DATA MINING ON SOCIAL NETWORKS

Laboratory Lectures Notes

Dionisios N. Sotiropoulos, Ph.D
June 26, 2018

Department of Computer Science
University of Piraeus

CO-AUTHORSHIP NETWORK: DATASET

Data Files:

- authors.mat: [1155x3] cell array authors storing column-wise

- author_id
- author_surname
- author_firstname

- ICMB_2002.mat ... ICM_2013.mat: [1155 x 1155] matrices
array_2002 .. array_2013

TEMPORAL ADJACENCY MATRICES

Each Wt € Myssxss with t € {2002...2013} is @ symmetric adjacency
matrix where the Wy(i,) elements quantify the number of papers
that have been co-authored between authors i and j.

Specifically, Wy = [W¢(i,)] such that:

Wi j) # papers co-authored between authors i and j at time t,i # j;
) = .
’ # of papers authored by author i at time t,i = J;

* Information along the diagonal elements will be discarded.

CO-AUTHORSHIP NETWORK: OVERALL ADJACENCY MATRIX

The final co-authorship network weight matrix Wy € Mys51155 to be
constructed will be of the following form:
Wy = [Wo(i,j)] where:

Woli.j) {17 I # j when authors | and j have at least one paper in common;
oll,)) = .
0,1 =J.

The previous equation may be equivalently expressed as:

. 1,2 Wi(in)) > 10 #J;
WO(I7J): &
0,i=].

CO-AUTHORSHIP NETWORK: CODE REQUIREMENTS

Matlab Routines to be Implemented:

1. Load separate weight-matrices and construct overall network
weight matrix.

2. Compute Degree Centrality Measure.
3. Construct the Degree Centrality distribution graph.

4. Report top N authors ranked by Degree Centrality (or any other
centrality measure).

5. Implement algorithm for extracting connected components
(Breadth First Search Algorithm).

6. Report top N connected components (ranked by size).

7. Implement Shortest Path extraction algorithm from predecessor
matrix (Floyd-Warshall Algorithm).

COAUTHORSHIPNETWORKMANIPULATION.M |

1 clc

» clear all

3 % Set the period of years.

. Years = [2002:1:2013];

s YearsNum = length(Years);

s % Load weight matrices for each vyear.
; for year = Years

8 filename = strcat(['ICMB—' num2str(year) '.mat’
1;

9 load (filename):

10 end;

n % Load authors’' names.

COAUTHORSHIPNETWORKMANIPULATION.M ||

» load('authors.mat’);

3 % Set a container storing the weight matrices for

w % all years.

s ICMB = cell(1,numel(Years));

v % Populate cell array

v for y = 1:YearsNum

® ICMB{y} = eval(genvarname(strcat(["array_"’
num2str(Years(y))1)));

19 end;

» % Get the number of nodes N.

2 N = size(ICMB{1},1);

2 % Construct the overall graph weight matrix.

» W = zeros(N,N);

COAUTHORSHIPNETWORKMANIPULATION.M Il

» for y = 1:1:YearsNum
2 W =W + ICMB{y};
2% end;

» % Set up a vector of indices pointing to the
» % diagonal elements of the weight matrix W.
» Idiag = [1T:N+1:N*N];

n % Re—initialize the overall weight matrix W so that
» % fundamental social network analysis tasks can be
s % performed. W should be a binary adjacency matrix
% % so that W[i,j] = 1 indicates the presence of an
s % edge between authors | and j. Moreover, the

COAUTHORSHIPNETWORKMANIPULATION.M |V

s % diagonal elements of W should also be set to zero

7 Wo = W;

i Wo(Wo>1) = 1;

39 Wo(ldiag) = 0;

w % Extract Degree Centrality measure for each author

« Degrees = sum(Wo,2) ;

DEGREECENTRALITYDISTRIBUTION.M |

1 function [H] = DegreeCentralityDistribution (Degrees
)

2 % This function computes and displays the Degree
s % Centrality Distribution for a given vector of

+ % degree centralities.

