
OO Programming

Modifiers (C#)

(msdn.microsoft.com)

Modifier Purpose

Access Modifiers

 public

 private

 internal

 protected

Specifies the declared accessibility of types and type

members.

abstract Indicates that a class is intended only to be a base class

of other classes.

async Indicates that the modified method, lambda expression,

or anonymous method is asynchronous.

const Specifies that the value of the field or the local variable

cannot be modified.

event Declares an event.

extern Indicates that the method is implemented externally.

new Explicitly hides a member inherited from a base class.

override Provides a new implementation of a virtual member

inherited from a base class.

partial Defines partial classes, structs and methods throughout

the same assembly.

readonly Declares a field that can only be assigned values as part

of the declaration or in a constructor in the same class.

sealed Specifies that a class cannot be inherited.

static Declares a member that belongs to the type itself

instead of to a specific object.

https://msdn.microsoft.com/en-us/library/wxh6fsc7.aspx
https://msdn.microsoft.com/en-us/library/yzh058ae.aspx
https://msdn.microsoft.com/en-us/library/st6sy9xe.aspx
https://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
https://msdn.microsoft.com/en-us/library/bcd5672a.aspx
https://msdn.microsoft.com/en-us/library/sf985hc5.aspx
https://msdn.microsoft.com/en-us/library/hh156513.aspx
https://msdn.microsoft.com/en-us/library/e6w8fe1b.aspx
https://msdn.microsoft.com/en-us/library/8627sbea.aspx
https://msdn.microsoft.com/en-us/library/e59b22c5.aspx
https://msdn.microsoft.com/en-us/library/51y09td4.aspx
https://msdn.microsoft.com/en-us/library/ebca9ah3.aspx
https://msdn.microsoft.com/en-us/library/wbx7zzdd.aspx
https://msdn.microsoft.com/en-us/library/acdd6hb7.aspx
https://msdn.microsoft.com/en-us/library/88c54tsw.aspx
https://msdn.microsoft.com/en-us/library/98f28cdx.aspx

unsafe Declares an unsafe context.

virtual Declares a method or an accessor whose

implementation can be changed by an overriding

member in a derived class.

volatile Indicates that a field can be modified in the program by

something such as the operating system, the hardware,

or a concurrently executing thread.

https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx
https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx
https://msdn.microsoft.com/en-us/library/x13ttww7.aspx

abstract (C# Reference)
The abstract modifier indicates that the thing being modified has a missing or incomplete

implementation. The abstract modifier can be used with classes, methods, properties,

indexers, and events. Use the abstract modifier in a class declaration to indicate that a class is

intended only to be a base class of other classes. Members marked as abstract, or included in

an abstract class, must be implemented by non-abstract classes that derive from the abstract

class, thereby overriding those abstract members.

An abstract method is a virtual method with no implementation. An abstract method is

declared with the abstract modifier and is permitted only in a class that is also declared

abstract. An abstract method must be overridden in every non-abstract derived class.

Abstract classes have the following features:

 An abstract class cannot be instantiated.

 An abstract class may contain abstract methods and accessors.

 It is not possible to modify an abstract class with the sealed (C# Reference) modifier

because the two modifiers have opposite meanings. The sealed modifier prevents a

class from being inherited and the abstract modifier requires a class to be inherited.

 A non-abstract class derived from an abstract class must include actual

implementations of all inherited abstract methods and accessors

Example:

Not using “override” keyword produces an error:

virtual (C# Reference)
The virtual keyword is used to modify a method, property, indexer, or event declaration and

allow for it to be overridden in a derived class.

The implementation of a virtual member can be changed by an overriding member in a

derived class.

When a virtual method is invoked, the run-time type of the object is checked for an overriding

member. The overriding member in the most derived class is called, which might be the

original member, if no derived class has overridden the member.

By default, methods are non-virtual. You cannot override a non-virtual method.

You cannot use the virtual modifier with the static, abstract, private, or override modifiers.

(Why?...)

override (C# Reference)
The override modifier is required to extend or modify the abstract or virtual implementation

of an inherited method, property, indexer, or event.

An override method provides a new implementation of a member that is inherited from a

base class. The method that is overridden by an override declaration is known as the

overridden base method. The overridden base method must have the same signature as

the override method.

You cannot override a non-virtual or static method. The overridden base method must

be virtual, abstract, or override.

An override declaration cannot change the accessibility of the virtual method. Both

the override method and the virtual method must have the same access level modifier.

Example:

new Modifier (C# Reference)
When used as a declaration modifier, the new keyword explicitly hides a member that is

inherited from a base class. When you hide an inherited member, the derived version of the

member replaces the base class version. Although you can hide members without using

the new modifier, you get a compiler warning. If you use new to explicitly hide a member, it

suppresses this warning.

To hide an inherited member, declare it in the derived class by using the same member name,

and modify it with the new keyword.

It is an error to use both new and override on the same member, because the two modifiers

have mutually exclusive meanings. The new modifier creates a new member with the same

name and causes the original member to become hidden. The override modifier extends the

implementation for an inherited member.

Example:

See the warning:

sealed (C# Reference)
When applied to a class, the sealed modifier prevents other classes from inheriting from it.

It is an error to use the abstract modifier with a sealed class, because an abstract class must

be inherited by a class that provides an implementation of the abstract methods or properties.

You can also use the sealed modifier on a method or property that overrides a virtual

method or property in a base class. This enables you to allow classes to derive from your class

and prevent them from overriding specific virtual methods or properties.

Versioning with the Override

and New Keywords (C#

Programming Guide)
The C# language is designed so that versioning between base and derived classes in different

libraries can evolve and maintain backward compatibility. This means, for example, that the

introduction of a new member in a baseclass with the same name as a member in a derived

class is completely supported by C# and does not lead to unexpected behavior. It also means

that a class must explicitly state whether a method is intended to override an inherited

method, or whether a method is a new method that hides a similarly named inherited

method.

In C#, derived classes can contain methods with the same name as base class methods.

 The base class method must be defined virtual.

 If the method in the derived class is not preceded by new or override keywords, the

compiler will issue a warning and the method will behave as if the new keyword were

present.

 If the method in the derived class is preceded with the new keyword, the method is

defined as being independent of the method in the base class.

 If the method in the derived class is preceded with the override keyword, objects of

the derived class will call that method instead of the base class method.

 The base class method can be called from within the derived class using

the base keyword.

 The override, virtual, and new keywords can also be applied to properties, indexers,

and events.

By default, C# methods are not virtual. If a method is declared as virtual, any class inheriting

the method can implement its own version. To make a method virtual, the virtual modifier is

used in the method declaration of the base class. The derived class can then override the base

virtual method by using the override keyword or hide the virtual method in the base class by

using the new keyword. If neither the override keyword nor the new keyword is specified, the

compiler will issue a warning and the method in the derived class will hide the method in the

base class.

https://msdn.microsoft.com/en-us/library/hfw7t1ce.aspx
https://msdn.microsoft.com/en-us/library/0b0thckt.aspx
https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx
https://msdn.microsoft.com/en-us/library/51y09td4.aspx
https://msdn.microsoft.com/en-us/library/ebca9ah3.aspx

