples of such algorithms are logistic regression and
neural networks. Generative classifiers try to capture the joint distribution p (x,y). An example of
such a classifier is Naive Bayes. Usually, generative models that do not require labels, but they try
to model p (x), explicitly or implicitly. Notable examples are language models that predict the next
word(s) given some input text or GANs and Variational Autoencoders (VAEs) [62] that are able
to generate data samples that match the properties of the training data.

2.2 Learning Architectures

From a system architecture point of view, we view the learning process as either a centralized or a
distributed one. The main criterion behind this categorization is whether the data and the model
are collocated or not.

2.2.1 Centralized Learning. In a centralized learning setting, the data and the model are
collocated. There can be one or multiple more data producers or owners, but all data are gathered
in one central place and used for the training of the model. The location of the data can be in
a single or even multiple machines in the same data center. While using parallelism in the form
of multiple GPUs and CPUs could be considered a distributed learning mode, it is not for us,
since we use the model and data collocation as the main criterion for the distinction between
centralized and distributed learning. The centralized learning architecture includes the Machine

Learning as a Service (MLaaS) setup, where the data owner uploads their data to a cloud-based
service that is tasked with creating the best possible model.

2.2.2 Distributed Learning. The requirements that drive the need for distributed learning archi-
tectures are the handling and processing of large amounts of data, the need for computing and
memory capacity, and even privacy concerns. From the existing variants of distributed learning,
we present those that are relevant from a privacy perspective, namely, collaborative or federated

learning (FL), fully decentralized or peer-to-peer (P2P) learning, and split learning.
Collaborative or federated learning is a form of decentralized training where the goal is to learn

one global model from data stored in multiple remote devices or locations [67]. The main idea is
that the data do not leave the remote devices. Data are processed locally and they used to update
the local models. Intermediate model updates are sent to the central server that aggregates them
and creates a global model. The central server then sends the global model back to all participant
devices.

In fully decentralized learning or P2P learning, there is no central orchestration server. Instead,
the devices communicate in a P2P fashion and exchange their updates directly with other
devices. This setup may be interesting from a privacy perspective, since it alleviates the need
to trust a central server. However, attacks on P2P systems are relevant in such settings and
need to be taken into account. Up to now, there were no privacy-based attacks reported on such
systems; although they may become relevant in the future. Moreover, depending on the type of
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information shared between the peers, several of the attacks on collaborative learning may be
applicable.

In split learning, the trained model is split into two or more parts. The edge devices keep the
initial layers of the deep learning model and the centralized server keeps the final layers [38, 59].
The reason for the split is mainly to lower the communication costs by sending intermediate model
outputs instead of the input data. This setup is also relevant in situations where remote or edge
devices have limited resources and are connected to a central cloud server. This latter scenario is
common for Internet of Things (IoT) devices.

2.3 Training and Inference

Training of supervised ML models usually follows the Empirical Risk Minimization (ERM)

approach [126], where the objective is to find the parameters θ ∗ that minimize the risk or objective
function, which is calculated as an average over the training dataset:

J (D;θ ) =
1

m

m∑

i=1

l ( f (xi ;θ ),yi ), (1)

where l (·) is a loss function, e.g., cross entropy loss, and m is the number of data points in the
dataset D.

The idea behind ERM is that the training dataset is a subset drawn from the unknown true data
distribution for the learning task. Since we have no knowledge of the true data distribution, we
cannot minimize the true objective function, but instead we can minimize the estimated objective
over the data samples that we have. In some cases, a regularization term is added to the objective
function to reduce overfitting and stabilize the training process.

2.3.1 Training in Centralized Settings. The training process usually involves an iterative opti-
mization algorithm such as gradient descent [13], which aims to minimize the objective function
by following the path induced by its gradients. When the dataset is large, as is often the case
with deep neural networks, taking one gradient step becomes too costly. In that case, variants of
gradient descent that involve steps taken over smaller batches of data, are preferred. One such
optimization method is called Stochastic Gradient Descent (SGD) [107] defined by

θt+1 = θt − ηg, (2)

g =
1

m′
∇θ

m′∑

i=1

l ( f (xi ;θ ), yi ), (3)

where η is the learning rate and g is the gradient of the loss function with respect to parameters
θ . In the original formulation of SGD the gradient g is calculated over a single data point from
D, chosen randomly, hence the name stochastic. In practice, it is common to use mini-batches of
size m′ where m′ < m, instead of a single data point to calculate the loss gradient at each step
(Equation (3)). Mini-batches lower the variance of the stochastic gradient estimate, but the sizem′

is a tunable parameter that can affect the performance of the algorithm. While SGD is still quite
popular, several improvements have been proposed to try to speed up convergence by adding
momentum [105], by using adaptive learning rates as, for example, in the RMSprop algorithm [45],
or by combining both improvements as in the Adam algorithm [61].

2.3.2 Training in Distributed Settings. The most popular learning algorithm for federated learn-
ing is federated averaging [82], where each remote device calculates one step of gradient descent
from the locally stored data and then shares the updated model weights with the parameter server.
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The parameter server averages the weights of all remote participants and updates the global model,
which is subsequently shared again with the remote devices. It can be defined as

θt+1 =
1

K

K∑

k=1

θ (k )
t , (4)

where K is the number of remote participants and the parameters θ (k )
t of participant k have been

calculated locally based on Equations (2) and (3).
Another approach that comes from the area of distributed computing is downpour (or synchro-

nized) SGD [22], which proposes to share the loss gradients of the distributed devices with the
parameter server that aggregates them and then performs one step of gradient descent. It can be
defined as

θt+1 = θt − η
K∑

k=1

m(k )

M
g

(k )
t , (5)

where g
(k )
t is the gradient computed by participant k based on Equation (3) using their local data,

m(k ) is the number of data points in the remote participant andM is the total number of data points
in the training data. After the calculation of Equation (5), the parameter server sends the updated
model parameters θt+1 to the remote participants.

2.3.3 Inference. Once the models are trained, they can be used to make inferences or predictions
over previously unseen data. At this stage, the assumption is that the model parameters are fixed,
although the models are usually monitored, evaluated, and retrained if necessary. The majority of
the attacks in this survey are attacks during the inference phase of the model lifecycle except for
the attacks on collaborative learning, which are usually performed during training.

3 THREAT MODEL

To understand and defend against attacks in machine learning from a privacy perspective, it
is useful to have a general model of the environment, the different actors, and the assets to
protect.

From a threat model perspective, the assets that are sensitive and are potentially under attack are
the training datasetD, the model itself, its parameters θ , its hyper-parameters, and its architecture.
The actors identified in this threat model are:

(1) The data owners, whose data may be sensitive.
(2) The model owners, which may or may not own the data and may or may not want to share

information about their models.
(3) The model consumers, that use the services that the model owner exposes, usually via

some sort of programming or user interface.
(4) The adversaries, that may also have access to the model’s interfaces as a normal consumer

does. If the model owner allows, then they may have access to the model itself.

Figure 1 depicts the assets and the identified actors under the threat model, as well as the infor-
mation flow and possible actions. This threat model is a logical model and it does not preclude the
possibility that some of these assets may be collocated or spread in multiple locations.

Distributed modes of learning, such as federated or collaborative learning, introduce different
spatial models of adversaries. In a federated learning setting, the adversary can be collocated with
the global model, but it can also be a local attacker. Figure 2 shows the threat model in a collab-
orative learning setting. The presence of multiple actors allows also the possibility of colluding
adversaries that join forces.
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Fig. 1. Threat Model of privacy and confidentiality attacks against machine learning systems. The human

figure represents actors and the symbols represent the assets. Dashed lines represent data and information

flow, while full lines represent possible actions. In red are the actions of the adversaries, available under the

threat model.

The different attack surfaces against machine learning models can be modelled in terms of
adversarial knowledge. The range of knowledge varies from limited, e.g., having access to a
machine learning API, to having knowledge of the full model parameters and training settings.
In between these two extremes, there is a range of possibilities such as partial knowledge of
the model architecture, its hyper-parameters, or training setup. The knowledge of the adversary
can also be considered from a dataset point of view. In the majority of the papers reviewed, the
authors assume that the adversaries have no knowledge of the training data samples, but they
may have some knowledge of the underlying data distribution.