s min_degree = min(Degrees);

s max_degree = max(Degrees);

; degrees_range = [min_degree:max_degree];

¢ H = hist(Degrees,degrees_range);

o figure('Name’, 'Degree Centrality Distribution’):
o bar(degrees_range H);

w axis ([min_degree—1 max_degree+1 min(H) max(H) +5]);

DEGREECENTRALITYDISTRIBUTION.M ||

» xlabel('Degrees’):

w ylabel(Absolute Frequency’);
w grid on

s end

REPORTTOPNAUTHORS.M |

1+ function ReportTopNAuthors(MeasureValues,
MeasureName,N, authors)

2 % This function reports the top N authors ranked by

3 % the measure identified by the input parameter

+ % MeasureName. The corresponding measure values are

5 % stored within the vector MeasureValues. The

6 % number of N and the complete list of authors’

7 % names are also given as input to the function.

s [SortedValues, Sortedindices] = sort(MeasureValues, '
descend’);

s TopNSortedValues = SortedValues (1:N);

o TopNSortedindices = Sortedindices (1:N);

1

REPORTTOPNAUTHORS.M ||

TopNAuthorsFirstNames = authors(TopNSortedindices
3)5
TopNAuthorsSurNames = authors(TopNSortedindices ,2);
% Report Top N Authors’ List.
fprintf('Top %d Authors according to %s\n’,N,
MeasureName) ;
for k = 1:1:N
fprintf('%s %s: %d\n’',TopNAuthorsSurNames{k},
TopNAuthorsFirstNames{k},TopNSortedVvalues (k
));
end;
end

COAUTHORSHIPNETWORKMANIPULATION.M |

1 % Compute and display the degree centrality

» % distribution.

s H = DegreeCentralityDistribution (Degrees);

+« % Report top 10 authors according to

5 % Degree Centrality.

s« No = 10;

7 MeasureName = 'Degree Centrality’;

s MeasureValues = Degrees;

s ReportTopNAuthors(MeasureValues , MeasureName, No,
authors);

CONNECTED COMPONENTS |

In graph theory, a connected component (or just a component) of an
undirected graph is a subgraph in which any two vertices are
connected to each other by paths.

The connected components of a graph may be alternatively defined
through the equivalence classes (induced subgraphs) of an
equivalence relation.

Let G = (V,E) where V= {v3,v5,...,vp} and EC V x V.
Let R C V x V, defined as:

(uVv) € R < uRy, if vertex (v) is reachable from (u)

R is an equivalence relation because it has the following properties:

14

CONNECTED COMPONENTS I

1. reflexivity:
Yu eV, uRu.

(it holds since each vertex is reachable through the trivial path of
zero length connecting each vertex to itself.)

2. symmetricity:
V(u,v) € V2, u#Vv: URV = VRU.
(it holds since within an undirected graph the same path from (u)
to (v) can be traversed backwards).
3. transitivity:
V(u,v,2) € V3, U#V#2Z:URVAVRZ= URZ
(it holds since the path from (u) to (z) can be constructed through
the concatenation of paths from (u) to (v) and from (v) to (z).

BREADTH FIRST SEARCH: ALGORITHM

Input:

- A graph G = (V,E)
- Avertexve V.

- A set Visited of already Visited nodes initialized to the empty set
(Visited = {0}).

Output:

- A set Reachable of vertices that are reachable from vertex v € V.

16

BREADTH FIRST SEARCH: ALGORITHM PSEUDO CODE

1 Procedure BFS(G,v, Visited):

. Reachable = {};

3 Q = []; %Let Q be an empty queue.
+ Q.enqueue(v):

s Visited = Visited U {v};

s while Q is not empty:

7 v = Q.dequeue()

8 Reachable <— Reachable U {V}

5 % N(v) denotes the neighborhood of v.
1 for all w in N(v):

n if wnot in Visited:

2 Q.enqueue (w)

" Visited = Visited U {w}

BREADTH FIRST SEARCH EXAMPLE |

Apply the BFS algorithm on the following graph:

a
NEIGHBOURS'LIST STRUCTURE:
NL(a)={b,c}
)

b C NL(b)={a,d,e}
NL(c)={a,f.g}
/ \ NL(d)={b}
d e f g NL(e)={b,h}
NL(f)={c}
NL(g)={c}
h NL(h)={e}

BREADTH FIRST SEARCH EXAMPLE ||

1. Calling Procedure BFS: BFS(G, a, {0})
2. Initialization:

-v=a
- Visited = {0}

- Reachable = {0}
Q=]

3. Enqueue Operation: (Q = [a], Visited = {a})
4. While Loop Execution:
41 Q=1[a] # [
- Dequeue Operation: (v=a,Q = [])
- Reachable = {a}
- NL(a) = {b, c}
- Enqueue Operation: (Q = [b], Visited = {a, b})
- Enqueue Operation: (Q = [b,], Visited = {a, b, c})

19

BREADTH FIRST SEARCH EXAMPLE IlI

42 Q=1[b,c] # [l

- Dequeue Operation: (v= b, Q = [c])

- Reachable = {a, b}

- NL(b) = {a,d, e}

- No Enqueue Operation: a is already visited

- Enqueue Operation: (Q = [c, d], Visited = {a, b, c,d})

- Enqueue Operation: (Q = [c, d, e], Visited = {a, b, c,d, e})
43 Q=1c,d,e] #]

- Dequeue Operation: (v= ¢, Q = [d, €])

- Reachable = {a, b, c}

- NL(c) ={a.f, g}

- No Enqueue Operation: a is already visited

- Enqueue Operation: (Q = [d, e, f], Visited = {a, b, c,d, e,f})

- Enqueue Operation: (Q = [d, e, f, g], Visited = {a, b, c,d,e,f,g})
44 Q=[d,e,f,gl #[I:

- Dequeue Operation: (v=d, Q = [e,f, g])

20

BREADTH FIRST SEARCH EXAMPLE IV

- Reachable = {a, b, c,d}

© NL(d) = {b}

- No Enqueue Operation: b is already visited
45 Q=lef, 9l #[I:

- Dequeue Operation: (v=e, Q = [f,g])

- Reachable = {a,b,c,d, e}

- NL(e) = {b,h}

- No Enqueue Operation: b is already visited

- Enqueue Operation: (Q = [f, g, h], Visited = {a, b, c,d,e,f,g,h})
46 Q=1f,g,hl #]:

- Dequeue Operation: (v =f, Q = [g, h])

- Reachable = {a, b, c,d,e,f}

- NL(f) = {c}

- No Enqueue Operation: c is already visited

47 Q= [g.h] # [

21

BREADTH FIRST SEARCH EXAMPLE V

- Dequeue Operation: (v =g, Q = [h])

- Reachable = {a,b,c,d,e,f,g}

- NL(9) = {c}

- No Enqueue Operation: c is already visited
48 Q=[h] #1:

- Dequeue Operation: (v=h,Q =1])

- Reachable = {a,b,c,d,e,f,g,h}

- NL(h) = {e}

- No Enqueue Operation: e is already visited

49 Q=[] END OF WHILE LOOP

22

NEIGHBOURSLIST.M |

1 function [NL] = NeighboursList (W)

: % This function extracts the neighbors’ list

3 % corresponding to the weight matrix W

+ % which is assumed to be the binary matrix

5 % indicating the presence or absence of an edge
6 % between a given pair of nodes. Diagonal

7 % elements of matrix W are also assumed to be zero.
s % NL is a cell array of vectors such that

s % the element NL{u} stores the indices of

0 % nodes that are reachable from node u.

n nodes_num = size(W,1);

» NL = cell(1,nodes_num);

23

NEIGHBOURSLIST.™M I

w for v = 1:1:nodes_num

1 NL{v} = find(W(v,:)==1);
s end

% end

24

CONNECTEDCOMPONENTS.M |

1+ function [C] = ConnectedComponents(NL)

» % This function extracts the connected components

3 % of a given undirected graph whose neighbors’ list
+ % NL is given as input. C is a cell array of

s % vectors so that each vector stores the indices of
e % each connected component.

s % Initialize the cell array C storing the connected
s % components of the graph.

o C = cell(1,0);

n % Get the number of graph nodes.

