
Chapter 6

Inner-Product Spaces

In making the definition of a vector space, we generalized the lin-
ear structure (addition and scalar multiplication) of R2 and R3. We
ignored other important features, such as the notions of length and
angle. These ideas are embedded in the concept we now investigate,
inner products.

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.

✽
✽ ✽

✽ ✽ ✽
97



98 Chapter 6. Inner-Product Spaces

Inner Products

To motivate the concept of inner product, let’s think of vectors in R2

and R3 as arrows with initial point at the origin. The length of a vec-
tor x in R2 or R3 is called the norm of x, denoted ‖x‖. Thus for
x = (x1, x2) ∈ R2, we have ‖x‖ = √x1

2 + x2
2.If we think of vectors

as points instead of

arrows, then ‖x‖
should be interpreted

as the distance from

the point x to the

origin.

x -axis1

x -axis2

(x , x )
21

x

The length of this vector x is
√
x1

2 + x2
2.

Similarly, for x = (x1, x2, x3) ∈ R3, we have ‖x‖ = √
x1

2 + x2
2 + x3

2.
Even though we cannot draw pictures in higher dimensions, the gener-
alization to Rn is obvious: we define the norm of x = (x1, . . . , xn) ∈ Rn

by

‖x‖ =
√
x1

2 + · · · + xn2.

The norm is not linear on Rn. To inject linearity into the discussion,
we introduce the dot product. For x,y ∈ Rn, the dot product of x
and y , denoted x ·y , is defined by

x ·y = x1y1 + · · · + xnyn,

where x = (x1, . . . , xn) andy = (y1, . . . , yn). Note that the dot product
of two vectors in Rn is a number, not a vector. Obviously x ·x = ‖x‖2

for all x ∈ Rn. In particular, x · x ≥ 0 for all x ∈ Rn, with equality if
and only if x = 0. Also, if y ∈ Rn is fixed, then clearly the map from Rn

to R that sends x ∈ Rn to x · y is linear. Furthermore, x · y = y · x
for all x,y ∈ Rn.

An inner product is a generalization of the dot product. At this
point you should be tempted to guess that an inner product is defined
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by abstracting the properties of the dot product discussed in the para-
graph above. For real vector spaces, that guess is correct. However,
so that we can make a definition that will be useful for both real and
complex vector spaces, we need to examine the complex case before
making the definition.

Recall that if λ = a + bi, where a,b ∈ R , then the absolute value
of λ is defined by

|λ| =
√
a2 + b2,

the complex conjugate of λ is defined by

λ̄ = a− bi,

and the equation
|λ|2 = λλ̄

connects these two concepts (see page 69 for the definitions and the
basic properties of the absolute value and complex conjugate). For
z = (z1, . . . , zn) ∈ Cn, we define the norm of z by

‖z‖ =
√
|z1|2 + · · · + |zn|2.

The absolute values are needed because we want ‖z‖ to be a nonnega-
tive number. Note that

‖z‖2 = z1z1 + · · · + znzn.

We want to think of ‖z‖2 as the inner product of z with itself, as we
did in Rn. The equation above thus suggests that the inner product of
w = (w1, . . . ,wn) ∈ Cn with z should equal

w1z1 + · · · +wnzn.

If the roles of the w and z were interchanged, the expression above
would be replaced with its complex conjugate. In other words, we
should expect that the inner product of w with z equals the complex
conjugate of the inner product of z with w. With that motivation, we
are now ready to define an inner product on V , which may be a real or
a complex vector space.

An inner product on V is a function that takes each ordered pair
(u,v) of elements of V to a number 〈u,v〉 ∈ F and has the following
properties:
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positivity
〈v,v〉 ≥ 0 for all v ∈ V ;If z is a complex

number, then the

statement z ≥ 0 means

that z is real and

nonnegative.

definiteness
〈v,v〉 = 0 if and only if v = 0;

additivity in first slot
〈u+ v,w〉 = 〈u,w〉 + 〈v,w〉 for all u,v,w ∈ V ;

homogeneity in first slot
〈av,w〉 = a〈v,w〉 for all a ∈ F and all v,w ∈ V ;

conjugate interchange
〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

Recall that every real number equals its complex conjugate. Thus
if we are dealing with a real vector space, then in the last condition
above we can dispense with the complex conjugate and simply state
that 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

An inner-product space is a vector space V along with an inner
product on V .

The most important example of an inner-product space is Fn. We
can define an inner product on Fn byIf we are dealing with

Rn rather than Cn, then

again the complex

conjugate can be

ignored.

6.1 〈(w1, . . . ,wn), (z1, . . . , zn)〉 = w1z1 + · · · +wnzn,

as you should verify. This inner product, which provided our motiva-
tion for the definition of an inner product, is called the Euclidean inner
product on Fn. When Fn is referred to as an inner-product space, you
should assume that the inner product is the Euclidean inner product
unless explicitly told otherwise.

There are other inner products on Fn in addition to the Euclidean
inner product. For example, if c1, . . . , cn are positive numbers, then we
can define an inner product on Fn by

〈(w1, . . . ,wn), (z1, . . . , zn)〉 = c1w1z1 + · · · + cnwnzn,

as you should verify. Of course, if all the c’s equal 1, then we get the
Euclidean inner product.

As another example of an inner-product space, consider the vector
space Pm(F) of all polynomials with coefficients in F and degree at
most m. We can define an inner product on Pm(F) by
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6.2 〈p,q〉 =
∫ 1

0
p(x)q(x)dx,

as you should verify. Once again, if F = R , then the complex conjugate
is not needed.

Let’s agree for the rest of this chapter that
V is a finite-dimensional inner-product space over F.