From a taxonomy point of view, attacks where the adversary has no knowledge of the model
parameters, architecture, or training data are called black-box attacks. An example of a black-
box system is MLaaS, where the users usually provide some input and receive either a prediction
vector or a class label from a pre-trained model hosted in the cloud. Most black-box papers assume
the existence of a prediction vector. In a similar fashion, white-box attacks are those where the
adversary has either complete access to the target model parameters or their loss gradients during
training. This is the case, for example, in most distributed modes of training. In between the two
extremes, there are also attacks that make stronger assumptions than the black-box ones, but do
not assume full access to the model parameters. We refer to these attacks as partial white-box

attacks. It is important to add here that the majority of the works assume full knowledge of the
expected input, although some form of preprocessing might be required.

The time of the attack is another parameter to consider from a taxonomy point of view.
The majority of the research in the area is dealing with attacks during inference; however,
most collaborative learning attacks assume access to the model parameters or gradients during
training. Attacks during the training phase of the model open up the possibility for different
types of adversarial behavior. A passive or honest-but-curious attacker does not interfere with the
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Fig. 2. Threat model in a collaborative learning setting. Dashed lines represent data and information flows,

while full lines represent possible actions. In red are the actions of the adversaries, available under the

threat model. In this setting the adversary can be placed either at the parameter server or locally. Model

consumers are not depicted for reasons of simplicity. In federated learning, local model owners can be also

model consumers.

training process and they are only trying to infer knowledge during or after the training. If the
adversary interferes with the training in any way, then they are considered an active attacker.

Finally, since the interest of this survey is in privacy attacks based on unintentional information
leakage regarding the data or the machine learning model, there is no coverage of security-based
attacks, such as model poisoning or evasion attacks, or attacks against the infrastructure that hosts
the data, models or provided services.

4 ATTACK TYPES

In privacy-related attacks, the goal of an adversary is to gain knowledge that was not intended to be
shared. Such knowledge can be related to the training dataD or the model f , or even to properties
of the data such as unintentionally encoded biases. In our taxonomy, the privacy attacks studied
are categorized into four types: membership inference, reconstruction, property inference,
and model extraction.

4.1 Membership Inference Attacks

Membership inference tries to determine whether an input sample x was used as part of
the training set D. This is the most popular category of attacks and was first introduced by
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Shokri et al. [116]. The attack only assumes knowledge of the model’s output prediction vector
(black-box) and was carried out against supervised machine learning models. White-box attacks
in this category are also a threat, especially in a collaborative setting, where an adversary
can mount both passive and active attacks. If there is access to the model parameters and
gradients, then this allows for more effective white-box membership inference attacks in terms of
accuracy [90].

Apart from supervised models, generative models such as GANs and VAEs are also susceptible
to membership inference attacks [16, 39, 44]. The goal of the attack, in this case, is to retrieve
information about the training data using varying degrees of knowledge of the data generating
components.

Finally, these types of attacks can be viewed from a different perspective, that of the data owner.
In such a scenario, the owner of the data may have the ability to audit black-box models to see if
the data have been used without authorization [46, 118].

4.2 Reconstruction Attacks

Reconstruction attacks try to recreate one or more training samples and/or their respective training
labels. The reconstruction can be partial or full. Previous works have also used the terms attribute

inference or model inversion to describe attacks that, given output labels and partial knowledge
of some features, try to recover sensitive features or the full data sample. For the purpose of this
survey, all these attacks are considered as part of the larger set of reconstruction attacks. The
term attribute inference has been used in other parts of the privacy related literature to describe
attacks that infer sensitive “attributes” of a targeted user by leveraging publicly accessible data [31,
53]. These attacks are not part of this review as they are mounted against the individual’s data
directly and not against ML models.

A major distinction between the works of this category is between those that create an actual
reconstruction of the data [41, 134, 138, 145, 148] and the ones that create class representatives or
probable values of sensitive features that do not necessarily belong to the training dataset [28, 43,
47, 109, 138]. In classification models, the latter case is limited to scenarios where classes are made
up of one type of object, e.g., faces of the same person. While this limits the applicability of the
attack, it can still be an interesting scenario in some cases.

4.3 Property Inference Attacks

The ability to extract dataset properties that were not explicitly encoded as features or were not
correlated to the learning task is called property inference. An example of property inference
is the extraction of information about the ratio of women and men in a patient dataset when this
information was not an encoded attribute or a label of the dataset. Or having a neural network that
performs gender classification and can be used to infer if people in the training dataset wear glasses
or not. In some settings, this type of leak can have privacy implications. These types of properties
can also be used to get more insight about the training data, which can lead to adversaries using
this information to create similar models [3] or even have security implications when the learned
property can be used to detect vulnerabilities of a system [29].

Property inference aims to extract information that was learned from the model unintentionally
and that is not related to the training task. Even well generalized models may learn properties
that are relevant to the whole input data distribution and sometimes this is unavoidable or even
necessary for the learning process. What is more interesting from an adversarial perspective, are
properties that may be inferred from a specific subset of training data, or eventually about a specific
individual.
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Property inference attacks so far target either dataset-wide properties [3, 29, 78, 117] or the
emergence of properties within a batch of data [84]. The latter attack was performed on the
collaborative training of a model.

4.4 Model Extraction Attacks

Model extraction is a class of black-box attacks where the adversary tries to extract information
and potentially fully reconstruct a model by creating a substitute model f̂ that behaves very sim-
ilarly to the model under attack f . There are two main goals for the substitute models. First, to
create models that match the accuracy of the target model f in a test set that is drawn from the
input data distribution and related to the learning task [63, 86, 98, 124]. Second, to create a substi-
tute model f̂ that matches f at a set of input points that are not necessarily related to the learning
task [21, 50, 56, 124]. Jagielski et al. [50] referred to the former attack as task accuracy extraction
and to the latter as fidelity extraction. In task accuracy extraction, the adversary is interested in
creating a substitute that learns the same task as the target model equally well or better. In the
latter case, the adversary aims to create a substitute that replicates the decision boundary of f as
faithfully as possible. This type of attack can be later used as a stepping stone before launching
other types of attacks such as adversarial attacks [56, 103] or membership inference attacks [90].
In both cases, it is assumed that the adversary wants to be as efficient as possible, i.e., to use as
few queries as possible. Knowledge of the target model architecture is assumed in some works, but
it is not strictly necessary if the adversary selects a substitute model that has the same or higher
complexity than the model under attack [56, 63, 98].

Apart from creating substitute models, there are also approaches that focus on recovering infor-
mation from the target model, such as hyper-parameters in the objective function [131] or informa-
tion about various neural network architectural properties such as activation types, optimisation
algorithm, number of layers, and so on [97].

5 CAUSES OF PRIVACY LEAKS

The conditions under which machine learning models leak is a research topic that has started to
emerge in the past few years. Some models leak information due to the way they are constructed.
An example of such a case is Support Vector Machines (SVMs), where the support vectors are
data points from the training dataset. Other models, such as linear classifiers are relatively easy
to “reverse engineer” and to retrieve their parameters just by having enough input/output data
pairs [124]. Larger models such as deep neural networks usually have a large number of parame-
ters and simple attacks are not feasible. However, under certain assumptions and conditions, it is
possible to retrieve information about either the training data or the models themselves.

5.1 Causes of Membership Inference Attacks

One of the conditions that has been shown to improve the accuracy of membership inference is the
poor generalization of the model. The connection between overfitting and black-box membership
inference was initially investigated by Shokri et al. [116]. This paper was the first to examine
membership inference attacks on neural networks. The authors measured the effect of overfitting
on the attack accuracy by training models in different MLaaS platforms using the same dataset.
The authors showed experimentally that overfitting can lead to privacy leakage but also noted that
it is not the only condition, since some models that had lower generalization error where more
prone to membership leaks. The effect of overfitting was later corroborated formally by Yeom
et al. [140]. The authors defined membership advantage as a measure of how well an attacker can
distinguish whether a data sample belongs to the training set or not, given access to the model.
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They proved that the membership advantage is proportional to the generalization error of the
model and that overfitting is a sufficient condition for performing membership inference attacks,
but not a necessary one. Additionally, Long et al. [74] showed that even in well-generalized models,
it is possible to perform membership inference for a subset of the training data, which they named
vulnerable records. This was also corrobaorated in Reference [11]. In addition, Carlini et al. showed
that larger language models are more prone to memorization than smaller models [12].