» nodes_num = length(NL);

25

CONNECTEDCOMPONENTS.M ||

3 % Mark all nodes as unvisited.

w visited = false * ones(1,nodes_num):

s % Initialize the number of connected components
w % found so far.

7 components_num = O0;

w for v = 1:1:nodes_num

19 % If v is not visited yet, it's the start of a
20 % newly discovered component containing v.

21

2 % Process the component containing v.

3 if(~visited(v))

2 components_num = components_num + 1;

» % Initialize component container.

26

CONNECTEDCOMPONENTS.M ||

% component = [];

2 % Initialize queue for implementing
28 % breadth—first search.

2 Q= [I];

30 % Start the traversal from node v.
5 Q = enqueue(Q,v);

» visited(v) = true;

5 while (~isempty(Q))

“ [Q,w] = dequeue(Q);

35 % w is a node in this component.
% component = [component,w];

B % Get all nodes neighboring w.
38 node_neighbours = NL{w};

27

CONNECTEDCOMPONENTS.M |V

39 % Traverse each unvisited node

40 % neighboring w.

p for node_index = 1:1:length(
node_neighbours)

2 node = node_neighbours(node_index);

@ if(~visited(node))

" % Another node within the

45 % current component has been

4 % found.

47 visited (node) = true;

w8 Q = enqueue(Q,node);

49 end

50 end

28

CONNECTEDCOMPONENTS.M V

51 end

52 C{components_num} = component;

53 end

s end

55 function [Q] = enqueue(Q,element)

56 % This is a sub—function implementing the
57 % enqueue operation within a queue

58 % which is realized as a vector of elements
5 Q = [Q,element];

60 end

6 function [Q,element] = dequeue(Q)

0 % This is a sub—function implementing the
6 % dequeue operation within a queue

29

CONNECTEDCOMPONENTS.M VI

6 % which is realized as a vector of elements.
- element = Q(1);

66 Q = Q(Z:end);

& end

& end

30

REPORTTOPNCONNECTEDCOMPONENTS.M |

1 function [TopNComponentsSizes, TopNComponentsindices
] = ReportTopNConnectedComponents(C,N, authors)

s % This function reports the top N

« % (measured by size) connected components

s % of the co—authorship network that are stored in
e % cell array C. The number of top N components and
7 % the initial authors’ list are passed as

s % input arguments to the function.

o % Get the number of connected components.
w components_num = length(C):

31

REPORTTOPNCONNECTEDCOMPONENTS.M I

2 % Get the size of each connected component.
s components_sizes = zeros(1,components_num) ;
w for k = 1:1:components_num

" components_sizes(k) = length(C{k}):

w end

v % Sort connected components sizes in descending
s % order.

» [SortedComponentsSizes, SortedComponentsindices] =
sort(components_sizes, "descend ') ;

» % Get the top N connected components sizes and

n % corresponding indices.

2 TopNComponentsSizes = SortedComponentsSizes (1:N);

32

REPORTTOPNCONNECTEDCOMPONENTS.M IlI

» TopNComponentsindices = SortedComponentsindices (1:N
);

24

» % Report Connected Components.

s % Cycle through the top N connected components:

» for n = 1:1:N

2 component_index = TopNComponentsindices(n):

» component_size = TopNComponentsSizes(n);

30 component = C{component_index};

7 fprintf('Component %d of size %d\n',
component_index,component_size) ;

2 % Cycle through the authors of each connected

ES % component:

58

REPORTTOPNCONNECTEDCOMPONENTS.M |V

3 for m = 1:1:component_size

3 author_index = component(m):

% author_firstname = authors(author_index,3);
2 author_lastname = authors(author_index,2):
38 fprintf('%d: %s %s\n’' ,m, cell2mat(

author_lastname) ,cell2mat(
author_firstname));

39 end

w end

A

2 end

34

COAUTHORSHIPNETWORKMANIPULATION.M

1 % Extract connected components of co—authorship
2 % network.