In the definition of an inner product, the conditions of additivity
and homogeneity in the first slot can be combined into a requirement
of linearity in the first slot. More precisely, for each fixed w ∈ V , the
function that takes v to 〈v,w〉 is a linear map from V to F. Because
every linear map takes 0 to 0, we must have

〈0,w〉 = 0

for every w ∈ V . Thus we also have

〈w,0〉 = 0

for every w ∈ V (by the conjugate interchange property).
In an inner-product space, we have additivity in the second slot as

well as the first slot. Proof:

〈u,v +w〉 = 〈v +w,u〉
= 〈v,u〉 + 〈w,u〉
= 〈v,u〉 + 〈w,u〉
= 〈u,v〉 + 〈u,w〉;

here u,v,w ∈ V .
In an inner-product space, we have conjugate homogeneity in the

second slot, meaning that 〈u,av〉 = ā〈u,v〉 for all scalars a ∈ F.
Proof:

〈u,av〉 = 〈av,u〉
= a〈v,u〉
= ā〈v,u〉
= ā〈u,v〉;

here a ∈ F and u,v ∈ V . Note that in a real vector space, conjugate
homogeneity is the same as homogeneity.
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Norms

For v ∈ V , we define the norm of v , denoted ‖v‖, by

‖v‖ =
√
〈v,v〉.

For example, if (z1, . . . , zn) ∈ Fn (with the Euclidean inner product),
then

‖(z1, . . . , zn)‖ =
√
|z1|2 + · · · + |zn|2.

As another example, if p ∈ Pm(F) (with inner product given by 6.2),
then

‖p‖ =
√∫ 1

0
|p(x)|2 dx.

Note that ‖v‖ = 0 if and only if v = 0 (because 〈v,v〉 = 0 if and only
if v = 0). Another easy property of the norm is that ‖av‖ = |a| ‖v‖
for all a ∈ F and all v ∈ V . Here’s the proof:

‖av‖2 = 〈av,av〉
= a〈v,av〉
= aā〈v,v〉
= |a|2‖v‖2;

taking square roots now gives the desired equality. This proof illus-
trates a general principle: working with norms squared is usually easier
than working directly with norms.

Two vectors u,v ∈ V are said to be orthogonal if 〈u,v〉 = 0. NoteSome mathematicians

use the term

perpendicular, which

means the same as

orthogonal.

that the order of the vectors does not matter because 〈u,v〉 = 0 if
and only if 〈v,u〉 = 0. Instead of saying that u and v are orthogonal,
sometimes we say that u is orthogonal to v . Clearly 0 is orthogonal
to every vector. Furthermore, 0 is the only vector that is orthogonal to
itself.

For the special case where V = R2, the next theorem is over 2,500The word orthogonal

comes from the Greek

word orthogonios,

which means

right-angled.

years old.

6.3 Pythagorean Theorem: If u, v are orthogonal vectors in V , then

6.4 ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
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Proof: Suppose that u,v are orthogonal vectors in V . Then The proof of the

Pythagorean theorem

shows that 6.4 holds if

and only if

〈u,v〉 + 〈v,u〉, which

equals 2 Re〈u,v〉, is 0.

Thus the converse of

the Pythagorean

theorem holds in real

inner-product spaces.

‖u+ v‖2 = 〈u+ v,u+ v〉
= ‖u‖2 + ‖v‖2 + 〈u,v〉 + 〈v,u〉
= ‖u‖2 + ‖v‖2,

as desired.

Suppose u,v ∈ V . We would like to write u as a scalar multiple of v
plus a vector w orthogonal to v , as suggested in the next picture.

0

u

v

λv

w

An orthogonal decomposition

To discover how to write u as a scalar multiple of v plus a vector or-
thogonal to v , let a ∈ F denote a scalar. Then

u = av + (u− av).
Thus we need to choose a so that v is orthogonal to (u−av). In other
words, we want

0 = 〈u− av,v〉 = 〈u,v〉 − a‖v‖2.

The equation above shows that we should choose a to be 〈u,v〉/‖v‖2

(assume that v 6= 0 to avoid division by 0). Making this choice of a, we
can write

6.5 u = 〈u,v〉‖v‖2
v +

(
u− 〈u,v〉‖v‖2

v
)
.

As you should verify, if v 6= 0 then the equation above writes u as a
scalar multiple of v plus a vector orthogonal to v .

The equation above will be used in the proof of the next theorem,
which gives one of the most important inequalities in mathematics.
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6.6 Cauchy-Schwarz Inequality: If u,v ∈ V , thenIn 1821 the French

mathematician

Augustin-Louis Cauchy

showed that this

inequality holds for the

inner product defined

by 6.1. In 1886 the

German mathematician

Herman Schwarz

showed that this

inequality holds for the

inner product defined

by 6.2.

6.7 |〈u,v〉| ≤ ‖u‖‖v‖.
This inequality is an equality if and only if one of u,v is a scalar mul-
tiple of the other.

Proof: Let u,v ∈ V . If v = 0, then both sides of 6.7 equal 0 and
the desired inequality holds. Thus we can assume that v 6= 0. Consider
the orthogonal decomposition

u = 〈u,v〉‖v‖2
v +w,

wherew is orthogonal to v (herew equals the second term on the right
side of 6.5). By the Pythagorean theorem,

‖u‖2 =
∥∥∥∥〈u,v〉‖v‖2

v
∥∥∥∥2

+ ‖w‖2

= |〈u,v〉|
2

‖v‖2
+ ‖w‖2

≥ |〈u,v〉|
2

‖v‖2
.6.8

Multiplying both sides of this inequality by ‖v‖2 and then taking square
roots gives the Cauchy-Schwarz inequality 6.7.

Looking at the proof of the Cauchy-Schwarz inequality, note that 6.7
is an equality if and only if 6.8 is an equality. Obviously this happens if
and only ifw = 0. Butw = 0 if and only if u is a multiple of v (see 6.5).
Thus the Cauchy-Schwarz inequality is an equality if and only if u is a
scalar multiple of v or v is a scalar multiple of u (or both; the phrasing
has been chosen to cover cases in which either u or v equals 0).

The next result is called the triangle inequality because of its geo-
metric interpretation that the length of any side of a triangle is less
than the sum of the lengths of the other two sides.

v

u

u + v

The triangle inequality
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6.9 Triangle Inequality: If u,v ∈ V , then The triangle inequality

can be used to show

that the shortest path

between two points is a

straight line segment.

