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This assignment focuses on the algorithmic manipulation of the Stack Over-
flow Temporal Network, whose description and related dataset may be found
at 1. Each edge of the underlying graph is associated with a timestamp, indi-
cating the exact time instance where the edge was created. The complete set
of directional edges for the aforementioned network, along with the associated
timestamps, is row-wise stored in the file sx-stackoverflow.txt as consecutive
triplets of the form (source id,target id,timestamp). Thus, the dataset is
actually a collection of timestamped edges of the following form

E = {eij(t) = (vi, vj , t) : tmin ≤ t ≤ tmax} (1)

where tmin and tmax identify the oldest and latest time instances respectively.
Your analysis should be conducted on a sequence of N non-overlapping

time periods {T1, . . . TN}, of equal duration δt, that span the entire time interval

T = [tmin, tmax] (2)

The set of N time periods may be defined by considering a sequence of N + 1
time-instances {t0, . . . , tN} such that:

tj = tmin + j ∗ δt, 0 ≤ j ≤ N (3)

where δt = ∆T
N and ∆T = tmax − tmin. It is easy to deduce that the j-th time

period may be defined as:

Tj =

{ [
tj−1, tj

)
, 1 ≤ j ≤ N − 1;[

tj−1, tj
]
, j = N .

(4)

For each time period Tj , with 1 ≤ j ≤ N , we may consider the corresponding
undirected subgraphs of the network, denoted as:

G[tj−1, tj ] = (V [tj−1, tj ], E[tj−1, tj ]) (5)

where
E[tj−1, tj ] = {eij(t) : t ∈ Tj} (6)

The set V [tj−1, tj ] of vertices for each period may be implicitly defined as the set
of nodes that appear at the end points of edges pertaining to the set E[tj−1, tj ].

Part I Questions (Grade Percentage 35%):

1https://snap.stanford.edu/data/sx-stackoverflow.html
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1. Partition the complete time period T = [tmin, tmax] into a set of non-
overlapping time periods {T1, . . . , TN} by computing the corresponding
set of time instances {t0, . . . , tN} where t0 = tmin and tN = tmax. Mind
that N is a user defined parameter.

2. Choose an appropriate representation for each subgraph G[tj−1, tj ] of the
network for each time period Tj where 1 ≤ j ≤ N .

3. Provide a graph depicting the time evolution of the quantities |V [tj−1, tj ]|
and |E[tj−1, tj ]| for each time period Tj where 1 ≤ j ≤ N .

4. For each subgraph G[tj−1, tj ] compute and graphically represent the prob-
ability density functions (i.e. histograms of relative frequencies) for the
following centrality measures:

(a) Degree Centrality

(b) Closeness Centrality

(c) Betweenness Centrality

(d) Eigenvector Centrality

(e) Katz Centrality

Acquiring a more accurate description for the evolution of the network be-
tween successive time periods can be facilitated by considering the set of nodes
that persist during the transition from Tj to Tj+1, formulated as:

V ∗[tj−1, tj+1] = V [tj−1, tj ] ∩ V [tj , tj+1], 1 ≤ j ≤ N (7)

In this setting, we are particularly interested in restricting the sets E[tj−1, tj ]
and E[tj , tj+1] within the common set of nodes V ∗[tj−1, tj+1] as:

E∗[tj−1, tj ] = {(u, v) ∈ E[tj−1, tj ] : u ∈ V ∗[tj−1, tj+1]∧ v ∈ V ∗[tj−1, tj+1]} (8)

E∗[tj , tj+1] = {(u, v) ∈ E[tj , tj+1] : u ∈ V ∗[tj−1, tj+1]∧ v ∈ V ∗[tj−1, tj+1]} (9)

Part II Questions (Grade Percentage 35%):

1. For each pair of successive network instances (G[tj−1, tj ], G[tj , tj+1]), where
1 ≤ j ≤ N − 1, compute the following sets

(a) V ∗[tj−1, tj+1]

(b) E∗[tj−1, tj ]

(c) E∗[tj , tj+1]

and graphically represent their volumes |V ∗[tj−1, tj+1]|, |E∗[tj−1, tj ]| and
|E∗[tj , tj+1]| as functions of the coupled time periods (Tj , Tj+1).

