
JAVA
OBJECT CLONING

Efthimios Alepis

What is Cloning

◦ Creating an identical copy of the original Object

◦ In Java by default tis is implemented by copying the all the fields of the object, one-by-one

Default cloning by the JVM

◦ If the class contains primitive data type members then a completely new copy of them will be created and the

reference to the new object copy will be returned

◦ If the class contains members of any class type then only the object references to those members are copied

and hence the member references in both the original object as well as the cloned object refer to the same

object

◦ So primitive types are represented by new copies, while reference types are copied as references

Cloneable Interface

◦ It is a marker Interface (Important: It does not contain an abstract method…)

◦ A class implements the Cloneable interface to indicate to the Object.clone() method that it is legal for that

method to make a field-for-field copy of instances of that class.

◦ Invoking Object's clone method on an instance that does not implement the Cloneable interface results in the

exception CloneNotSupportedException being thrown.

◦ By convention, classes that implement this interface should override Object.clone (which is protected) with a

public method. See Object.clone() for details on overriding this method.

◦ Note that this interface does not contain the clone method. Therefore, it is not possible to clone an object

merely by virtue of the fact that it implements this interface. Even if the clone method is invoked reflectively,

there is no guarantee that it will succeed.

Use Cloning in Java

◦ You must implement Cloneable interface.

◦ You must override clone() method from Object class.

◦ You need both of the above!..

◦ From Java docs:

1) x.clone() != x will be true
2) x.clone().getClass() == x.getClass() will be true, but these are not
absolute requirements.
3) x.clone().equals(x) will be true, this is not an absolute requirement.

EXAMPLE

Override clone()

Override clone(), implement Cloneable

Cloning and Copying

◦ Both mean practically the same thing in terms of result

◦ Cloning needs the clone() method to be used

◦ Copying could include the clone() method, but it can be achieved with other ways as well

◦ There is a very big difference regarding the way we Copy, namely:

◦ Deep Copying and

◦ Shallow Copying

Deep Copy Vs Shallow Copy

◦ Shallow clone is the “default” implementation in Java. While overriding the clone() method, if you are not

cloning all the object types (not primitives), then you are making a shallow copy. Shallow copy can be achieved

without using the clone() method. With shallow copy you don’t create new variables for the reference type fields

◦ Deep copying is the desired behavior in most of the cases. In the deep copy, we create a real “clone” which is

independent of original object and making changes in the cloned object should not affect the original object.

Nevertheless, deep copying is much more difficult to be achieved and needs special care.

◦ With deep copy, each mutable object in the object graph is recursively copied

Deep copy
basics

There exist different approaches in deep copying objects:

Deep copy with copy
constructor

Clone with deep copy
implementation

Deep copy with
serialization

Deep copy with
external libraries (e.g.

Apache commons)

Mutable objects: each mutable object in the object graph
should be recursively copied

Primitives and immutable objects: No need to copy them
with special care

Deep copy with copy Constructor

Copy constructors are
special constructors in a

class that take an
argument of its own

class type

Passing an instance of a
class to the copy

constructor will return a
new instance of class

with values copied from
the argument instance

MODEL

*Please note that String is an
Immutable class

1.COPY CONSTRUCTOR

Notes about copy constructor

◦ You should also provide other ways of “first “ instantiation

◦ The copy constructor will be used for “cloning” purposes

◦ Be careful about mutable fields inside the copied object. If present, you should also take care for their deep

copying (possible through copy constructor as well)

Using default cloning approach

◦ We will use the previous model

◦ We will initially try the basic cloning approach

Default cloning approach results

◦ As we see from the previous example, though cloning seems to work, only shallow copy is achieved

◦ The “address” field which is clearly mutable, is not deep copied

◦ As a result, changing values in the cloned object affects the initial object!..

2. Using custom cloning approach

◦ We will use the previous model

◦ We will do a deep copy

◦ Each mutable field will be handled separately

3. Using a serialization approach

◦ We will use the previous model