Other factors, such as the model architecture, model type, and dataset structure, affect the at-
tack accuracy. Similar to Reference [116] but in the white-box setting, Nasr et al. [90] showed
that two models with the same generalization error resulted to different degrees of leakage. More
specifically, the most complex model in terms of number of parameters exhibited higher attack
accuracy, showing that model complexity is also an important factor. In a white-box setting also,
Leino and Fredrikson [66] showed that the learned features of the target model capture differences
between the training data distribution and the general population. These differences can be used
to distinguish members of the training set even when the target model generalizes well.

Truex et al. [125] ran different types of experiments to measure the significance of the model
type as well as the the number of classes present in the dataset. They found that certain model
types such as Naive Bayes are less susceptible to membership inference attacks than decision trees
or neural networks. They also showed that as the number of classes in the dataset increases, so
does the potential of membership leaks. This finding agrees with the results in Reference [116].

Securing machine learning models against adversarial attacks can also have an adverse effect
on the model’s privacy as shown by Song et al. [120]. Current state-of-the-art proposals for robust
model training, such as projective gradient descent (PGD) adversarial training [77], increase the
model’s susceptibility to membership inference attacks. This is not unexpected, since robust train-
ing methods (both empirical and provable defenses) tend to increase the generalization error. As
previously discussed, the generalization error is related to the success of the attack. Furthermore,
the authors of Reference [120] argue that robust training may lead to increased model sensitivity
to the training data, which can also affect membership inference.

The generalization error is easily measurable in supervised learning under the assumption that
the test data can capture the nuances of the real data distribution. In generative models and specif-
ically in GANs this is not the case, hence the notion of overfitting is not directly applicable. All
three papers that deal with membership inference attacks against GANs mention overfitting as
an important factor behind successful attacks [16, 39, 44]. In this case, overfitting means that the
generator has memorized and replays part of the training data. This is further corroborated in the
study in Reference [16], where their attacks are shown to be less successful as the training data
size increases.

5.2 Causes of Reconstruction Attacks

Regarding reconstruction attacks, Yeom et al. [140] showed that a higher generalization error can
lead to a higher probability to infer data attributes but also that the influence of the target feature on
the model is an important factor. However, the authors assumed that the adversary has knowledge
of the prior distribution of the target features and labels. Using weaker assumptions about the
adversary’s knowledge, Zhang et al. [145] showed theoretically and experimentally that a model
that has high predictive power is more susceptible to reconstruction attacks.

5.3 Causes of Property Inference Attacks

Property inference is possible even with well-generalized models [29, 84] so overfitting does not
seem to be a cause of property inference attacks. Unfortunately, regarding property inference at-
tacks, we have less information about what makes them possible and under which circumstances
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they appear to be effective. This is an interesting avenue for future research, both from a theoretical
and an empirical point of view.

5.4 Causes of Model Extraction

While overfitting increases the success of black-box membership inference attacks, the exact op-
posite holds for model extraction attacks. It is possible to steal model parameters when the models
under attack have 98% or higher accuracy in the test set [97]. Also models with a higher generaliza-
tion error are harder to steal, probably due to the fact that they may have memorized samples that
are not part of the attacker’s dataset [73]. Another factor that may affect model extraction success is
the dataset used for training. Higher number of classes may lead to worse attack performance [73].

6 IMPLEMENTATION OF THE ATTACKS

More than 45 papers were analyzed in relation to privacy attacks against machine learning. This
section describes in some detail the most commonly used techniques as well as the essential dif-
ferences between them. The papers are discussed in two sections: attacks on centralized learning
and attacks on distributed learning.

6.1 Attacks Against Centralized Learning

In the centralized learning setting, the main assumption is that models and data are collocated dur-
ing the training phase. The next subsection introduces a common design approach that is used by
multiple papers, namely, the use of shadow models or shadow training. The rest of the subsections
are dedicated to the different attack types and introduce the assumptions, common elements, as
well as differences of the reviewed papers.

6.1.1 Shadow Training. A common design pattern for a lot of supervised learning attacks is
the use of shadow models and meta-models or attack-models [3, 18, 29, 40, 46, 51, 68, 97,
106, 108, 110, 116, 125]. The general shadow training architecture is depicted in Figure 3. The main
intuition behind this design is that models behave differently when they see data that do not belong
to the training dataset. This difference is captured in the model outputs as well as in their internal
representations. In most designs there is a target model and a target dataset. The adversary is trying
to infer either membership or properties of the training data. They train a number of shadow
models using shadow datasets Dshadow = {xshadow,i ,yshadow,i }ni=1 that usually are assumed to
come from the same distribution as the target dataset. After the shadow models’ training, the
adversary constructs an attack dataset Dattack = { fi (xshadow,i ),yshadow,i }ni=1, where fi is the
respective shadow model. The attack dataset is used to train the meta-model, which essentially
performs inference based on the outputs of the shadow models. Once the meta-model is trained,
it is used for testing using the outputs of the target model.

6.1.2 Membership Inference Attacks. In membership inference black-box attacks, the most com-
mon attack pattern is the use of shadow models. The output of the shadow models is a prediction
vector [40, 51, 106, 110, 116, 125] or only a label [68]. The labels used for the attack dataset come
from the test and training splits of the shadow data, where the data points that belong to the test
set are labeled as non-members of the training set. The meta-model is trained to recognize pat-
terns in the prediction vector output of the target model. These patterns allow the meta-model to
infer whether a data point belongs to the training dataset or not. The number of shadow models
affects the attack accuracy, but it also incurs cost to the attackers. Salem et al. [110] showed that
membership inference attacks are possible with as little as one shadow model.

Shadow training can be further reduced to a threshold-based attack, where instead of training
a meta-model, one can calculate a suitable threshold function that indicates whether a sample is
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Fig. 3. Shadow training architecture. At first, a number of shadow models are trained with their respective

shadow datasets to emulate the behavior of the target model. At the second stage, a meta-model is being

trained from the outputs of the shadow models and the known labels of the shadow datasets. The meta-

model is used to infer membership or properties of data or the model given the output of the target model.

a member of the training set. The threshold can be learned from multiple shadow models [108]
or even without using any shadow models [140]. Sablayrolles et al. [108] showed that a Bayes-
optimal membership inference attack depends only on the loss and their attack outperforms pre-
vious attacks such as References [116, 140]. In terms of attack accuracy, they reported up to 90.8%
on large neural network models such as VGG16 [71] that were performing classification on the
Imagenet [23] dataset.

A Bayes-optimal attack was also proposed in the white-box scenario and for linear models [66].
While the optimal attack required strong assumptions regarding the target data distribution and
the attacker knowledge, further relaxations make it feasible even for deep neural network targets.
The attack on linear models requires the training of an identical proxy model that is used to calcu-
late differences from the white-box model’s weights and subsequently use them for membership
inference. For the deep neural network, each layer is replaced by a local linear approximation,
which can be used for the attack in a similar manner.

In addition to relaxations on the number of shadow models, attacks have been shown to be data
driven, i.e., an attack can be successful even if the target model is different than the shadow and
meta-models [125]. The authors tested several types of models such as k-NN, logistic regression,
decision trees and naive Bayes classifiers in different combinations on the role of the target model,
shadow and meta model. The results showed that (i) using different types of models did not affect
the attack accuracy and (ii) in most cases, models such as decision trees outperformed neural
networks in terms of attack accuracy and precision.

Shadow model training requires a shadow dataset. One of the main assumptions of membership
inference attacks on supervised learning models is that the adversary has no or limited knowledge
of the training samples used. However, the adversary knows something about the underlying data
distribution of the target’s training data. If the adversary does not have access to a suitable dataset,
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then they can try to generate one [116, 125]. Access to statistics about the probability distribution
of several features allows an attacker to create the shadow dataset using sampling techniques. If a
statistics-based generation is not possible, then a query-based approach using the target models’
prediction vectors is another possibility. Generating auxiliary data using GANs was also proposed
by Hayes et al. [39]. If the adversary manages to find input data that generate predictions with
high confidence, then no prior knowledge of the data distribution is required for a successful at-
tack [116]. Salem et al. [110] went so far as to show that it is not even necessary to train the shadow
models using data from the same distribution as the target, making the attack more realistic, since
it does not assume any knowledge of the training data.

