

ΑΝΑΚΤΗΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ
ΑΝΑΖΗΤΗΣΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ

1

2

Παροράματα από το Πανεπιστήμιο της Στουγκάρδης

Information Retrieval and Text Mining
http://informationretrieval.org

IIR 2: The term vocabulary and postings lists

Hinrich Schütze & Wiltrud Kessler

Institute for Natural Language Processing, University of Stuttgart

2012-10-19

1 / 61

http://informationretrieval.org

Overview

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

2 / 61

Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

3 / 61

Inverted index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings

4 / 61

Constructing the inverted index
term docID

I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

sort postings=⇒

term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

create postings lists=⇒

term doc. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

i 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

5 / 61

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

6 / 61

Does Google use the Boolean model?

On Google, the default interpretation of a query [w1 w2

. . .wn] is w1 AND w2 AND . . . AND wn

Cases where you get hits that do not contain one of the wi :

anchor text
page contains variant of wi (morphology, spelling correction,
synonym)
long queries (n large)
boolean expression generates very few hits

Simple Boolean vs. Ranking of result set

Simple Boolean retrieval returns matching documents in no
particular order.
Google (and most well designed Boolean engines) rank the
result set – they rank good hits (according to some estimator
of relevance) higher than bad hits.

7 / 61

Take-away

Understanding of the basic unit of classical information
retrieval systems: words and documents: What is a
document, what is a term?

Tokenization: how to get from raw text to (normalized) words
(or tokens)

More complex indexes: skip pointers and phrases

8 / 61

Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

9 / 61

Documents

Last lecture: Simple Boolean retrieval system

Our assumptions were:

We know what a document is.
We can “machine-read” each document.

This can be complex in reality.

10 / 61

Parsing a document

We need to deal with format and language of each document.

What format is it in? pdf, word, excel, html etc.

What language is it in?

What character set is in use?

Each of these is a classification problem, which we will study
later in this course (IIR 13).

Alternative: use heuristics

11 / 61

Format/Language: Complications

A single index usually contains terms of several languages.

Sometimes a document or its components contain multiple
languages/formats.
French email with Spanish pdf attachment

What is the document unit for indexing?

A file?
An email?
An email with 5 attachments?
A group of files (ppt or latex in HTML)?

Upshot: Answering the question “what is a document?” is
not trivial and requires some design decisions.

12 / 61

Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

13 / 61

Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

14 / 61

Definitions

Word – A delimited string of characters as it appears in the
text.

Term – A “normalized” word (case, morphology, spelling etc);
an equivalence class of words.

Token – An instance of a word or term occurring in a
document.

Type – The same as a term in most cases: an equivalence
class of tokens.

15 / 61

Normalization

Need to “normalize” terms in indexed text as well as query
terms into the same form.

Example: We want to match U.S.A. and USA

We most commonly implicitly define equivalence classes of
terms.

Alternatively: do asymmetric expansion

window → window, windows
windows → Windows, windows
Windows (no expansion)

More powerful, but less efficient

Why don’t you want to put window, Window, windows, and
Windows in the same equivalence class?

16 / 61

Normalization: Other languages

Normalization and language detection interact.

PETER WILL NICHT MIT. → MIT = mit

He got his PhD from MIT. → MIT 6= mit

17 / 61

Recall: Inverted index construction

Input:

Friends, Romans, countrymen. So let it be with Caesar . . .

Output:

friend roman countryman so . . .

Each token is a candidate for a postings entry.

What are valid tokens to emit?

18 / 61

Exercises

In June, the dog likes to chase the cat in the barn. –
How many word tokens? How many word types?

Why tokenization is difficult – even in English.
Tokenize: Mr. O’Neill thinks that the boys’ stories about Chile’s

capital aren’t amusing.

19 / 61

Tokenization problems: One word or two? (or several)

Hewlett-Packard

State-of-the-art

co-education

the hold-him-back-and-drag-him-away maneuver

data base

San Francisco

Los Angeles-based company

cheap San Francisco-Los Angeles fares

York University vs. New York University

20 / 61

Numbers

3/20/91

20/3/91

Mar 20, 1991

B-52

100.2.86.144

(800) 234-2333

800.234.2333

Older IR systems may not index numbers . . .

. . . but generally it’s a useful feature.

21 / 61

Chinese: No whitespace

莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。

22 / 61

Ambiguous segmentation in Chinese

和尚
The two characters can be treated as one word meaning ‘monk’ or
as a sequence of two words meaning ‘and’ and ‘still’.

23 / 61

Other cases of “no whitespace”

Compounds in Dutch, German, Swedish

Computerlinguistik → Computer + Linguistik

Lebensversicherungsgesellschaftsangestellter

→ leben + versicherung + gesellschaft + angestellter

Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)

Many other languages with segmentation difficulties: Finnish,
Urdu, . . .

