
Java Design Patterns
Efthimios Alepis



Why use Design Patterns?

Design Patterns are already defined and provide industry standard approaches to 
solve recurring problems, so they can save time

There are many java design patterns that we can use in our java based projects.

Using design patterns promotes reusability that leads to more robust and highly 
maintainable code

It helps in reducing total cost of ownership (TCO) of the software product

Since design patterns are already defined, this makes our code easy to understand 
and debug

Lead to faster development since new members of software teams understand them 
more easily



More Advantages

• They are reusable in multiple projects

• They provide the solutions that help to define the system architecture

• They capture the software engineering experiences

• They provide transparency to the design of an application

• They are well-proved and tested solutions since they have been built upon the 
knowledge and experience of expert software developers

• Design patterns don’t guarantee an absolute solution to a problem. They provide 
clarity to the system architecture and increase the possibility of building a better 
system



When should we use the design patterns?

• We must use the design patterns during the analysis and requirement phase of 
SDLC(Software Development Life Cycle)

• Design patterns ease the analysis and requirement phase of SDLC by providing 
information based on prior hands-on experiences



Core Java Design Patterns

• Creational Design Patterns

• Structural Design Patterns

• Behavioral Design Patterns



Creational Design Patterns

• Factory Pattern

• Abstract Factory Pattern

• Singleton Pattern

• Prototype Pattern

• Builder Pattern

Creational design patterns provide solution to instantiate an object in the best possible way for 
specific situations



Structural Design Patterns

• Adapter Pattern

• Bridge Pattern

• Composite Pattern

• Decorator Pattern

• Facade Pattern

• Flyweight Pattern

• Proxy Pattern

Structural patterns provide different ways to create a class structure, for example using 
inheritance and composition to create a large object from small objects



Behavioral Design Patterns
• Chain Of Responsibility Pattern

• Command Pattern

• Interpreter Pattern

• Iterator Pattern

• Mediator Pattern

• Memento Pattern

• Observer Pattern

• State Pattern

• Strategy Pattern

• Template Pattern

• Visitor Pattern

Behavioral patterns provide 
solutions for the better 
interaction between objects 
and also provide lose 
coupling and flexibility to 
extend easily



Some Examples of Common 
Design Patterns



Singleton design pattern



Builder Design Pattern