The previous discussion is mostly relevant to supervised classification or regression tasks.
The efficacy of membership inference attacks against sequence-to-sequence model for machine
translation, was studied by Reference [46]. The authors used shadow models that try to mimic
the target model’s behavior and then used a meta-model to infer membership. They found that
sequence generation models are much harder to attack compared to those trained for other tasks
such as image classification. However, membership of out-of-domain and out-of-vocabulary data
was easier to infer.

Membership inference attacks are also applicable to deep generative models such as GANs and
VAEs [16, 39, 44]. Since these models have more than one component (generator/discriminator,
encoder/decoder), adversarial threat modeling needs to take that into account. For these types of
models, the taxonomy proposed by Chen et al. [16] is partially followed. We consider black-box
access to the generator as the ability to access generated samples and partial black-box access, the
ability to provide inputs in the latent space z and generate samples. Having access to the generator
model and its parameters is considered a white-box attack. The ability to query the discriminator
is also a white-box attack.

The full white-box attacks with access to the GAN discriminator are based on the assumption
that if the GAN has “overfitted,” then the data points used for its training will receive higher confi-
dence values as output by the discriminator [39]. In addition to the previous attack, Hayes et al. [39]
proposed a set of attacks in the partial black-box setting. These attacks are applicable to both GANs
and VAEs or any generative model. If the adversary has no auxiliary data, then they can attempt to
train an auxiliary GAN whose discriminator distinguishes between the data generated by the tar-
get generator and the data generated by the auxiliary GAN. Once the auxiliary GAN is trained, its
discriminator can be used for the white-box attack. The authors considered also scenarios where
the adversary may have auxiliary information such as knowledge of the target’s training and test
data. Using the auxiliary data, they can train another GAN whose discriminator would be able to
distinguish between members of the original training set and non-members.

A distance-based attack over the nearest neighbors of a data point was proposed by Chen
et al. [16] for the full black-box model. In this case, a data point x is a member of the training
set if within its k-nearest neighbors there is at least one point that has a distance lower than a
threshold ϵ . The authors proposed more complex attacks as the level of knowledge of the adver-
sary increases, based on the idea that the reconstruction error between the real data point x and a
sample generated by the generator given some input z should be smaller if the data point is coming
from the training set.

6.1.3 Reconstruction Attacks. The initial reconstruction attacks were based on the assumption
that the adversary has access to the model f , the priors of the sensitive and nonsensitive features,
and the output of the model for a specific input x . The attack was based on estimating the values of
sensitive features, given the values of nonsensitive features and the output label [28]. This method
used a maximum a posteriori (MAP) estimate of the attribute that maximizes the probability
of observing the known parameters. Hidano et al. [43] used a similar attack but they made no
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assumption about the knowledge of the nonsensitive attributes. For their attack to work, they
assumed that the adversary can perform a model poisoning attack during training.

Both previous attacks worked against linear regression models, but as the number of features
and their range increases, the attack feasibility decreases. To overcome the limitations of the MAP
attack, Fredrikson et al. [27] proposed another inversion attack, which recovers features using
target labels and optional auxiliary information. The attack was formulated as an optimization
problem where the objective function is based on the observed model output and uses gradient
descent in the input space to recover the input data point. The method was tested on image recon-
struction. The result was a class representative image, which in some cases was quite blurry even
after denoising. A formalization of the model inversion attacks in References [27, 28] was later
proposed by Wu et al. [135].

Since the optimization problem in Reference [27] is quite hard to solve, Zhang et al. [145] pro-
posed to use a GAN to learn some auxiliary information of the training data and produce better
results. The auxiliary information in this case is the presence of blurring or masks in the input
images. The attack first uses the GAN to learn to generate realistic looking images from masked
or blurry images using public data. The second step is a GAN inversion that calculates the latent
vector ẑ, which generates the most likely image:

ẑ = arg min
z

Lpr ior (z) + λLid (z), (6)

where the prior loss Lpr ior is ensuring the generation of realistic images and Lid ensures that the
images have a high likelihood in the target network. The attack is quite successful, especially on
masked images.

Black-box only reconstruction attacks are less common, since the attacker has substantially
less information. Nevertheless, Salem et al. [109] proposed reconstruction attacks in an online
setting, where they used the prediction vectors of a holdout dataset before and after a training
round, in combination with generative models to reconstruct labels and data samples. Finally, Yang
et al. [138], proposed a black-box attack that employs an additional classifier that performs an
inversion from the output of the target model f (x ) to a candidate output x̂ . The setup is similar to
that of an autoencoder, only in this case the target network that plays the role of the encoder is a
black box and it is not trainable. The attack was tested on different types of target model outputs:
the full prediction vector, a truncated vector, and the target label only. When the full prediction
vector is available, the attack performs a good reconstruction, but with less available information,
the produced data point looks more like a class representative.

6.1.4 Property Inference Attacks. In most property inference the shadow datasets are labeled
based on the properties that the adversary wants to infer, so the adversary needs access to data
that have the property and data that do not have it. The meta-model is then trained to infer dif-
ferences in the output vectors of the data that have the property versus the ones that do not. In
white-box attacks, the meta-model input can be other feature representations such as the support
vectors of an SVM [3] or transformations of neural network layer outputs [29]. When attacking
language model embeddings, the embedding vectors themselves can be used to train a classifier
to distinguish between properties such as text authorship [117]. Similarly to language model em-
beddings, graph embeddings and their properties are used to train an attack classifier that can
be used to infer properties of the target graph [146]. Finally, the first poisoning attack used for
the inference of dataset properties was proposed in Reference [78]. The attacker first poisons the
training data to introduce a correlation between the property in question and the target label and
then selects query samples that allows them to decise whether the frequency of the property in
the training dataset.
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6.1.5 Model Extraction Attacks. When the adversary has access to the inputs and prediction
outputs of a model, it is possible to view these pairs of inputs and outputs as a system of equa-
tions, where the unknowns are the model parameters [124] or hyper-parameters of the objec-
tive function [131]. In the case of a linear binary classifier, the system of equations is linear and
only d + 1 queries are necessary to retrieve the model parameters, where d is the dimension of
the parameter vector θ . In more complex cases, such as multi-class linear regression or multi-
layer perceptrons, the systems of equations are no longer linear. Optimization techniques such as
Broyden–Fletcher–Goldfarb–Shanno (BFGS) [96] or stochastic gradient descent are then used
to approximate the model parameters [124].

Lack of prediction vectors or a high number of model parameters renders equation solving
attacks inefficient. A strategy is required to select the inputs that will provide the most useful
information for model extraction. From this perspective, model extraction is quite similar to active
learning [15]. Active learning makes use of an external oracle that provides labels to input queries.
The oracle can be a human expert or a system. The labels are then used to train or update the
model. In the case of model extraction, the target model plays the role of the oracle.

Following the active learning approach, several papers propose an adaptive training strategy.
They start with some initial data points or seeds, which they use to query the target model and
retrieve labels or prediction vectors, which they use to train the substitute model f̂ . For a number
of subsequent rounds, they extend their dataset with new synthetic data points based on some
adaptive strategy that allows them to find points close to the decision boundary of the target
model [15, 56, 100, 103, 124, 142]. Chandrasekaran et al. [15] provided a more query efficient
method of extracting nonlinear models such as kernel SVMs, with slightly lower accuracy than
the method proposed by Tramer et al. [124], while the opposite was true for Decision Tree models.
ActiveThief [100] and CloudLeak [142] are attacks that are based on the combination of active
learning and adversarial examples for the extraction of deep neural network models. Both attacks
were also combined with other techniques such as transfer learning or k-center [112] to optimize
their performance. One of the main differences between the two approaches is that the CloudLeak
attack uses adversarial samples to query the target, while ActiveThief uses adversarial samples as
a way to find samples from the training dataset that are closed to the decision boundary of the
substitute model, hence data with higher uncertainty.