« % Initially set the corresponding
5 % NeighbourslList.

s NL = NeighboursList(Wo);

; C = ConnectedComponents(NL);

s % Report top 6 connected components of the

v % co—authorship network.

n No = 6;

» [TopNComponentsSizes, TopNComponentsindices] =
ReportTopNConnectedComponents(C,No, authors);

B85

FLOYD-WARSHALL: PROBLEM DEFINITION

Find the shortest path between every pair (v;, ;) of vertices on a
graph G = (V,E) where V={vi,...,vp}and EC V x V.

The graph may contain negative edges but not cycles with
cumulative weight negative.

Weight-Matrix Representation:

- W(ij)= 0, if i=]

- W(i,j)= oo, if there is no edge between i and j with i # j.
- W(i,j) = "actual weight” of the edge (i,j) with i # j.

36

FLOYD-WARSHALL: EXAMPLE GRAPH REPRESENTATION |

- Example Graph:

FLOYD-WARSHALL: EXAMPLE GRAPH REPRESENTATION ||

- Weight Matrix:

0 1 oo 1 5
9 0 3 2 ™
W=]lco oo 0 4 oo
oo oo 2 0 3
3 o0 o0 oo 0

38

FLOYD-WARSHALL: SMALLER PROBLEMS

How can be define the shortest distance dj between nodes v; and v;
in terms of “smaller” problems?

One way is to restrict the paths to include vertices exclusively from a
restricted subset V*.

Subset V* is initially empty (V’(*O) = ().

Finally, subset V* will contain all possible intermediate nodes

Vi =W

Let D®[i, j] to denote the weight of the shortest path from v; to v
using only the vertices from the set Vi = {v1, V2, ..,V } @s
intermediate vertices in the path.

- DO =W

- D(M = D (which is the goal matrix)
39

FLOYD-WARSHALL: RECURSIVE DEFINITION |

How do we compute D®) from D*=1)?

During the execution of the k-th step of the Floyd-Warshall
algorithm, matrix D!~ has been computed based on the subset of
intermediate nodes: V’(*k_” ={Vvy, V2, ..y Vo1 }-

Case 1: The shortest path from v; to v; is composed by utilizing nodes
from the set of intermediate vertices Vf,) such that v, ¢ V). Then,

DO, j] = DU [i,]

Case 2: The shortest path from v; to v; is composed by utilizing nodes
from the set of intermediate vertices Vf,) such that v, € V. Then,

DI, j] = DE[i, k] + DE(k,]

40

FLOYD-WARSHALL: GRAPHICAL REPRESENTATION

1: shortest path using intermediate vertices {vy, v, ..., Vg }

2: shortest path using intermediate vertices {v1,V, ..., Vg_1}

4

FLOYD-WARSHALL: RECURSIVE DEFINITION Il

Since,

Dk _ D*=1[i, j], if node vy, is not included;
DN, k] + D=k,], if node vy, is included

we may conclude that:

DO,] = min{D*[i, j], DUV, k] + D[k,]}

42

FLOYD-WARSHALL: PREDECESSOR MATRIX P

P is an index matrix that can be used for extracting the full sequence
of nodes that compose the shortest path between any given pair of

vertices.

1. Matrix P is initialized with zeros (P = 0,x,).

2. Each time the shortest path between vertices v; and v; is being
updated by including node v;, (i.e. when
DF=Di, k] + DNk, j] < D®i, j]) the (i,j)-th element of P is set to
k (i.e. P[i,j] = k)

3. Therefore, P[i,j] = k indicates that v;, is the last vertex that has to
be traversed along the shortest path connecting nodes v; and v;.