24 / 61

Japanese

��������	�
�������������������

����� !" !$#�%��'(&*
),-+./0*�

2�134678',95�:;:=�><
?@BCA�+ED

795�:;:=*GH)IF
):�J*K,MLN?OP�RQ

T�S�VUUXWY'[ZN?*�,]^;_\,�`4a,c

;b�ef)gUhiU+?dNjlmkn�:Bp�	�oN6,

rUsqtu'wvx*Ry{zi}'~����L?@B

No spaces (as in Chinese), 4 different “alphabets”:

Chinese characters,

hiragana (syllabary for inflectional endings and function words),

katakana (syllabary for transcription of foreign words), and

latin.

End user can express query entirely in hiragana!

25 / 61

Arabic script

 ك ِ ت ا ب ٌ ⇐ آَِ��بٌ
 un b ā t i k

/kitābun/ ‘a book’
 Vowels (and other grammatical markers) appear as diacritics above
and below the consonants. Day-to-day text is unvocalized or only
partially vocalized.

26 / 61

Arabic script: Bidirectionality

�ل ا������132 ��� 1962ا���� ا��
ا�� �� ��� �� . #"!" ! ا�

 ← → ← → ← START

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

Bidirectionality is not a problem if text is coded in Unicode.

27 / 61

Accents and diacritics

Accents: résumé vs. resume (simple omission of accent)

Umlauts: Universität vs. Universitaet (substitution with
special letter sequence “ae”)

Most important criterion: How are users likely to write their
queries for these words?

Even in languages that standardly have accents, users often
do not type them. (Polish?)

28 / 61

Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

29 / 61

Case folding

Reduce all letters to lower case

Possible exceptions: capitalized words in mid-sentence

MIT vs. mit

Fed vs. fed

It’s often best to lowercase everything since users will use
lowercase regardless of correct capitalization.

30 / 61

Stop words

stop words = extremely common words which would appear
to be of little value in helping select documents matching a
user need

Examples: a, an, and, are, as, at, be, by, for, from, has, he, in,

is, it, its, of, on, that, the, to, was, were, will, with

Stop word elimination used to be standard in older IR systems.

But you need stop words for phrase queries, e.g. “King of
Denmark”

Most web search engines index stop words.

31 / 61

More equivalence classing

Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)

Thesauri: IIR 9 (semantic equivalence, car = automobile)

32 / 61

Lemmatization

Reduce inflectional/variant forms to base form

Example: am, are, is → be

Example: car, cars, car’s, cars’ → car

Example: the boy’s cars are different colors → the boy car be

different color

Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).

Inflectional morphology (cutting → cut) vs. derivational
morphology (destruction → destroy)

33 / 61

Stemming

Definition of stemming: Crude heuristic process that chops off
the ends of words in the hope of achieving what “principled”
lemmatization attempts to do with a lot of linguistic
knowledge.

Language dependent

Often inflectional and derivational

Example for derivational: automate, automatic, automation

all reduce to automat

34 / 61

Porter algorithm

Most common algorithm for stemming English

Results suggest that it is at least as good as other stemming
options

Conventions + 5 phases of reductions

Phases are applied sequentially

Each phase consists of a set of commands.

Sample command: Delete final ement if what remains is longer
than 1 character
replacement → replac
cement → cement

Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

35 / 61

Porter stemmer: A few rules

Rule Example

SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat

36 / 61

Three stemmers: A comparison

Sample text: Such an analysis can reveal features that are not easily
visible from the variations in the individual genes and can
lead to a picture of expression that is more biologically
transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to a pictur
of express that is more biolog transpar and access to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from th
vari in th individu gen and can lead to a pictur of expres that
is mor biolog transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that
is mor biolog transp and access to interpret

37 / 61

Does stemming improve effectiveness?

In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others.

Queries where stemming is likely to help: [tartan sweaters],
[sightseeing tour san francisco]

(equivalence classes: {sweater,sweaters}, {tour,tours})
Porter Stemmer equivalence class oper contains all of operate

operating operates operation operative operatives operational.

Queries where stemming hurts: [operational AND research],
[operating AND system], [operative AND dentistry]

38 / 61

Exercise: What does Google do?

Stop words

Normalization

Tokenization

Lowercasing

Stemming

Non-latin alphabets

Umlauts

Compounds

Numbers

39 / 61

Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

40 / 61

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Linear in the length of the postings lists.

Can we do better?

41 / 61

Skip pointers

Skip pointers allow us to skip postings that will not figure in
the search results.

This makes intersecting postings lists more efficient.

Some postings lists contain several million entries – so
efficiency can be an issue even if basic intersection is linear.

Where do we put skip pointers?

How do we make sure insection results are correct?