Several other strategies for selecting the most suitable data for querying the target model use:
(i) data that are not synthetic but belong to different domains such as images from different
datasets [6, 21, 98], (ii) semi-supervised learning techniques such as rotation loss [143] or Mix-
Match [7] to augment the dataset [50], (iii) data generated through model inversion techniques [32],
or iv) randomly generated input data [56, 63, 124]. In terms of efficiency, semi-supervised methods
such as MixMatch require much fewer queries than fully supervised extraction methods to perform
similarly or better in terms of task accuracy and fidelity, against models trained for classification us-
ing CIFAR-10 and SVHN datasets [50]. For larger models, trained for Imagenet classification, even
querying a 10% of the Imagenet data, gives a comparable performance to the target model [50].
Against a deployed MLaaS service that provides facial characteristics, Orekondy et al. [98] man-
aged to create a substitute model that performs at 80% of the target in task accuracy, spending as
little as $30.

Some, mostly theoretical, work has demonstrated the ability to perform direct model extraction
beyond linear models [50, 86]. Full model extraction was shown to be theoretically possible against
two-layer fully connected neural networks with rectified linear unit (ReLU) activations by Milli
et al. [86]. However, their assumption was that the attacker has access to the loss gradients with
respect to the inputs. Jagielski et al. [50] managed to do a full extraction of a similar network
without the need of gradients. Both approaches take into account that ReLUs transforms the neural
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network into a piecewise linear function of the inputs. By probing the model with different inputs,
it is possible to identify where the linearity breaks and use this knowledge to calculate the network
parameters. In a hybrid approach that uses both a learning strategy and direct extraction, Jagielski
et al. [50], showed that they can extract a model trained on MNIST with almost 100% fidelity by
using an average of 219.2 to 222.2 queries against models that contain up to 400,000 parameters.
However, this attack assumes access to the loss gradients similar to Reference [86].

Finally, apart from learning substitute models directly, there is also the possibility of extract-
ing model information such as architecture, optimization methods and hyper-parameters using
shadow models [97]. The majority of attacks were performed against neural networks trained on
MNIST. Using the shadow models’ prediction vectors as input, the meta-models managed to learn
to distinguish whether a model has certain architectural properties. An additional attack by the
same authors, proposed to generate adversarial samples, which were created by models that have
the property in question. The generated samples were created in a way that makes a classifier
output a certain prediction if they have the attribute in question. The target model’s prediction on
this adversarial sample is then used to establish if the target model has a specific property. The
combination of the two attacks proved to be the most effective approach. Some properties such as
activation function, presence of dropout, and max-pooling were the most successfully predicted.

6.2 Attacks Against Distributed Learning

In the federated learning setting, multiple devices acquire access to the global model that is trained
from data that belong to different end users. Furthermore, the parameter server has access to the
model updates of each participant either in the form of model parameters or that of loss gradients.
In split learning settings, the central server also gains access to the outputs of each participant’s
intermediate neural network layers. This type of information can be used to mount different types
of attacks by actors that are either residing in a central position or even by individual participants.
The following subsection presents the types of attacks in distributed settings, as well as their com-
mon elements, differences, and assumptions.

6.2.1 Membership Inference Attacks. Nasr et al. [89] showed that a white-box membership in-
ference attack is more effective than the black-box one, under the assumption that the adversary
has some auxiliary knowledge about the training data, i.e., has access to some data from the train-
ing dataset, either explicitly or because they are part of a larger set of data that the adversary
possesses. The adversary can use the model parameters and the loss gradients as inputs to another
model that is trained to distinguish between members and non-members. The white-box attack
accuracy with various neural network architectures was up to 75.1%; however, all target models
had a high generalization error.

In the active attack scenario, the attacker, which is also a local participant, alters the gradient
updates to perform a gradient ascent instead of descent for the data whose membership is under
question. If some other participant uses the data for training, then their local SGD will significantly
reduce the gradient of the loss and the change will be reflected in the updated model, allowing the
adversary to extract membership information. Attacks from a local active participant reached an
attack accuracy of 76.3% and in general, the active attack accuracy was higher than that of the
passive attack in all tested scenarios. However, increasing the number of participants has adverse
effects on the attack accuracy, which drops significantly after five or more participants. A global
active attacker that is in a more favourable position can isolate the model parameter updates they
receive from each participant. Such an active attacker reached an attack accuracy of 92.1%.

6.2.2 Property Inference Attacks. Passive property inference requires access to some data that
possess the property and some that do not. The attack applies to both federated average and
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synchronized SGD settings, where each remote participant receives parameter updates from the
parameter server after each training round [84]. The initial dataset is of the formD′ = {(x, y, y′)},
where x and y are the data used for training the distributed model and y

′ are the property
labels. Every time the local model is updated, the adversary calculates the loss gradients for two
batches of data. One batch that has the property in question and one that does not. This allows
the construction of a new dataset that consists of gradients and property labels (∇L, y′). Once
enough labeled data have been gathered, a second model, f ′, is trained to distinguish between
loss gradients of data that have the property versus those that do not. This model is then used to
infer whether subsequent model updates were made using data that have the property. The model
updates are assumed to be done in batches of data. The attack reaches an attack area under the

curve (AUC) score of 98% and becomes increasingly more successful as the number of epochs
increases. Attack accuracy also increases as the fraction of data with the property in question also
increases. However, as the number of participants in the distributed training increases, the attack
performance decreases significantly.

6.2.3 Reconstruction Attacks. Some data reconstruction attacks in federated learning use gen-
erative models and specifically GANs [47, 134]. When the adversary is one of the participants,
they can force the victims to release more information about the class they are interested in recon-
structing [47]. This attack works as follows: The potential victim has data for a class “A” that the
adversary wants to reconstruct. The adversary trains an additional GAN model. After each training
round, the adversary uses the target model parameters for the GAN discriminator, whose purpose
is to decide whether the input data come from the class “A” or are generated by the generator. The
aim of the GAN is to create a generator that is able to generate faithful class “A” samples. In the
next training step of the target model, the adversary generates some data using the GAN and labels
them as class “B.” This forces the target model to learn to discriminate between classes “A” and “B,”
which in turn improves the GAN training and its ability to generate class “A” representatives.

If the adversary has access to the central parameter server, then they have direct access to the
model updates of each remote participant. This makes it possible to perform more successful re-
construction attacks [134]. In this case, the GAN discriminator is again using the shared model
parameters and learns to distinguish between real and generated data, as well as the identity of
the participant. Once the generator is trained, the reconstructed samples are created using an op-
timization method that minimizes the distance between the real model updates and the updates
due to the generated data. Both GAN-based methods assume access to some auxiliary data that
belong to the victims. However, the former method generates only class representatives.

In a synchronized SGD setting, an adversary with access to the parameter server has access
to the loss gradients of each participant during training. Using the loss gradients is enough to
produce a high quality reconstruction of the training data samples, especially when the batch size
is small [148]. The attack uses a second “dummy” model. Starting with random dummy inputs
x ′ and labels y ′, the adversary tries to match the dummy model’s loss gradients ∇θJ ′ to the
participant’s loss gradients ∇θJ . This gradient matching is formulated as an optimization task
that seeks to find the optimal x ′ and y ′ that minimize the gradients’ distance:

x∗,y∗ = arg min
x ′,y′
‖∇θJ ′(D′;θ ) − ∇θJ (D;θ )‖2. (7)

The minimization problem in Equation (7) is solved using limited memory BFGS (L-BFGS) [69].
The size of the training batch is an important factor in the speed of convergence in this attack.

Data reconstruction attacks are also possible during the inference phase in the split learning
scenario [41]. When the local nodes process new data, they perform inference on these initial layers
and then send their outputs to the centralized server. In this attack, the adversary is placed in the
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centralized server and their goal is to try to reconstruct the data used for inference. He et al. [41]
cover a range of scenarios: (i) white-box, where the adversary has access to the initial layers and
uses them to reconstruct the images, (ii) black-box where the adversary has no knowledge of the
initial layers but can query them and thus recreate the missing layers, and (iii) query-free where
the adversary cannot query the remote participant and tries to create a substitute model that allows
data reconstruction. The latter attack produces the worst results, as expected, since the adversary
is the weakest. The split of the layers between the edge device and the centralized server is also
affecting the quality of reconstruction. Fewer layers in the edge neural network allow for better
reconstruction in the centralized server.