43

FLOYD-WARSHALL: PSEUDO CODE |

1 Floyd—Warshall(w) :
. D :W;

s P = zeros(n,n);

. for k = 1:1:n

5 for i = 1:1:n
6 for j = 1:1:
(i,
[= D[i,k] + D[k,jI;
i

g
D
[
[= k;

n
if (j1>D[i,k]+D[k, j]
8 D J]
PLi,j]
10 end
1 end
2 end

s end

44

FLOYD-WARSHALL: PSEUDO CODE ||

1 Path(index q,r):

: % Extract intermediate nodes within the shortest
s % path from vertex index (q) to vertex index (r).
« if(P[qg,r] !'= 0)

5 Path(q,Plq,r]);

6 println ("V"+P[q,rl);

7 Path(P[qg,r],r);

8 return;

s else

10 % No intermediate nodes
1 return;

» end

45

FLOYD-WARSHALL EXAMPLE |

Apply Floyd-Warshall Algorithm on the following graph.

0 4 5

0
DO=1]2 0 oo P= |0
oo -3 0 0

46

FLOYD-WARSHALL EXAMPLE I

- Step 1

- Determine all possible pairs for which vertex k = 1 can act as an
intermediate node: {(2,3),(3,2)}

- For the first pair (2,3), evaluate D("[2,3] as:
D[2,3] = min{D®[2,3],D[2,1] + D[1,3]} = min{oo,2 + 5} =7

- Assign P[2,3] =1

- For the second pair (3,2), evaluate D [3, 2] as:
DM[3,2] = min{D®[3,2],D)[3,1] + DO[1,2]} = min{-3, 00 + 4} = —3

- Thus, we have no change for the second pair (3,2)

0 4 5 0 0 0
DW=1|2 0o 7 P=10 0 1
© -3 0 0 0 0

47

FLOYD-WARSHALL EXAMPLE Il

- Step 2:

- Determine all possible pairs for which vertex k = 2 can act as an
intermediate node: {(1,3),(3,1)}

- For the first pair (1,3), evaluate D@[1,3] as:
D@[1,3] = min{DM[1,3],0V[1,2] + DM[2,3]} = min{5,4 +7} =5

- Thus, we have no change for the second pair (1, 3)

- For the second pair (3, 1), evaluate D®[3,1] as:
D@[3,1] = min{DM[3,1],DM[3,2] 4+ DV[2,1]} = min{oco, =3 + 2} = —1

- Assign P[3,1] =2

0 4 5 0 0 0
DA=12 o 7 P=10 0 1
1 -3 0 2 0 0

48

FLOYD-WARSHALL EXAMPLE IV

- Step 3:
- Determine all possible pairs for which vertex k = 3 can act as an
intermediate node: {(1,2),(2,1)}
- For the first pair (1,2), evaluate D®[1,2] as:
D®[1,2] = min{D®@[1,2],0®[1,3] 4+ D@[3,2]} = min{4,5 + (—3)} =2
- Assign P[1,2] =3
- For the second pair (2,1), evaluate D®[2, 1] as:
D®[2,1 = min{D®@[2,1],0®[2,3] + DP[3,2]} = min{2,7 + (-1)} = 2
- Thus, we have no change for the second pair (1,2)

0 2 5 030
D=2 0 7 P=1[0 0 1
-1 =3 0 2 00

49

RECURSIVE PATH RECONSTRUCTION EXAMPLE |

For the following linear graph:

O—0——C0——0——0

it is easy to deduce that:

01 2 3 4 0 0 2 3 4
170 1 2 3 0 0 0 3 4
DB =12 1 0 1 2 P=12 0 0 0 4
32 1 0 1 2 30 0 0
4 3 2 1 0 2 3 4 0 0

50

RECURSIVE PATH RECONSTRUCTION EXAMPLE I

Determining the intermediate nodes on the shortest path between
nodes 1 and 5 results in the following recursive calling sequence of
the Path() function:

Path(15)
Path(1P[15]=4) println("V"+4) Path(4,5)
Path(1,P[1,4]=3) println("V"+3) Path(34)

N

Path(1,P[1,3]=2) println("V"+2) Path(2,3)

51

FLOYD-WARSHALL: ANALYSIS |

It is easy to deduce that the Runtime Complexity of the
Floyd-Warshall algorithm is ©(n%)

Its Space Complexity is ©(n?)