6.10 ‖u+ v‖ ≤ ‖u‖ + ‖v‖.

This inequality is an equality if and only if one of u,v is a nonnegative
multiple of the other.

Proof: Let u,v ∈ V . Then

‖u+ v‖2 = 〈u+ v,u+ v〉
= 〈u,u〉 + 〈v,v〉 + 〈u,v〉 + 〈v,u〉
= 〈u,u〉 + 〈v,v〉 + 〈u,v〉 + 〈u,v〉
= ‖u‖2 + ‖v‖2 + 2 Re〈u,v〉
≤ ‖u‖2 + ‖v‖2 + 2|〈u,v〉|6.11

≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖6.12

= (‖u‖ + ‖v‖)2,

where 6.12 follows from the Cauchy-Schwarz inequality (6.6). Taking
square roots of both sides of the inequality above gives the triangle
inequality 6.10.

The proof above shows that the triangle inequality 6.10 is an equality
if and only if we have equality in 6.11 and 6.12. Thus we have equality
in the triangle inequality 6.10 if and only if

6.13 〈u,v〉 = ‖u‖‖v‖.

If one of u,v is a nonnegative multiple of the other, then 6.13 holds, as
you should verify. Conversely, suppose 6.13 holds. Then the condition
for equality in the Cauchy-Schwarz inequality (6.6) implies that one of
u,v must be a scalar multiple of the other. Clearly 6.13 forces the
scalar in question to be nonnegative, as desired.

The next result is called the parallelogram equality because of its
geometric interpretation: in any parallelogram, the sum of the squares
of the lengths of the diagonals equals the sum of the squares of the
lengths of the four sides.
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u + v

u

u −v

u

vv

The parallelogram equality

6.14 Parallelogram Equality: If u,v ∈ V , then

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Proof: Let u,v ∈ V . Then

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v,u+ v〉 + 〈u− v,u− v〉
= ‖u‖2 + ‖v‖2 + 〈u,v〉 + 〈v,u〉

+ ‖u‖2 + ‖v‖2 − 〈u,v〉 − 〈v,u〉
= 2(‖u‖2 + ‖v‖2),

as desired.

Orthonormal Bases

A list of vectors is called orthonormal if the vectors in it are pair-
wise orthogonal and each vector has norm 1. In other words, a list
(e1, . . . , em) of vectors in V is orthonormal if 〈ej, ek〉 equals 0 when
j 6= k and equals 1 when j = k (for j, k = 1, . . . ,m). For example, the
standard basis in Fn is orthonormal. Orthonormal list s are particularly
easy to work with, as illustrated by the next proposition.

6.15 Proposition: If (e1, . . . , em) is an orthonormal list of vectors
in V , then

‖a1e1 + · · · + amem‖2 = |a1|2 + · · · + |am|2

for all a1, . . . , am ∈ F.

Proof: Because each ej has norm 1, this follows easily from re-
peated applications of the Pythagorean theorem (6.3).

Now we have the following easy but important corollary.
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6.16 Corollary: Every orthonormal list of vectors is linearly inde-
pendent.

Proof: Suppose (e1, . . . , em) is an orthonormal list of vectors in V
and a1, . . . , am ∈ F are such that

a1e1 + · · · + amem = 0.

Then |a1|2 + · · · + |am|2 = 0 (by 6.15), which means that all the aj ’s
are 0, as desired.

An orthonormal basis of V is an orthonormal list of vectors in V
that is also a basis of V . For example, the standard basis is an ortho-
normal basis of Fn. Every orthonormal list of vectors in V with length
dimV is automatically an orthonormal basis of V (proof: by the pre-
vious corollary, any such list must be linearly independent; because it
has the right length, it must be a basis—see 2.17). To illustrate this
principle, consider the following list of four vectors in R4:(

(1
2 ,

1
2 ,

1
2 ,

1
2), (

1
2 ,

1
2 ,−1

2 ,−1
2), (

1
2 ,−1

2 ,−1
2 ,

1
2), (−1

2 ,
1
2 ,−1

2 ,
1
2)
)
.

The verification that this list is orthonormal is easy (do it!); because we
have an orthonormal list of length four in a four-dimensional vector
space, it must be an orthonormal basis.

In general, given a basis (e1, . . . , en) of V and a vector v ∈ V , we
know that there is some choice of scalars a1, . . . , am such that

v = a1e1 + · · · + anen,

but finding the aj ’s can be difficult. The next theorem shows, however,
that this is easy for an orthonormal basis.

6.17 Theorem: Suppose (e1, . . . , en) is an orthonormal basis of V . The importance of

orthonormal bases

stems mainly from this

theorem.

Then

6.18 v = 〈v, e1〉e1 + · · · + 〈v, en〉en
and

6.19 ‖v‖2 = |〈v, e1〉|2 + · · · + |〈v, en〉|2

for every v ∈ V .
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Proof: Let v ∈ V . Because (e1, . . . , en) is a basis of V , there exist
scalars a1, . . . , an such that

v = a1e1 + · · · + anen.

Take the inner product of both sides of this equation with ej , get-
ting 〈v, ej〉 = aj . Thus 6.18 holds. Clearly 6.19 follows from 6.18
and 6.15.

Now that we understand the usefulness of orthonormal bases, how
do we go about finding them? For example, does Pm(F), with inner
product given by integration on [0,1] (see 6.2), have an orthonormal
basis? As we will see, the next result will lead to answers to these ques-
tions. The algorithm used in the next proof is called the Gram-Schmidt
procedure. It gives a method for turning a linearly independent list intoThe Dutch

mathematician Jorgen

Gram (1850–1916) and

the German

mathematician Erhard

Schmidt (1876–1959)

popularized this

algorithm for

constructing

orthonormal lists.

an orthonormal list with the same span as the original list.

6.20 Gram-Schmidt: If (v1, . . . , vm) is a linearly independent list
of vectors in V , then there exists an orthonormal list (e1, . . . , em) of
vectors in V such that

6.21 span(v1, . . . , vj) = span(e1, . . . , ej)

for j = 1, . . . ,m.