6.3 Summary of Attacks

To summarize the attacks proposed against machine learning privacy, Table 1 presents the 47
papers analyzed in terms of adversarial knowledge, model under attack, attack type, and timing
of the attack.

In terms of model types, 86.8% of the papers dealt with attacks against neural networks, with
decision trees and linear models being the second most popular models to attack at 10.6% (some
papers covered attacks against multiple model types). The concept of neural networks groups
together both shallow and deep models, as well as multiple architectures, such as convolutional
neural networks, recurrent neural networks, while under SVMs, we group together both linear
and nonlinear versions.

The most popular attack type is membership inference (41.5% of the papers) with reconstruction
attacks the second most popular (30.2% of the papers) and model extraction in the third place
(28.3%). The majority of the proposed attacks are performed during the inference phase (86.8%).
Attacks during training are mainly on distributed forms of learning or related to poisoning.
Black-box and white-box attacks were studied in 71.7% and 43.4% of the papers, respectively
(some papers covered both settings). In the white-box category, we also include partial white-box
attacks.

The focus on neural networks in the existing literature as well as the focus on supervised learn-
ing is also apparent in Figure 4. The figure depicts types of machine learning algorithms versus
the types of attacks that have been studied so far based on the existing literature. The list of algo-
rithms is indicative and not exhaustive, but it contains the most popular ones in terms of research
and deployment in real-world systems. Algorithms such as random forests [10] or gradient boost-
ing trees [17, 60] have received little to no focus and the same holds for whole areas of machine
learning such as reinforcement learning.

Another dimension that is interesting to analyze is the types of learning tasks that have been
the target of attacks so far. Figure 5 presents information about the number of papers in relation
to the learning task and the attack type. By learning task, we refer to the task in which the target
model is initially trained. As the figure clearly shows, the majority of the attacks are on models
that were trained for classification tasks, both binary and multiclass. This is the case across all four
attack types.

While there is a diverse set of reviewed papers, it is possible to discern some high-level patterns
in the proposed attacking techniques. Figure 6 shows the number of papers in relation to the
attacking technique and attack type. Most notably, 10 papers used shadow training mainly for
membership and property inference attacks. Active learning was quite popular in model extraction
attacks and was proposed by six papers. Generative models (mostly GANs) were used in five papers
across all attack types and another three papers used gradient matching techniques. It should be
noted here that the “Learning” technique includes a number of different approaches, spanning
from using model parameters and gradients as inputs to classifiers [84, 89] to using input-output
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Table 1. Summary of Papers on Privacy Attacks on Machine Learning Systems, Including

Assumptions About Adversarial Knowledge (Black / White-box), the Type of Model(s) under

Attack, the Attack Type, and the Timing of the Attack (During Training or During Inference)

Reference Year Knowledge ML Algorithms Attack Type Timing
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Fredrikson et al. [28] 2014 • • • •
Fredrikson et al. [27] 2015 • • • • • •
Ateniese et al. [3] 2015 • • • • •
Tramer et al. [124] 2016 • • • • • • • •
Wu et al. [135] 2016 • • • • • •
Hidano et al. [43] 2017 • • • •
Hitaj et al. [47] 2017 • • • •
Papernot et al. [103] 2017 • • • •
Shokri et al. [116] 2017 • • • •
Correia-Silva et al. [21] 2018 • • • •
Ganju et al. [29] 2018 • • • •
Oh et al. [97] 2018 • • • •
Long et al. [74] 2018 • • • •
Rahman et al. [106] 2018 • • • •
Wang & Gong [131] 2018 • • • • • • •
Yeom et al. [140] 2018 • ◦ • • • • •
Carlini et al. [11] 2019 • • • •
Hayes et al. [39] 2019 • • • • •
He et al. [41] 2019 • • • • •
Hilprecht et al. [44] 2019 • • • •
Jayaraman & Evans [51] 2019 • • • • • •
Juuti et al. [56] 2019 • • • •
Milli et al. [86] 2019 • • • •
Nasr et al. [90] 2019 • • • •
Melis et al. [84] 2019 • • • • •
Orekondy et al. [98] 2019 • • • •
Sablayrolles et al. [108] 2019 ◦ • • •
Salem et al. [110] 2019 • • • •
Song L. et al. [120] 2019 • • • •
Truex, et al. [125] 2019 • • • • • •
Wang et al. [134] 2019 • • • •
Yang et al. [138] 2019 • • • •
Zhu et al. [148] 2019 • • • •
Barbalau et al. [6] 2020 • • • •
Chandrasekaran et al. [15] 2020 • • • • • •
Chen et al. [16] 2020 • • • • •
He et al. [40] 2020 • • • •
Hishamoto et al. [46] 2020 • • • •
Jagielski et al. [50] 2020 • • • •
Krishna et al. [63] 2020 • • • •
Leino and Fredrikson 2020 • • • • •
Pal et al. [100] 2020 • • • •
Pan et al. [101] 2020 • • • •
Salem et al. [109] 2020 • • • •
Song & Raghunathan [117] 2020 • • • • • • •
Yu et al. [142] 2020 • • • •
Zhang et al. [145] 2020 • • • •
Carlini et al. [12] 2021 • • • •
Choquette-Choo et al. [18] 2021 • • • •
Gong et al. [32] 2021 • • • •
Li & Zhang [68] 2021 • • • •
Mahloujifar et al. [78] 2022 • • • • •
Zhang et al. [146] 2022 • • • • • •

The transparent circle in the Knowledge column indicates partial white-box attacks.
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Fig. 4. Map of attack types per algorithm. The list of algorithm presented is not exhaustive but indicative.

Underneath each algorithm or area of machine learning there is an indication of the attacks that have been

studied so far. A red box indicates no attack.

Fig. 5. Number of papers used against each learning task and attack type. Classification includes both binary

and multi-class classification. Darker gray means higher number of papers.

queries for substitute model creation [21, 50, 98] and learning classifiers from language models for
reconstruction [101] and property inference [117]. In “Threshold”-based attacks, we categorized
the attacks proposed in References [140] and [108] and subsequent papers that used them for
membership and property inference.

Some attacks may be applicable to multiple learning tasks and datasets, however, this is not the
case universally. Dataset size, number of classes, and features might also be factors for the success
of certain attacks, especially since most of them are empirical. Table 2 is a summary of the datasets
used in all attack papers along with the data types of their features, the learning task they were
used for, and the dataset size. The datasets were used during the training of the target models and
in some cases as auxiliary information during the attacks. The table contains 56 unique datasets
used across 53 papers, an indication of the variation of different approaches.
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Fig. 6. Number of papers that used an attacking technique for each attack type. Darker gray means higher

number of papers.

This high variation is both a blessing and a curse. On the one hand, it is highly desirable to use
multiple types of datasets to test different hypotheses and the majority of the reviewed research
follows that approach. On the other hand, these many options make it harder to compare methods.
As it is evident from Table 2, some of the datasets are quite popular. MNIST, CIFAR-10, CIFAR-100,
and UCI Adult have been used by more than nine papers, while 29 datasets have been used by only
one paper.

The number of model parameters varies based on the model, task and datasets used in the exper-
iments. As it can be seen in Table 2, most datasets are not extremely large, hence the models under
attack are not extremely large. Given that most papers deal with neural networks, this might indi-
cate that most attacks focused on smaller datasets and models, which might not be representative
of realistic scenarios. However, privacy attacks do not necessarily have to target large models with
extreme amounts of data; and neural networks, however popular, are not necessarily the most used
models in the “real world.”

7 DEFENDING MACHINE LEARNING PRIVACY

Leaking personal information such as medical records or credit card numbers is usually an unde-
sirable situation. The purpose of studying attacks against machine learning models is to be able
to explore the limitations and assumptions of machine learning and to anticipate the adversaries’
actions. Most of the analyzed papers propose and test mitigations to counter their attacks. In the
next subsections, we present the various defences proposed in several papers organized by the
type of attack they attempt to defend against.

7.1 Defenses Against Membership Inference Attacks

The most prominent defense against membership inference attacks is Differential Privacy (DP),
which provides a guarantee on the impact that single data records have on the output of an algo-
rithm or a model. However, other defenses have been tested empirically and are also presented in
the following subsections.