However, it is not obvious why the Floyd-Warshall algorithm can be
implemented through the utilization of a single n x n distance
matrix D.

- DJ[i,j] depends only on the elements in the k-th column and row.

- Itis easy to show that the k-th row and the k-th column of the
distance matrix remain unchanged when D& is being computed.

52

FLOYD-WARSHALL: ANALYSIS Il

Before showing that the k-th row and column of the distance matrix
D remain unchanged, we will show that the elements along the main
diagonal remain 0.

- DM,] = min{D¢=D[j, j], DE=D], k] + DED[R, j]} &
DO, j] = min{0, D=V}, k] + D*-V[k,]} &
DM, j] =0

- This is true since we have assumed that there may exist negative
edges but not cycles with cumulative weight negative.

58

FLOYD-WARSHALL: ANALYSIS Il

The k-th column of D& is equal to the k-th column of D=1,

Intuitively true since a path from v; to v, will not become shorter by
adding v, to the allowed subset of intermediate nodes.

- Vi, DW[i, k] = min{D*=V[i, k], DE-D[i, k] + DE-D[k, K]} <
DO, k] = min{D"=D[i, k], D*-V[i, k] + 0} <
DMi, k] = D[, K]

54

FLOYD-WARSHALL: ANALYSIS IV

The k-th row of DX is equal to the k-th row of D=1,

- Vj, DMk, j] = min{D*~D[k, j], DO*~V[k, k] + D[k, j]} &
D[k, j] = min{DI*"V[k,j],0 + D[k,]}
DOk,] = D[k,]

55

FLOYDWARSHALL.M |

1 function [D,P] = FloydWarshall(w)

3 % This function computes shortest paths’ distances
+ % for each pair of nodes within the graph whose

s % initial weight (adjacency) matrix is stored in

6 % matrix W. Matrix W is assumed to be properly

7 % initialized . Element D[i,j] of matrix D stores

s % the shortest path distance from node | to node j.
s % Matrix P is the corresponding predecessor matrix
v % so that element P[i,j] stores the last vertex

n % traversed within the shortest path connecting

2 % nodes | and j.

56

FLOYDWARSHALL.M I

22

23

24

25

% Get the number of nodes pertaining to the graph.
nodes_num = size (W,1)

% Initialize internal matrix D.
D = W;
% Initialize internal matrix P.
P = zeros(nodes_num,nodes_num);

% Main Algorithm.
for k = 1:1:nodes_num

for i = 1:1:nodes_num

57

FLOYDWARSHALL.M Il

2 for j = 1:1:nodes_num

7 if(D(i,j) > D(i,k) + D(k,j))
2% D(i,j) = D(i,k) + D(k,j);
2 P(iLj) = k;

30 end

3 end

2 end

1 end

s end

58

EXTRACTSHORTESTPATHS.M |

1+ function [Dtop,Ptop] = ExtractShortestPaths (Wo, Ctop
)

s % This function extracts the pairwise shortest

+ % paths matrices and corresponding path

s % reconstruction indices matrices for each one of
e % the top No connected components of the

7 % co—authorship network.

s % Wo: is the initial binary connectivity matrix.
o % Ctop: iIs a cell array storing the indices of

n % the top No connected components stored in

59

EXTRACTSHORTESTPATHS.M ||

2 % decreasing order of magnitude.

w % Get the number of top connected components
s % stored in Ctop.
w Ntop = length(Ctop);

s % Initialize cell array containers for variables
v % Dtop and Ptop.

2 % Each element of Dtop stores the matrix of

n % pairwise shortest distances.

» % Each element of Ptop stores the

s % corresponding matrix of predecessor

» % indices that can be utilized to reconstruct the

60

EXTRACTSHORTESTPATHS.M 1|

» % sequence of nodes in each shortest path.