Proof: Suppose (v1, . . . , vm) is a linearly independent list of vec-
tors in V . To construct the e’s, start by setting e1 = v1/‖v1‖. This
satisfies 6.21 for j = 1. We will choose e2, . . . , em inductively, as fol-
lows. Suppose j > 1 and an orthornormal list (e1, . . . , ej−1) has been
chosen so that

6.22 span(v1, . . . , vj−1) = span(e1, . . . , ej−1).

Let

6.23 ej = vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖ .

Note that vj ∉ span(v1, . . . , vj−1) (because (v1, . . . , vm) is linearly inde-
pendent) and thus vj ∉ span(e1, . . . , ej−1). Hence we are not dividing
by 0 in the equation above, and so ej is well defined. Dividing a vector
by its norm produces a new vector with norm 1; thus ‖ej‖ = 1.
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Let 1 ≤ k < j. Then

〈ej, ek〉 =
〈
vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖ , ek
〉

= 〈vj, ek〉 − 〈vj, ek〉
‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖

= 0.

Thus (e1, . . . , ej) is an orthonormal list.
From 6.23, we see that vj ∈ span(e1, . . . , ej). Combining this infor-

mation with 6.22 shows that

span(v1, . . . , vj) ⊂ span(e1, . . . , ej).

Both lists above are linearly independent (the v ’s by hypothesis, the e’s
by orthonormality and 6.16). Thus both subspaces above have dimen-
sion j, and hence they must be equal, completing the proof.

Now we can settle the question of the existence of orthonormal
bases.

6.24 Corollary: Every finite-dimensional inner-product space has an Until this corollary,

nothing we had done

with inner-product

spaces required our

standing assumption

that V is finite

dimensional.

orthonormal basis.

Proof: Choose a basis of V . Apply the Gram-Schmidt procedure
(6.20) to it, producing an orthonormal list. This orthonormal list is
linearly independent (by 6.16) and its span equals V . Thus it is an
orthonormal basis of V .

As we will soon see, sometimes we need to know not only that an
orthonormal basis exists, but also that any orthonormal list can be
extended to an orthonormal basis. In the next corollary, the Gram-
Schmidt procedure shows that such an extension is always possible.

6.25 Corollary: Every orthonormal list of vectors in V can be ex-
tended to an orthonormal basis of V .

Proof: Suppose (e1, . . . , em) is an orthonormal list of vectors in V .
Then (e1, . . . , em) is linearly independent (by 6.16), and hence it can be
extended to a basis (e1, . . . , em,v1, . . . , vn) of V (see 2.12). Now apply
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the Gram-Schmidt procedure (6.20) to (e1, . . . , em,v1, . . . , vn), produc-
ing an orthonormal list

6.26 (e1, . . . , em, f1, . . . , fn);

here the Gram-Schmidt procedure leaves the firstm vectors unchanged
because they are already orthonormal. Clearly 6.26 is an orthonormal
basis of V because it is linearly independent (by 6.16) and its span
equals V . Hence we have our extension of (e1, . . . , em) to an orthonor-
mal basis of V .

Recall that a matrix is called upper triangular if all entries below the
diagonal equal 0. In other words, an upper-triangular matrix looks like
this: 

∗ ∗
. . .

0 ∗

 .
In the last chapter we showed that if V is a complex vector space, then
for each operator on V there is a basis with respect to which the matrix
of the operator is upper triangular (see 5.13). Now that we are dealing
with inner-product spaces, we would like to know when there exists an
orthonormal basis with respect to which we have an upper-triangular
matrix. The next corollary shows that the existence of any basis with
respect to which T has an upper-triangular matrix implies the existence
of an orthonormal basis with this property. This result is true on both
real and complex vector spaces (though on a real vector space, the hy-
pothesis holds only for some operators).

6.27 Corollary: Suppose T ∈ L(V). If T has an upper-triangular
matrix with respect to some basis of V , then T has an upper-triangular
matrix with respect to some orthonormal basis of V .

Proof: Suppose T has an upper-triangular matrix with respect to
some basis (v1, . . . , vn) of V . Thus span(v1, . . . , vj) is invariant under
T for each j = 1, . . . , n (see 5.12).

Apply the Gram-Schmidt procedure to (v1, . . . , vn), producing an
orthonormal basis (e1, . . . , en) of V . Because

span(e1, . . . , ej) = span(v1, . . . , vj)
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for each j (see 6.21), we conclude that span(e1, . . . , ej) is invariant un-
der T for each j = 1, . . . , n. Thus, by 5.12, T has an upper-triangular
matrix with respect to the orthonormal basis (e1, . . . , en).

The next result is an important application of the corollary above.

6.28 Corollary: Suppose V is a complex vector space and T ∈ L(V). This result is

sometimes called

Schur’s theorem. The

German mathematician

Issai Schur published

the first proof of this

result in 1909.

Then T has an upper-triangular matrix with respect to some orthonor-
mal basis of V .

Proof: This follows immediately from 5.13 and 6.27.

Orthogonal Projections and
Minimization Problems

If U is a subset of V , then the orthogonal complement of U , de-
noted U⊥, is the set of all vectors in V that are orthogonal to every
vector in U :

U⊥ = {v ∈ V : 〈v,u〉 = 0 for all u ∈ U}.

You should verify that U⊥ is always a subspace of V , that V⊥ = {0},
and that {0}⊥ = V . Also note that if U1 ⊂ U2, then U⊥1 ⊃ U⊥2 .

Recall that if U1, U2 are subspaces of V , then V is the direct sum of
U1 and U2 (written V = U1 ⊕U2) if each element of V can be written in
exactly one way as a vector in U1 plus a vector in U2. The next theorem
shows that every subspace of an inner-product space leads to a natural
direct sum decomposition of the whole space.

6.29 Theorem: If U is a subspace of V , then

V = U ⊕U⊥.