7.1.1 Differential Privacy. Differential privacy started as a privacy definition for data analysis
and it is based on the idea of “learning nothing about an individual while learning useful informa-
tion about a population” [25]. Its definition is based on the notion that if two databases differ only

ACM Computing Surveys, Vol. 56, No. 4, Article 101. Publication date: November 2023.



A Survey of Privacy Attacks in Machine Learning 101:23

Table 2. Summary of Datasets Used in the Papers About Privacy Attacks on Machine Learning Systems

Name Data Type Learning Task Reference(s) Size (Samples)
538 Steak Survey [42] mixed features multi-class classification

[15, 27, 43, 124]
332

AT&T Faces [4] images multi-class classification
[27, 47, 134]

400

Bank Marketing [24] mixed features multi-class classification
[131]

45,210

Bitcoin prices time series regression
[124]

1,076

Book Corpus [149] text word-level language model
[117]

14,000 sent.

Breast Cancer [24] numerical feat. binary classification
[15, 66, 74, 124]

699

Caltech 256 [35] images multi-class classification
[98]

30,607

Caltech birds [130] images multi-class classification
[98]

6,033

CelebA [70] images binary classification
[6, 16, 29, 138, 145]

20-202,599

CIFAR-10 [64] images image generation, multi-class
classification [6, 18, 32, 39, 41, 44, 50,

66, 68, 86, 100, 106, 108–
110, 116, 120, 125, 138,
140]

60,000

CIFAR-100 [64] images multi-class classification
[6, 18, 51, 66, 68, 90, 110,

116, 140, 148]

60,000

Cityscapes [20] images image segmantation
[40]

3,475

CLiPS stylometry [128] text binary classification
[84]

1,412 reviews

Chest X-ray [133] images multi-class classification
[145]

10,000

Diabetes [24] time series binary class., regression
[15, 124, 131]

768

Diabetic ret. [58] images image generation
[39, 98]

88,702

Enron emails text char-level language model
[11, 78]

—

Eyedata [111] numerical feat. regression
[140]

120

FaceScrub [93] images binary classification
[84, 138]

18,809–48,579

Fashion-MNIST [136] images multi-class classification
[6, 44, 50, 120]

60,000

Foursquare [137] mixed features binary classification
[84, 110, 116]

528,878

Geog. Orig. Music [24] numerical feat. regression
[131]

1,059

German Credit [24] mixed features binary classification
[66, 124]

1,000

GSS marital survey [36] mixed features multi-class classification
[15, 27, 124]

16,127

GTSRB [122] images multi-class classification
[32, 56, 68, 100, 103, 142]

51,839

HW Perf. Counters (private) numerical feat. binary classification
[29]

36,000

Imagenet [23] images multi-class classification
[6, 50, 97, 108]

14,000,000

Instagram [5] location data vector generation
[16]

—

Iris [26] numerical feat. multi-class classification
[15, 124]

150

IWPC [19] mixed features regression
[28, 140]

3,497

IWSLT Eng-Vietnamese [76] text neural machine translation
[11]

—

KDEF [75] images multi-class classification
[142]

4,900

LFW [48] images image generation
[39, 66, 68, 84, 148]

13,233

Madelon [24] mixed features multi-class classification
[131]

4,400

MIMIC-III [55] binary features record generation
[16]

41,307

Movielens 1M [37] numerical feat. regression
[43]

1,000,000

MNIST [65] images multi-class classification
[15, 29, 32, 41, 44, 47, 50,

56, 66, 74, 86, 97, 100, 103,
106, 109, 110, 116, 124,
125, 134, 138, 140, 145,
148]

70,000

(Continued)
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Table 2. Continued from previous page

Name Data Type Learning Task Reference(s) Size (Samples)
MR [102] text multi-class classification

[100]
—

Mushrooms [24] categorical feat. binary classification
[15, 124]

8,124

Netflix [91] binary features binary classification
[140]

2,416

Netflows (private) network data binary classification
[3]

—

PTB [81] text char-level language model
[11]

5 MB

PiPA [144] images binary classification
[84]

18,000

Purchase-100 [57] binary features multi-class classification
[18, 51, 90, 116, 125]

197,324

SVHN [92] images multi-class classification
[50, 148]

60,000

TED talks [49] text machine translation
[11]

100,000 pairs

Texas-100 [14] mixed features multi-class classification
[18, 90, 116]

67,330

TU Dataset [87] graph data graph classification & regres-
sion [146]

—

UJIndoor [24] mixed features regression
[131]

19,937

UCI / Adult [24] various binary classification
[15, 18, 29, 74, 78, 110,

116, 124, 125]

48,842

VGG Flowers [95] images multi-class classification
[142]

6,146

Voxforge [129] audio speech recognition
[3]

11,137 rec.

Wikipedia [79] text language model
[117]

150,000 articles

Wikitext-103 [85] text word-level language model
[11, 63]

500 MB

Yale-Face [30] images multi-class classification
[120]

2,414

Yelp reviews [139] text binary classification
[84]

16–40,000

The size of each dataset is measured by the number of samples unless otherwise indicated. A range in the size column
indicates that different papers used different subsets of the dataset.

by one record and are used by the same algorithm (or mechanism), the output of that algorithm
should be similar. More formally,

Definition 7.1 ((ϵ,δ )-Differential Privacy). A randomized mechanismM with domain R and out-
put S is (ϵ,δ )-differentially private if for any adjacent inputs D,D ′ ∈ R and for any subsets of
outputs S it holds that

Pr [M (D) ∈ S] ≤ eϵPr [M (D ′) ∈ S] + δ , (8)

where ϵ is the privacy budget and δ is the failure probability.

The original definition of DP did not include δ , which was introduced as a relaxation that allows
some outputs not to be bounded by eϵ .

The usual application of DP is to add Laplacian or Gaussian noise to the output of a query or
function over the database. The amount of noise is relevant to the sensitivity, which gives an upper
bound on how much we must perturb the output of the mechanism to preserve privacy [25]:

Definition 7.2. l1 (or l2)-Sensitivity of a function f is defined as

Δf = max
D,D′, ‖D−D′ ‖=1

‖ f (D) − f (D ′)‖, (9)

where ‖.‖ is the l1 or the l2-norm and the max is calculated over all possible inputs D,D ′.
From a machine learning perspective, D and D ′ are two datasets that differ by one training

sample and the randomized mechanism M is the machine learning training algorithm. In deep
learning, the noise is added at the gradient calculation step. Because it is necessary to bound the
gradient norm, gradient clipping is also applied [1].

ACM Computing Surveys, Vol. 56, No. 4, Article 101. Publication date: November 2023.



A Survey of Privacy Attacks in Machine Learning 101:25

Differential privacy offers a trade-off between privacy protection and utility or model accuracy.
Evaluation of differentially private machine learning models against membership inference attacks
concluded that the models could offer privacy protection only when they considerably sacrifice
their utility [51, 106]. Jayaraman et al. [51] evaluated several relaxations of DP in both logistic
regression and neural network models against membership inference attacks. They showed that
these relaxations have an impact on the utility-privacy trade-off. While they reduce the required
added noise, they also increase the privacy leakage.

Distributed learning scenarios require additional considerations regarding differential privacy.
In a centralized model, the focus is on sample level DP, i.e., on protecting privacy at the individual
data point level. In a federated learning setting where there are multiple participants, we not only
care about the individual training data points they use but also about ensuring privacy at the
participant level. A proposal that applies DP at the participant level was introduced by McMahan
et al. [83]; however, it requires a large number of participants. When it was tested with a number
as low as 30, the method was deemed unsuccessful [84].

7.1.2 Regularization. Regularization techniques in machine learning aim to reduce overfitting
and increase model generalization performance. Dropout [121] is a form of regularization that
randomly drops a predefined percentage of neural network units during training. Given that black-
box membership inference attacks are connected to overfitting, it is a sensible approach to this
type of attack and multiple papers have proposed it as a defense with varying levels of success [39,
84, 110, 116, 120]. Another form of regularization uses techniques that combine multiple models
that are trained separately. One of those methods, model stacking, was tested in Reference [110]
and produced positive results against membership inference. An advantage of model stacking or
similar techniques is that they are model agnostic and do not require that the target model is a
neural network.