26

» % Loop through the various connected components
s % stored in Ctop.

» for component_index = 1:1:Ntop

30 % Get the current component.

7 component = Ctop{component_index};

2 % Get the number of nodes pertaining to the
3 % current component.

% Nc = length(component):

3 % Get the corresponding sub—weight matrix for
36 % the current component.

v Wc = Wo(component,component) ;

61

EXTRACTSHORTESTPATHS.M IV

41

42

43

44

45

46

47

48

49

% Set the diagonal indices for the current

% sub—weight matrix.

Idiag = [1:Nc+1:Nc*Nc];

% Get the indices of all zero elements of the
% current sub—weight matrix.

lzero = find (Wc==0);

% Get the indices of all zero elements in the
% current sub—weight matrix

% that do not reside on its main diagonal.
lzero_non_diagonal = setdiff(lzero,Idiag);

% Set all non—diagonal zero entries of the

% current sub—weight matrix to Inf.
Wc(lzero_non_diagonal) = Inf;

62

EXTRACTSHORTESTPATHS.M V

s % Run the Floyd—Warshall algorithm of the

5 % current connected component.

53 [Dc,Pc] = FloydwWarshall(wc);

54

55 % The following line of code should be

56 % uncommented if:

57 % the predecessor indices stored in Pc should
s % be synchronized with the original author

59 % indices in Wo excluding the zero values of Pc
60 % Pc(Pc~=0) = component(Pc(Pc~=0));

61

63

EXTRACTSHORTESTPATHS.M VI

6 % Set the correspoding entries of Dtop and Ptop
6 Dtop{component_index} = Dc;

o Ptop{component_index} = Pc;

s end

66

& end

64

RECONSTRUCTPATH.M |

1+ function [Path] = ReconstructPath(P,source_node,
target_node)

s % This function reconstructs the path between the
« % given pair of (source_node, target_node)

s % based on the predecessor matrix P.

s % The predecessor matrix is assumed to be

7 % associated with a connected component of an

s % underlying graph.

o % Initially , construct the intermediate path
n % between the source_node and the target_node.

65

RECONSTRUCTPATH.M I

22

23

24

% (Mind that an intermediate path may not exist in
% case the source and target nodes are
% immediately connected).

% Initialize the intermediate path.
intermediate_path = [];

% Get the last intermediate node between the source
% and target nodes.
intermediate_node = P(source_node, target_node):

% While the intermediate node index is not (0)
% retrieve the full set of intermediate

66

RECONSTRUCTPATH.M I

s % nodes in reverse order.
x While(intermediate_node~=0)

2 intermediate_path = [intermediate_path,
intermediate_node];
2 intermediate_node = P(source_node,

intermediate_node);
» end

n % If the intermediate path is not empty reverse it.
» if(~isempty(intermediate_path))
n intermediate_path = intermediate_path(end: —1:1)

» end

67

RECONSTRUCTPATH.M |V

35
s % Construct the full path.
» Path = [source_node,intermediate_path ,h target_node];

3 end

68

COAUTHORSHIPNETWORKMANIPULATION.M |

1 % lsolate the top No connected components.
. Ctop = C(TopNComponentsindices);

+ % Extract the pair—wise shortest paths and
s % predecessor indices for each connected component.
s [Dtop,Ptop] = ExtractShortestPaths(Wo, Ctop);

s % Example: Report the shortest distance and

s % corresponding path between nodes (1) ,(50) and
w % (1) ,(97) in component 1.

w component = Ctop{1};

» P = Ptop{1};

69

COAUTHORSHIPNETWORKMANIPULATION.M ||

3 D = DtOp{1},

w source_node = 1

» target_node = 50

% sortest_distance = D(source_node,target_node)

vw Path = ReconstructPath(P,source_node,target_node)
s source_node = 1

v target_node = 97

» sortest_distance = D(source_node,target_node)

» Path = ReconstructPath(P,source_node,target_node)

70