Proof: Suppose that U is a subspace of V . First we will show that

6.30 V = U +U⊥.

To do this, suppose v ∈ V . Let (e1, . . . , em) be an orthonormal basis
of U . Obviously
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6.31
v = 〈v, e1〉e1 + · · · + 〈v, em〉em︸ ︷︷ ︸

u

+v − 〈v, e1〉e1 − · · · − 〈v, em〉em︸ ︷︷ ︸
w

.

Clearly u ∈ U . Because (e1, . . . , em) is an orthonormal list, for each j
we have

〈w,ej〉 = 〈v, ej〉 − 〈v, ej〉
= 0.

Thus w is orthogonal to every vector in span(e1, . . . , em). In other
words, w ∈ U⊥. Thus we have written v = u + w, where u ∈ U
and w ∈ U⊥, completing the proof of 6.30.

If v ∈ U ∩ U⊥, then v (which is in U ) is orthogonal to every vector
in U (including v itself), which implies that 〈v,v〉 = 0, which implies
that v = 0. Thus

6.32 U ∩U⊥ = {0}.

Now 6.30 and 6.32 imply that V = U ⊕U⊥ (see 1.9).

The next corollary is an important consequence of the last theorem.

6.33 Corollary: If U is a subspace of V , then

U = (U⊥)⊥.

Proof: Suppose that U is a subspace of V . First we will show that

6.34 U ⊂ (U⊥)⊥.

To do this, suppose that u ∈ U . Then 〈u,v〉 = 0 for every v ∈ U⊥ (by
the definition of U⊥). Because u is orthogonal to every vector in U⊥,
we have u ∈ (U⊥)⊥, completing the proof of 6.34.

To prove the inclusion in the other direction, suppose v ∈ (U⊥)⊥.
By 6.29, we can write v = u +w, where u ∈ U and w ∈ U⊥. We have
v − u = w ∈ U⊥. Because v ∈ (U⊥)⊥ and u ∈ (U⊥)⊥ (from 6.34), we
have v−u ∈ (U⊥)⊥. Thus v−u ∈ U⊥∩(U⊥)⊥, which implies that v−u
is orthogonal to itself, which implies that v−u = 0, which implies that
v = u, which implies that v ∈ U . Thus (U⊥)⊥ ⊂ U , which along with
6.34 completes the proof.
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Suppose U is a subspace of V . The decomposition V = U⊕U⊥ given
by 6.29 means that each vector v ∈ V can be written uniquely in the
form

v = u+w,
where u ∈ U and w ∈ U⊥. We use this decomposition to define an op-
erator on V , denoted PU , called the orthogonal projection of V onto U .
Forv ∈ V , we define PUv to be the vectoru in the decomposition above.
In the notation introduced in the last chapter, we have PU = PU,U⊥ . You
should verify that PU ∈ L(V) and that it has the following proper-
ties:

• rangePU = U ;

• nullPU = U⊥;

• v − PUv ∈ U⊥ for every v ∈ V ;

• PU2 = PU ;

• ‖PUv‖ ≤ ‖v‖ for every v ∈ V .

Furthermore, from the decomposition 6.31 used in the proof of 6.29
we see that if (e1, . . . , em) is an orthonormal basis of U , then

6.35 PUv = 〈v, e1〉e1 + · · · + 〈v, em〉em
for every v ∈ V .

The following problem often arises: given a subspace U of V and
a point v ∈ V , find a point u ∈ U such that ‖v − u‖ is as small as
possible. The next proposition shows that this minimization problem
is solved by taking u = PUv .

6.36 Proposition: Suppose U is a subspace of V and v ∈ V . Then The remarkable

simplicity of the

solution to this

minimization problem

has led to many

applications of

inner-product spaces

outside of pure

mathematics.

‖v − PUv‖ ≤ ‖v −u‖
for every u ∈ U . Furthermore, if u ∈ U and the inequality above is an
equality, then u = PUv .

Proof: Suppose u ∈ U . Then

‖v − PUv‖2 ≤ ‖v − PUv‖2 + ‖PUv −u‖26.37

= ‖(v − PUv)+ (PUv −u)‖26.38

= ‖v −u‖2,
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where 6.38 comes from the Pythagorean theorem (6.3), which applies
because v−PUv ∈ U⊥ and PUv−u ∈ U . Taking square roots gives the
desired inequality.

Our inequality is an equality if and only if 6.37 is an equality, which
happens if and only if ‖PUv − u‖ = 0, which happens if and only if
u = PUv .

0

v

U

PUv

PUv is the closest point in U to v .

The last proposition is often combined with the formula 6.35 to
compute explicit solutions to minimization problems. As an illustra-
tion of this procedure, consider the problem of finding a polynomial u
with real coefficients and degree at most 5 that on the interval [−π,π]
approximates sinx as well as possible, in the sense that∫ π

−π
| sinx −u(x)|2 dx

is as small as possible. To solve this problem, let C[−π,π] denote the
real vector space of continuous real-valued functions on [−π,π] with
inner product

6.39 〈f , g〉 =
∫ π
−π
f(x)g(x)dx.

Let v ∈ C[−π,π] be the function defined by v(x) = sinx. Let U
denote the subspace of C[−π,π] consisting of the polynomials with
real coefficients and degree at most 5. Our problem can now be re-
formulated as follows: find u ∈ U such that ‖v − u‖ is as small as
possible.

To compute the solution to our approximation problem, first apply
the Gram-Schmidt procedure (using the inner product given by 6.39)



Orthogonal Projections and Minimization Problems 115

to the basis (1, x, x2, x3, x4, x5) of U , producing an orthonormal basis
(e1, e2, e3, e4, e5, e6) of U . Then, again using the inner product given A machine that can

perform integrations is

useful here.

by 6.39, compute PUv using 6.35 (withm = 6). Doing this computation
shows that PUv is the function

6.40 0.987862x − 0.155271x3 + 0.00564312x5,

where the π ’s that appear in the exact answer have been replaced with
a good decimal approximation.

By 6.36, the polynomial above should be about as good an approxi-
mation to sinx on [−π,π] as is possible using polynomials of degree
at most 5. To see how good this approximation is, the picture below
shows the graphs of both sinx and our approximation 6.40 over the
interval [−π,π].