7.1.3 Prediction Vector Tampering. As many models assume access to the prediction vector dur-
ing inference, one of the countermeasures proposed was the restriction of the output to the top k
classes or predictions of a model [116]. However, this restriction, even in the strictest form (out-
putting only the class label) did not seem to fully mitigate membership inference attacks, since
information leaks can still happen due to model misclassifications. Another option is to lower the
precision of the prediction vector, which leads to less information leakage [116]. Adding noise to
the output vector also affected membership inference attacks [54].

7.2 Defenses Against Reconstruction Attacks

Reconstruction attacks often require access to the loss gradients during training. Most of the de-
fences against reconstruction attacks propose techniques that affect the information retrieved from
these gradients. Setting all loss gradients that are below a certain threshold to zero was proposed
as a defence against reconstruction attacks in deep learning. This technique proved quite effec-
tive with as little as 20% of the gradients set to zero and with negligible effects on model perfor-
mance [148]. However, performing quantization or using half-precision floating points for neural
network weights did not seem to deter the attacks in References [11] and [148], respectively.

7.3 Defenses Against Property Inference Attacks

Differential privacy is designed to provide privacy guarantees in membership inference attack sce-
narios and it does not seem to offer protection against property inference attacks [3]. In addition
to DP, Melis et al. [84] explored other defenses against property inference attacks. Regularization
(dropout) had an adverse effect and actually made the attacks stronger. Since the attacks in Refer-
ence [84] were performed in a collaborative setting, the authors tested the proposal in Reference
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[115], which is to share fewer gradients between training participants. Although sharing less in-
formation made the attacks less effective, it did not alleviate them completely.

7.4 Defenses Against Model Extraction Attacks

Model extraction attacks usually require that the attacker performs a number of queries on the
target model. The goal of the proposed defenses so far has been the detection of these queries.
This contrasts with the previously presented defences that mainly try to prevent attacks.

7.4.1 Protecting Against DNN Model Stealing Attacks (PRADA). Detecting model stealing at-
tacks based on the model queries that are used by the adversary was proposed by Juuti et al. [56].
The detection is based on the assumption that model queries that try to explore decision bound-
aries will have a different distribution than the normal ones. While the detection was successful,
the authors noted that it is possible to be evaded if the adversary adapts their strategy.

7.4.2 Membership Inference. The idea of using membership inference to defend against model
extraction was studied by Krishna et al. [63]. It is based on the premise that using membership
inference, the model owner can distinguish between legitimate user queries and nonsensical ones
whose only purpose is to extract the model. The authors note that this type of defence has limi-
tations such as potentially flagging legitimate but out-of-distribution queries made by legitimate
users, but more importantly that they can be evaded by adversaries that make adaptive queries.

7.4.3 Obfuscating Prediction. Zheng et al. [147] proposed to obfuscate the predictions of the
target model for data points that are near the decision boundary using the idea of boundary DP,
which guarantees to defend the model regardless of the number of queries and it was tested in a
binary classification setting. Orekondy et al. [99] proposed to perturb the prediction vectors of the
target model in such a way that they poison the substitute model created by the attacker.

8 FUTURE RESEARCH DIRECTIONS

8.1 Causes of Privacy Attacks

Attacks on machine learning privacy have been increasingly brought to light. However, we are still
at an exploratory stage. For some attacks such as membership inference, we know that there is a
connection to overfitting and memorization but there are also indications that some data points
are easier to infer than others. Currently, we lack a deeper understanding about the rest of the in-
ference attacks, especially property inference and model extraction attacks. Potential future work
may be done, using a data-centric approach, on why some data points may be easier to infer, and
which are their properties.

8.2 Real-world Impact

As much as we need answers about why leaks happen at a theoretical level, we also need to know
how well privacy attacks work on real deployed systems. Adversarial attacks on realistic systems
bring to light the issue of additional constraints that need to be in place for the attacks to work.
For example, when creating glasses to fool a face recognition system, Sharif et al. [114] had to
pose constraints that had to do with physical realizations, e.g., that the color of the glasses should
be printable. In privacy-related attacks, the most realistic cases come from the model extraction
area, where attacks against MLaaS systems have been demonstrated in multiple papers. For the
majority of other attacks, it is certainly an open question of how well they would perform on
deployed models and what kind of additional requirements would need to be in place for them to
succeed. Potential future work may be done by exploring attacks in real-world implementations
and deployments, where the assumptions about the access to the training dataset are a challenge.
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8.3 Datasets and Attack Evaluation

Beyond expanding the focus on different learning tasks, there is the question of datasets. The im-
pact of datasets on the attack success has been demonstrated by several papers. Yet, we currently
lack a common approach as to which datasets are best suited to evaluate privacy attacks, or what
constitutes the minimum requirements for a successful attack. Several questions are worth consid-
ering: Do we need standardized datasets? If yes, then how do we go about and create them? Are
all data worth protecting? If some are more interesting than others, then is it not a good idea to
test attacks beyond popular image datasets? A potential future work would be the standardization
of datasets and testing environments. This may be an avenue that would benefit researchers to
advance the state of the art, as well as engineers that deploy models in production environments.
Part of this future direction should also include guidelines for evaluation and deployment with
respect to potential privacy leaks.

8.4 Unexplored Privacy Attacks on Machine Learning

The main research focus up to now has been supervised learning. Even within supervised learning,
there are areas and learning tasks that have been largely unexplored. Information leakage in newer
model architectures such as attention networks and graph neural networks just recently started to
attract some focus. In addition there are very few attacks reported on popular algorithms such as
random forests or gradient boosting trees despite their wide application and this is research area
that deserves more attention and future work. In unsupervised and semi-supervised learning, the
focus is mainly on generative models, and only just recently, papers started exploring areas such
as representation learning and language models. Some attacks on image classifiers do not transfer
that well to natural language processing tasks [46], while others do but may require different sets
of assumptions and design considerations [101]. Figure 4 shows which type of attacks were still
not tried in which models or algorithms. All these are potential future work directions.

8.5 Interdisciplinary Attacks

Finally, as we strive to understand the privacy implications of machine learning, we also realize
that several research areas are connected and affect each other. We know, for instance, that ad-
versarial training (using adversarial samples to make the model more robust) affects membership
inference [119] and that model censoring can still leak private attributes [119]. Property inference
attacks can deduce properties of the training dataset that were not specifically encoded or were
not necessarily correlated to the learning task. This can be understood as a form of bias detection,
which means that relevant literature in the area of model fairness should be reviewed as potentially
complementary. Furthermore, while deep learning models are considered black-boxes in terms of
explainability, future work that sheds light on what type of data make neurons activate [94, 141]
can be relevant to discovering information about the target’s training dataset and can therefore
lead to privacy leaks. All these are examples of potential inter-dependencies between different ar-
eas of machine learning research. Therefore, a better understanding of privacy attacks calls for an
interdisciplinary approach.

9 CONCLUSION

As machine learning becomes ubiquitous, the scientific community becomes increasingly in-
terested in its impact and side-effects in terms of security, privacy, fairness, and explainability.
This survey conducted a comprehensive study of the state-of-the-art privacy-related attacks and
proposed a threat model and a unifying taxonomy of the different types of attacks based on their
characteristics. An in-depth examination of the current state-of-the-art research allowed us to
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perform a detailed analysis, which revealed common design patterns and differences between
them.

Several open problems that merit further research were identified. First, our analysis revealed
a somewhat narrow focus of the research conducted so far, which is dominated by attacks on
deep learning models. We believe that there are several popular algorithms and models in terms of
real-world deployment and applicability that merit a closer examination. Second, a thorough the-
oretical understanding of the reasons behind privacy leaks is still underdeveloped and this affects
both the proposed defensive measures and our understanding of the limitations of privacy attacks.
Experimental studies on factors that affect privacy leaks have provided useful insights so far. How-
ever, in total, there are very few works that test attacks in realistic conditions in terms of dataset
size and deployment. Finally, examining the impact of other adjacent study areas such as security,
explainability, and fairness is also a topic that calls for further exploration. Even though it may not
be possible to construct and deploy models that are fully private against all types of adversaries,
understanding the inter-dependencies that affect privacy will help make more informed decisions.

While the community is still in an exploratory mode regarding privacy leaks of machine learning
systems, we hope that this survey will provide the necessary background to both the interested
readers as well as the researchers that wish to work on this topic.
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