42 / 61

Basic idea

Brutus

Caesar

34

2 4 8

128

34 35 64 128

8

1 2 3 5

31

8 17 21 31 75 81 84 89 92

43 / 61

Skip lists: Larger example

16 28 72

5 51 98

2 4 8 16 19 23 28 43

1 2 3 5 8 41 51 60 71

Brutus

Caesar

44 / 61

Intersecting with skip pointers

IntersectWithSkips(p1, p2)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer

45 / 61

Where do we place skips?

Tradeoff: number of items skipped vs. frequency skip can be
taken

More skips: Each skip pointer skips only a few items, but we
can frequently use it.

Fewer skips: Each skip pointer skips many items, but we can
not use it very often.

46 / 61

Where do we place skips? (cont)

Simple heuristic: for postings list of length P , use
√
P

evenly-spaced skip pointers.

This ignores the distribution of query terms.

Easy if the index is static; harder in a dynamic environment
because of updates.

How much do skip pointers help?

They used to help a lot.

With today’s fast CPUs, they don’t help that much anymore.

47 / 61

Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

48 / 61

Phrase queries

We want to answer a query such as [stanford university] – as a
phrase.

Thus The inventor Stanford Ovshinsky never went to

university should not be a match.

The concept of phrase query has proven easily understood by
users.

About 10% of web queries are phrase queries.

Consequence for inverted index: it no longer suffices to store
docIDs in postings lists.

Two ways of extending the inverted index:

biword index
positional index

49 / 61

Biword indexes

Index every consecutive pair of terms in the text as a phrase.

For example, Friends, Romans, Countrymen would generate
two biwords: “friends romans” and “romans countrymen”

Each of these biwords is now a vocabulary term.

Two-word phrases can now easily be answered.

50 / 61

Longer phrase queries

A long phrase like “stanford university palo alto” can be
represented as the Boolean query “stanford university”

AND “university palo” AND “palo alto”

We need to do post-filtering of hits to identify subset that
actually contains the 4-word phrase.

51 / 61

Issues with biword indexes

Why are biword indexes rarely used?

False positives, as noted above

Index blowup due to very large term vocabulary

52 / 61

Positional indexes

Positional indexes are a more efficient alternative to biword
indexes.

Postings lists in a nonpositional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions

53 / 61

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

to, 993427:
〈 1: 〈7, 18, 33, 72, 86, 231〉;
2: 〈1, 17, 74, 222, 255〉;
4: 〈8, 16, 190, 429, 433〉;
5: 〈363, 367〉;
7: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1: 〈17, 25〉;
4: 〈17, 191, 291, 430, 434〉;
5: 〈14, 19, 101〉; . . . 〉

Document 4 is a match!

54 / 61

Proximity search

We just saw how to use a positional index for phrase searches.

We can also use it for proximity search.

For example: employment /4 place

Find all documents that contain employment and place

within 4 words of each other.

Employment agencies that place healthcare workers are seeing

growth is a hit.

Employment agencies that have learned to adapt now place

healthcare workers is not a hit.

55 / 61

Proximity search

Use the positional index

Simplest algorithm: look at cross-product of positions of (i)
employment in document and (ii) place in document

Very inefficient for frequent words, especially stop words

Note that we want to return the actual matching positions,
not just a list of documents.

This is important for dynamic summaries etc.

56 / 61

“Proximity” intersection

PositionalIntersect(p1, p2, k)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)
4 then l ← 〈 〉
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 6= nil

8 do while pp2 6= nil

9 do if |pos(pp1)− pos(pp2)| ≤ k

10 then Add(l , pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break

13 pp2 ← next(pp2)
14 while l 6= 〈 〉 and |l [0]− pos(pp1)| > k

15 do Delete(l [0])
16 for each ps ∈ l

17 do Add(answer , 〈docID(p1), pos(pp1), ps〉)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer

57 / 61

Combination scheme

Biword indexes and positional indexes can be profitably
combined.

Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc

For these biwords, increased speed compared to positional
postings intersection is substantial.

Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.

Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of
26% more space for index.

58 / 61

“Positional” queries on Google

For web search engines, positional queries are much more
expensive than regular Boolean queries.

Let’s look at the example of phrase queries.

Why are they more expensive than regular Boolean queries?

Can you demonstrate on Google that phrase queries are more
expensive than Boolean queries?

59 / 61

Take-away

Understanding of the basic unit of classical information
retrieval systems: words and documents: What is a
document, what is a term?

Tokenization: how to get from raw text to (normalized) words
(or tokens)

More complex indexes: skip pointers and phrases

60 / 61

Resources

Chapter 2 of IIR

Resources at http://ifnlp.org/ir

Porter stemmer

61 / 61

http://ifnlp.org/ir

	Presentation1
	02voc.flat
	Recap
	Documents
	Terms
	General + Non-English
	English

	Skip pointers
	Phrase queries