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Graphs of sinx and its approximation 6.40

Our approximation 6.40 is so accurate that the two graphs are almost
identical—our eyes may see only one graph!

Another well-known approximation to sinx by a polynomial of de-
gree 5 is given by the Taylor polynomial

6.41 x − x
3

3!
+ x

5

5!
.

To see how good this approximation is, the next picture shows the
graphs of both sinx and the Taylor polynomial 6.41 over the interval
[−π,π].
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-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Graphs of sinx and the Taylor polynomial 6.41

The Taylor polynomial is an excellent approximation to sinx for x
near 0. But the picture above shows that for |x| > 2, the Taylor poly-
nomial is not so accurate, especially compared to 6.40. For example,
taking x = 3, our approximation 6.40 estimates sin 3 with an error of
about 0.001, but the Taylor series 6.41 estimates sin 3 with an error of
about 0.4. Thus at x = 3, the error in the Taylor series is hundreds of
times larger than the error given by 6.40. Linear algebra has helped us
discover an approximation to sinx that improves upon what we learned
in calculus!

We derived our approximation 6.40 by using 6.35 and 6.36. Our
standing assumption that V is finite dimensional fails when V equals
C[−π,π], so we need to justify our use of those results in this case.
First, reread the proof of 6.29, which states that if U is a subspace of V ,
then

6.42 V = U ⊕U⊥.
Note that the proof uses the finite dimensionality of U (to get a basisIf we allow V to be

infinite dimensional

and allow U to be an

infinite-dimensional

subspace of V , then

6.42 is not necessarily

true without additional

hypotheses.

of U ) but that it works fine regardless of whether or not V is finite
dimensional. Second, note that the definition and properties of PU (in-
cluding 6.35) require only 6.29 and thus require only that U (but not
necessarily V ) be finite dimensional. Finally, note that the proof of 6.36
does not require the finite dimensionality of V . Conclusion: for v ∈ V
and U a subspace of V , the procedure discussed above for finding the
vectoru ∈ U that makes ‖v−u‖ as small as possible works ifU is finite
dimensional, regardless of whether or not V is finite dimensional. In
the example above U was indeed finite dimensional (we had dimU = 6),
so everything works as expected.
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Linear Functionals and Adjoints

A linear functional on V is a linear map from V to the scalars F.
For example, the function ϕ : F3 → F defined by

6.43 ϕ(z1, z2, z3) = 2z1 − 5z2 + z3

is a linear functional on F3. As another example, consider the inner-
product space P6(R) (here the inner product is multiplication followed
by integration on [0,1]; see 6.2). The function ϕ : P6(R) → R defined
by

6.44 ϕ(p) =
∫ 1

0
p(x)(cosx)dx

is a linear functional on P6(R).
If v ∈ V , then the map that sends u to 〈u,v〉 is a linear functional

on V . The next result shows that every linear functional on V is of this
form. To illustrate this theorem, note that for the linear functional ϕ
defined by 6.43, we can take v = (2,−5,1) ∈ F3. The linear functional
ϕ defined by 6.44 better illustrates the power of the theorem below be-
cause for this linear functional, there is no obvious candidate for v (the
function cosx is not eligible because it is not an element of P6(R)).

6.45 Theorem: Suppose ϕ is a linear functional on V . Then there is
a unique vector v ∈ V such that

ϕ(u) = 〈u,v〉
for every u ∈ V .

Proof: First we show that there exists a vector v ∈ V such that
ϕ(u) = 〈u,v〉 for every u ∈ V . Let (e1, . . . , en) be an orthonormal
basis of V . Then

ϕ(u) =ϕ(〈u, e1〉e1 + · · · + 〈u, en〉en)
= 〈u, e1〉ϕ(e1)+ · · · + 〈u, en〉ϕ(en)
= 〈u,ϕ(e1)e1 + · · · +ϕ(en)en〉

for every u ∈ V , where the first equality comes from 6.17. Thus setting
v = ϕ(e1)e1 + · · · +ϕ(en)en, we have ϕ(u) = 〈u,v〉 for every u ∈ V ,
as desired.
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Now we prove that only one vector v ∈ V has the desired behavior.
Suppose v1, v2 ∈ V are such that

ϕ(u) = 〈u,v1〉 = 〈u,v2〉

for every u ∈ V . Then

0 = 〈u,v1〉 − 〈u,v2〉 = 〈u,v1 − v2〉

for every u ∈ V . Taking u = v1 − v2 shows that v1 − v2 = 0. In other
words, v1 = v2, completing the proof of the uniqueness part of the
theorem.

In addition to V , we need another finite-dimensional inner-product
space.

Let’s agree that for the rest of this chapter
W is a finite-dimensional, nonzero, inner-product space over F.

Let T ∈ L(V ,W). The adjoint of T , denoted T∗, is the function fromThe word adjoint has

another meaning in

linear algebra. We will

not need the second

meaning, related to

inverses, in this book.

Just in case you

encountered the

second meaning for

adjoint elsewhere, be

warned that the two

meanings for adjoint

are unrelated to one

another.

W to V defined as follows. Fix w ∈ W . Consider the linear functional
on V that maps v ∈ V to 〈Tv,w〉. Let T∗w be the unique vector in V
such that this linear functional is given by taking inner products with
T∗w (6.45 guarantees the existence and uniqueness of a vector in V
with this property). In other words, T∗w is the unique vector in V
such that

〈Tv,w〉 = 〈v,T∗w〉
for all v ∈ V .

Let’s work out an example of how the adjoint is computed. Define
T : R3 → R2 by

T(x1, x2, x3) = (x2 + 3x3,2x1).

Thus T∗ will be a function from R2 to R3. To compute T∗, fix a point
(y1, y2) ∈ R2. Then

〈(x1, x2, x3), T∗(y1, y2)〉 = 〈T(x1, x2, x3), (y1, y2)〉
= 〈(x2 + 3x3,2x1), (y1, y2)〉
= x2y1 + 3x3y1 + 2x1y2

= 〈(x1, x2, x3), (2y2, y1,3y1)〉

for all (x1, x2, x3) ∈ R3. This shows that
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T∗(y1, y2) = (2y2, y1,3y1).

