
Event Driven

Programming in

Java

Event-driven programming

 The flow of the program is determined by events

 It is the dominant paradigm used in graphical user interfaces and

web applications

 Centered on performing certain actions in response to user input

 Events such as:

 user actions

 mouse clicks

 key presses

 sensor outputs

 messages from other programs/threads

How to “pass” functionality in

Java?

 Using ordinary objects

 Using anonymous objects

 Using lambda expressions (Java 8)

 Using method references (Java 8)

 Using reflection (lets not do this, yet…)

Using ordinary objects

Using anonymous objects

Using lambda expressions (Java 8)

Using method references (Java 8)

Example

A simple Event Listener Interface

public interface EventListener {

public void onSomeChange(State oldState, State newState);

}

A simple class using the listener

Interface

public class EventOwner {

public void addEventListener(EventListener listener) { ... }

}

Implementation in Java 7

EventOwner eventOwner = new EventOwner();

eventOwner.addEventListener(new EventListener() {

public void onSomeChange(State oldState, State newState) {

// do something with the old and new state.

}

});

Anonymous Interface

Implementation!

Implementation in Java 8

EventOwner eventOwner = new EventOwner();

eventOwner.addEventListener(

(oldState, newState) -> System.out.println("Something changed!")

);

Java Lambda

Expression!

Lambda expression usage

 The lambda expression is matched against the parameter type of

the addEventListener() method's parameter

 If the lambda expression matches the parameter type (in this case

the EventListener interface) , then the lambda expression is turned

into a function that implements the same interface as that

parameter.

Matching Lambdas and Interfaces

 A single method interface is also sometimes referred to as a

functional interface

 We have to follow 3 rules

 The interface should have only one method

 The parameters of the lambda expression should match the parameters

of the single method

 The return type of the lambda expression should match the return type

of the single method

Lambda Expressions with Zero

Parameters

() -> System.out.println("Zero parameter lambda");

Lambda Expressions with One

Parameter

(param) -> System.out.println("One parameter: " + param);

or

param -> System.out.println("One parameter: " + param);

Lambda Expressions with Multiple

Parameters

(p1, p2) -> System.out.println("Multiple parameters: " + p1 + ", " + p2);

Lambda Expression Parameter

Types

 Specifying parameter types for a lambda expression may be

necessary if the compiler cannot infer the parameter types from the

functional interface method the lambda expression is matching

(Student student1) -> System.out.println("Student's name is: " + student1.getName());

Lambda Expression Function Body

One Line

(oldState, newState) -> System.out.println("Something changed!")

Lambda Expression Function Body

Multiple Lines

(oldState, newState) -> {

System.out.println("Old state: " + oldState);

System.out.println("New state: " + newState);

}

Lambda Expression Returning Value

(param) -> {

System.out.println("param: " + param);

return "some value";

}

Lambda Expressions as Objects

public interface MyComparator {

public boolean compare(int a1, int a2);

}

MyComparator myComparator = (a1,a2) -> {return a1 > a2;};

boolean result = myComparator.compare(5, 10);

Demo

Creating a custom Event and

Event Listener

Main Components

 An interface to be implemented by everyone interested in the

custom events

 A class that fires these specific custom events

 A class that is interested in listening for the custom events

 And…a test class

A simple Interface first

A class that fires events

A class (or more) that are

interested in listening to the events

A demo use case

Run the example!

Time to see a more “complete”

example

Lets do the same using

Java Built-in classes
OBSERVER - OBSERVABLE

Class Observable

 This class represents an observable object, or "data" in the model-

view paradigm.

 It can be subclassed to represent an object that the application

wants to have observed.

 An observable object can have one or more observers.

 An observer may be any object that implements interface Observer.

 After an observable instance changes, an application calling the

Observable's notifyObservers method causes all of its observers to

be notified of the change by a call to their update method.

Observable Method Summary

Interface Observer

 A class can implement the Observer interface when it wants to be

informed of changes in observable objects

Demo time!

An observable object

An observer object

Test it!