2. For each pair of nodes (u, v) ∈ V ∗[tj−1, tj+1] and for every set of com-
mon vertices V ∗[tj−1, tj+1], where 1 ≤ j ≤ N − 1, compute the following
similarity matrices:

(a) SGD : SGD(u, v) = −dgeodesic(u, v) [Graph Distance]
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(b) SCN : SCN (u, v) = |Γ(u) ∩ Γ(v)| [Common Neighbors]2

(c) SJC : SJC(u, v) = |Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)| [Jaccard’s Coefficient]

(d) SA : SA(u, v) =
∑

z∈Γ(u)∩Γ(v)

1
log(|Γ(z)|) [Adamic / Adar]

(e) SPA : SPA(u, v) = |Γ(u)| ∗ |Γ(c)| [Preferential Attachment]

According to the previous discussion, it is easy to deduce that during the
successive time periods Tj and Tj+1, the set of all possible edges between vertices
in the common set of nodes V ∗[tj−1, tj+1] may be given as:

E0[tj−1, tj+1] = V ∗[tj−1, tj+1]× V ∗[tj−1, tj+1], 1 ≤ j ≤ N − 1 (10)

However, the subset of edges that are actually realized corresponds to the set

E∗[tj−1, tj+1] = E∗[tj−1, tj ] ∪ E∗[tj , tj+1] (11)

In the context of the link prediction task, E∗[tj−1, tj ] will serve as the training
set, whereas E∗[tj , tj+1] will be used for testing. Each one of the previously
defined similarity metrics

SX : X ∈ {GD,CN, JC,A, PA} (12)

can be employed in order to implement a simple classification mechanism that
provides an estimation for the actual set of edges E∗[tj−1, tj+1] according to the
following equation:

Ê∗X [tj−1, tj+1] = {(u, v) ∈ E0[tj−1, tj+1] : SX(u, v) ∈ RX} (13)

where RX indicates a range of values for the similarity score SX . The prediction
accuracy of each classification rule defined by Eq. 13 can be assessed with respect
to a ground truth set of edges E through the utilization of the quantity given
below:

ACC(RX , E) = λ ∗ TPR(RX , E) + (1− λ) ∗ TNR(RX , E) (14)

where

TPR(RX , E) =
|Ê∗X [tj−1, tj+1] ∩ E|

|E|
(15)

TNR(RX , E) = 1− |Ê
∗
X [tj−1, tj+1]| − |Ê∗X [tj−1, tj+1] ∩ E|

|E0[tj−1, tj+1]| − |E|
(16)

λ =
|E|

|E0[tj−1, tj+1]|
(17)

The simplest way to define RX is as a continuous interval of the following form:

RX = [SL
X , S

U
X ] (18)

where SL
X and SU

X are the lower and upper bounds respectively. However, more
accurate classification results can be obtained by considering a more composite

2For a graph G = (V,E), function Γ : V → P (V ), evaluated on a particular node z ∈ V
provides the subset Γ(z) ⊂ V of nodes neighboring with z
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form for the set RX , composed by the union of nX non-overlapping intervals,
formulated as:

RX =

k=nX⋃
k=1

[SLk

X , SUk

X ] (19)

Part III Questions (Grade Percentage 30%):

1. Describe and implement a training algorithm which determines the opti-
mal range sets R∗X , defined by Eq. 19, for each similarity measure. The
goal of the training algorithm should be the maximization of accuracy
given by Eq. 14 within the training set. Therefore, the training algorithm
reduces to solving the following maximization problem:

R∗X = arg max
RX

ACC(RX , E
∗[tj−1, tj ]) (20)

2. Having determined the optimal range sets R∗X for each similarity mea-
sure, evaluate and rank the corresponding training accuracy measurements
ACC(R∗X , E

∗[tj−1, tj ]).

3. Evaluate and rank the testing accuracy measurementsACC(R∗X , E
∗[tj , tj+1]).

For this assignment you can work in groups of no more than 3
students. Your implementation can be in any programming language.
The final deliverable should contain:

1. Well documented code of your implementation.

2. A concise report explaining your assumptions and implementa-
tion decisions.

3. Example runs of your code providing the required graphical rep-
resentations and classification measurements.
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