Note that in the example above, T∗ turned out to be not just a func- Adjoints play a crucial

role in the important

results in the next

chapter.

tion from R2 to R3, but a linear map. That is true in general. Specif-
ically, if T ∈ L(V ,W), then T∗ ∈ L(W,V). To prove this, suppose
T ∈ L(V ,W). Let’s begin by checking additivity. Fix w1,w2 ∈ W .
Then

〈Tv,w1 +w2〉 = 〈Tv,w1〉 + 〈Tv,w2〉
= 〈v,T∗w1〉 + 〈v,T∗w2〉
= 〈v,T∗w1 + T∗w2〉,

which shows that T∗w1+T∗w2 plays the role required of T∗(w1+w2).
Because only one vector can behave that way, we must have

T∗w1 + T∗w2 = T∗(w1 +w2).

Now let’s check the homogeneity of T∗. If a ∈ F, then

〈Tv,aw〉 = ā〈Tv,w〉
= ā〈v,T∗w〉
= 〈v,aT∗w〉,

which shows that aT∗w plays the role required of T∗(aw). Because
only one vector can behave that way, we must have

aT∗w = T∗(aw).

Thus T∗ is a linear map, as claimed.
You should verify that the function T , T∗ has the following prop-

erties:

additivity
(S + T)∗ = S∗ + T∗ for all S, T ∈ L(V ,W);

conjugate homogeneity
(aT)∗ = āT∗ for all a ∈ F and T ∈ L(V ,W);

adjoint of adjoint
(T∗)∗ = T for all T ∈ L(V ,W);

identity
I∗ = I, where I is the identity operator on V ;
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products
(ST)∗ = T∗S∗ for all T ∈ L(V ,W) and S ∈ L(W,U) (here U is an
inner-product space over F).

The next result shows the relationship between the null space and
the range of a linear map and its adjoint. The symbol⇐⇒means “if and
only if”; this symbol could also be read to mean “is equivalent to”.

6.46 Proposition: Suppose T ∈ L(V ,W). Then

(a) nullT∗ = (rangeT)⊥;

(b) rangeT∗ = (nullT)⊥;

(c) nullT = (rangeT∗)⊥;

(d) rangeT = (nullT∗)⊥.

Proof: Let’s begin by proving (a). Let w ∈ W . Then

w ∈ nullT∗ ⇐⇒ T∗w = 0

⇐⇒ 〈v,T∗w〉 = 0 for all v ∈ V
⇐⇒ 〈Tv,w〉 = 0 for all v ∈ V
⇐⇒ w ∈ (rangeT)⊥.

Thus nullT∗ = (rangeT)⊥, proving (a).
If we take the orthogonal complement of both sides of (a), we get (d),

where we have used 6.33. Finally, replacing T with T∗ in (a) and (d) gives
(c) and (b).

The conjugate transpose of anm-by-nmatrix is the n-by-mmatrixIf F = R , then the

conjugate transpose of

a matrix is the same as

its transpose, which is

the matrix obtained by

interchanging the rows

and columns.

obtained by interchanging the rows and columns and then taking the
complex conjugate of each entry. For example, the conjugate transpose
of [

2 3+ 4i 7
6 5 8i

]
is the matrix  2 6

3− 4i 5
7 −8i

 .
The next proposition shows how to compute the matrix of T∗ from

the matrix of T . Caution: the proposition below only applies when



Linear Functionals and Adjoints 121

we are dealing with orthonormal bases—with respect to nonorthonor-
mal bases, the matrix of T∗ does not necessarily equal the conjugate
transpose of the matrix of T .

6.47 Proposition: Suppose T ∈ L(V ,W). If (e1, . . . , en) is an or- The adjoint of a linear

map does not depend

upon a choice of basis.

This explains why we

will emphasize adjoints

of linear maps instead

of conjugate

transposes of matrices.

thonormal basis of V and (f1, . . . , fm) is an orthonormal basis of W ,
then

M(
T∗, (f1, . . . , fm), (e1, . . . , en)

)
is the conjugate transpose of

M(
T , (e1, . . . , en), (f1, . . . , fm)

)
.

Proof: Suppose that (e1, . . . , en) is an orthonormal basis of V and
(f1, . . . , fm) is an orthonormal basis ofW . We writeM(T) instead of the
longer expressionM(

T , (e1, . . . , en), (f1, . . . , fm)
)
; we also writeM(T∗)

instead ofM(
T∗, (f1, . . . , fm), (e1, . . . , en)

)
.

Recall that we obtain the kth column ofM(T) by writing Tek as a lin-
ear combination of the fj ’s; the scalars used in this linear combination
then become the kth column ofM(T). Because (f1, . . . , fm) is an ortho-
normal basis of W , we know how to write Tek as a linear combination
of the fj ’s (see 6.17):

Tek = 〈Tek, f1〉f1 + · · · + 〈Tek, fm〉fm.

Thus the entry in row j, column k, of M(T) is 〈Tek, fj〉. Replacing T
with T∗ and interchanging the roles played by the e’s and f ’s, we see
that the entry in row j, column k, ofM(T∗) is 〈T∗fk, ej〉, which equals
〈fk, Tej〉, which equals 〈Tej, fk〉, which equals the complex conjugate
of the entry in row k, column j, ofM(T). In other words,M(T∗) equals
the conjugate transpose ofM(T).
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Exercises

1. Prove that if x,y are nonzero vectors in R2, then

〈x,y〉 = ‖x‖‖y‖ cosθ,

where θ is the angle between x and y (thinking of x and y as
arrows with initial point at the origin). Hint: draw the triangle
formed by x, y , and x −y ; then use the law of cosines.

2. Suppose u,v ∈ V . Prove that 〈u,v〉 = 0 if and only if

‖u‖ ≤ ‖u+ av‖
for all a ∈ F.

3. Prove that ( n∑
j=1

ajbj
)2 ≤

( n∑
j=1

jaj2
)( n∑
j=1

bj2

j

)
for all real numbers a1, . . . , an and b1, . . . , bn.

4. Suppose u,v ∈ V are such that

‖u‖ = 3, ‖u+ v‖ = 4, ‖u− v‖ = 6.

What number must ‖v‖ equal?

5. Prove or disprove: there is an inner product on R2 such that the
associated norm is given by

‖(x1, x2)‖ = |x1| + |x2|
for all (x1, x2) ∈ R2.

6. Prove that if V is a real inner-product space, then

〈u,v〉 = ‖u+ v‖
2 − ‖u− v‖2

4

for all u,v ∈ V .

7. Prove that if V is a complex inner-product space, then

〈u,v〉 = ‖u+ v‖
2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

4

for all u,v ∈ V .
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8. A norm on a vector space U is a function ‖ ‖ : U → [0,∞) such
that ‖u‖ = 0 if and only if u = 0, ‖αu‖ = |α|‖u‖ for all α ∈ F
and all u ∈ U , and ‖u+ v‖ ≤ ‖u‖ + ‖v‖ for all u,v ∈ U . Prove
that a norm satisfying the parallelogram equality comes from
an inner product (in other words, show that if ‖ ‖ is a norm
on U satisfying the parallelogram equality, then there is an inner
product 〈 , 〉 on U such that ‖u‖ = 〈u,u〉1/2 for all u ∈ U ).

9. Suppose n is a positive integer. Prove that This orthonormal list is

often used for

modeling periodic

phenomena such as

tides.

( 1√
2π
,
sinx√
π
,
sin 2x√
π
, . . . ,

sinnx√
π
,
cosx√
π
,
cos 2x√
π
, . . . ,

cosnx√
π

)
is an orthonormal list of vectors in C[−π,π], the vector space of
continuous real-valued functions on [−π,π] with inner product

〈f , g〉 =
∫ π
−π
f(x)g(x)dx.

10. On P2(R), consider the inner product given by

〈p,q〉 =
∫ 1

0
p(x)q(x)dx.

Apply the Gram-Schmidt procedure to the basis (1, x, x2) to pro-
duce an orthonormal basis of P2(R).

11. What happens if the Gram-Schmidt procedure is applied to a list
of vectors that is not linearly independent?

12. Suppose V is a real inner-product space and (v1, . . . , vm) is a
linearly independent list of vectors in V . Prove that there exist
exactly 2m orthonormal lists (e1, . . . , em) of vectors in V such
that

span(v1, . . . , vj) = span(e1, . . . , ej)

for all j ∈ {1, . . . ,m}.
13. Suppose (e1, . . . , em) is an orthonormal list of vectors in V . Let

v ∈ V . Prove that

‖v‖2 = |〈v, e1〉|2 + · · · + |〈v, em〉|2

if and only if v ∈ span(e1, . . . , em).
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14. Find an orthonormal basis of P2(R) (with inner product as in
Exercise 10) such that the differentiation operator (the operator
that takes p to p′) on P2(R) has an upper-triangular matrix with
respect to this basis.

15. Suppose U is a subspace of V . Prove that

dimU⊥ = dimV − dimU.

16. Suppose U is a subspace of V . Prove that U⊥ = {0} if and only if
U = V .

17. Prove that if P ∈ L(V) is such that P2 = P and every vector
in nullP is orthogonal to every vector in rangeP , then P is an
orthogonal projection.

18. Prove that if P ∈ L(V) is such that P2 = P and

‖Pv‖ ≤ ‖v‖
for every v ∈ V , then P is an orthogonal projection.

19. Suppose T ∈ L(V) and U is a subspace of V . Prove that U is
invariant under T if and only if PUTPU = TPU .

20. Suppose T ∈ L(V) and U is a subspace of V . Prove that U and
U⊥ are both invariant under T if and only if PUT = TPU .

21. In R4, let
U = span

(
(1,1,0,0), (1,1,1,2)

)
.

Find u ∈ U such that ‖u− (1,2,3,4)‖ is as small as possible.

22. Find p ∈ P3(R) such that p(0) = 0, p′(0) = 0, and∫ 1

0
|2+ 3x − p(x)|2 dx

is as small as possible.

23. Find p ∈ P5(R) that makes∫ π
−π
| sinx − p(x)|2 dx

as small as possible. (The polynomial 6.40 is an excellent approx-
imation to the answer to this exercise, but here you are asked to
find the exact solution, which involves powers of π . A computer
that can perform symbolic integration will be useful.)
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24. Find a polynomial q ∈ P2(R) such that

p(
1
2
) =

∫ 1

0
p(x)q(x)dx

for every p ∈ P2(R).

25. Find a polynomial q ∈ P2(R) such that∫ 1

0
p(x)(cosπx)dx =

∫ 1

0
p(x)q(x)dx

for every p ∈ P2(R).

26. Fix a vector v ∈ V and define T ∈ L(V ,F) by Tu = 〈u,v〉. For
a ∈ F, find a formula for T∗a.

27. Suppose n is a positive integer. Define T ∈ L(Fn) by

T(z1, . . . , zn) = (0, z1, . . . , zn−1).

Find a formula for T∗(z1, . . . , zn).

28. Suppose T ∈ L(V) and λ ∈ F. Prove that λ is an eigenvalue of T
if and only if λ̄ is an eigenvalue of T∗.

29. Suppose T ∈ L(V) and U is a subspace of V . Prove that U is
invariant under T if and only if U⊥ is invariant under T∗.

30. Suppose T ∈ L(V ,W). Prove that

(a) T is injective if and only if T∗ is surjective;

(b) T is surjective if and only if T∗ is injective.

31. Prove that

dim nullT∗ = dim nullT + dimW − dimV

and
dim rangeT∗ = dim rangeT

for every T ∈ L(V ,W).
32. Suppose A is an m-by-n matrix of real numbers. Prove that the

dimension of the span of the columns of A (in Rm) equals the
dimension of the span of the rows of A (in Rn).


