ΑΝΑΚΤΗΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ

Παροράματα από το Πανεπιστήμιο της Στουγκάρδης

Information Retrieval and Text Mining http://informationretrieval.org

IIR 3: Dictionaries and tolerant retrieval

Hinrich Schütze & Wiltrud Kessler

Institute for Natural Language Processing, University of Stuttgart

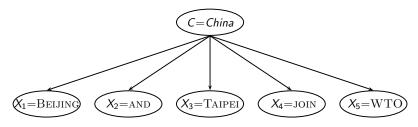
2012-10-30

Overview

2 Dictionaries

4 Edit distance

6 Soundex


Outline

- 2 Dictionaries
- ③ Wildcard queries
- ④ Edit distance
- **5** Spelling correction

6 Soundex

Naive Bayes Generative Model

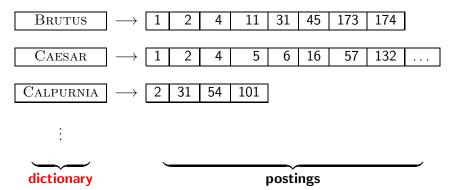
 $P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$

- Generate a class with probability P(c)
- Generate each of the words (in their respective positions), conditional on the class, but independent of each other, with probability P(t_k|c)

Take-away

- Tolerant retrieval: What to do if there is no exact match between query term and document term
- Wildcard queries
- Spelling correction

Outline


2 Dictionaries

- ③ Wildcard queries
- 4 Edit distance
- **5** Spelling correction

6 Soundex

Inverted index

For each term t, we store a list of all documents that contain t.

Dictionaries

- The dictionary is the data structure for storing the term vocabulary.
- Term vocabulary: the data
- Dictionary: the data structure for storing the term vocabulary

Dictionary as array of fixed-width entries

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
 - . . .
- Assume for the time being that we can store this information in a fixed-length entry.
- Assume that we store these entries in an array.

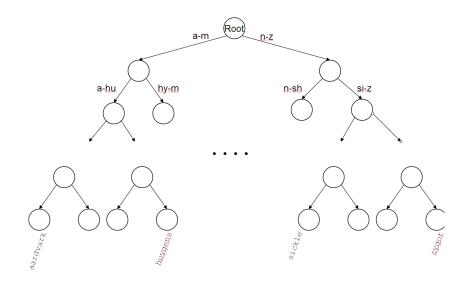
Dictionary as array of fixed-width entries

	term	document	pointer to	
		frequency	postings list	
	а	656,265	\longrightarrow	
	aachen	65	\longrightarrow	
	zulu	221	\longrightarrow	
space needed:	20 bytes	4 bytes	4 bytes	

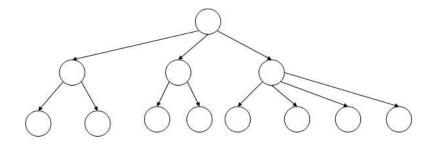
How do we look up a query term q_i in this array at query time? That is: which data structure do we use to locate the entry (row) in the array where q_i is stored?

Data structures for looking up term

- Two main classes of data structures: hashes and trees
- Some IR systems use hashes, some use trees.
- Criteria for when to use hashes vs. trees:
 - Is there a fixed number of terms or will it keep growing?
 - What are the relative frequencies with which various keys will be accessed?
 - How many terms are we likely to have?


Hashes

- Each vocabulary term is hashed into an integer.
- Try to avoid collisions
- At query time, do the following: hash query term, resolve collisions, locate entry in fixed-width array
- Pros:
 - Lookup in a hash is faster than lookup in a tree (lookup time is constant).
- Cons:
 - no way to find minor variants (resume vs. résumé)
 - no prefix search (all terms starting with automat)
 - need to rehash everything periodically if vocabulary keeps growing


Trees

- Trees solve the prefix problem (find all terms starting with *automat*).
- Simplest tree: binary tree
- Search is slightly slower than in hashes: $O(\log M)$, where M is the size of the vocabulary.
- $O(\log M)$ only holds for balanced trees.
- Rebalancing binary trees is expensive.
- B-trees mitigate the rebalancing problem.
- B-tree definition: every internal node has a number of children in the interval [*a*, *b*] where *a*, *b* are appropriate positive integers, e.g., [2, 4].

Binary tree

B-tree

Outline

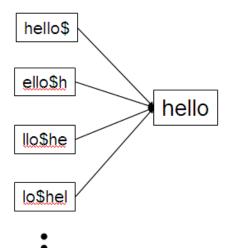
2 Dictionaries

- 3 Wildcard queries
- 4 Edit distance
- 5 Spelling correction

6 Soundex

Wildcard queries

- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary: retrieve all terms t in the range: mon ≤ t < moo
- *mon: find all docs containing any term ending with mon
 - Maintain an additional tree for terms backwards
 - Then retrieve all terms t in the range: nom $\leq t <$ non
- Result: A set of terms that are matches for wildcard query
- Then retrieve documents that contain any of these terms


How to handle * in the middle of a term

- Example: m*nchen
- We could look up m* and *nchen in the B-tree and intersect the two term sets.
- Expensive
- Alternative: permuterm index
- Basic idea: Rotate every wildcard query, so that the * occurs at the end.
- Store each of these rotations in the dictionary, say, in a B-tree

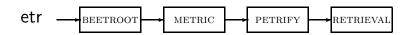
Permuterm index

• For term HELLO: add *hello\$, ello\$h, llo\$he, lo\$hel, o\$hell,* and *\$hello* to the B-tree where \$ is a special symbol

$\mathsf{Permuterm} \to \mathsf{term} \mathsf{ mapping}$

Permuterm index

- For HELLO, we've stored: *hello\$*, *ello\$h*, *llo\$he*, *lo\$hel*, and *o\$hell*
- Queries
 - For X, look up X\$
 - For X*, look up \$X*
 - For *X, look up X\$*
 - For *X*, look up X*
 - For X*Y, look up Y\$X*
 - Example: For hel*o, look up o\$hel*
- Permuterm index would better be called a permuterm tree.
- But permuterm index is the more common name.


Processing a lookup in the permuterm index

- Rotate query wildcard to the right
- Use B-tree lookup as before
- Problem: Permuterm more than quadruples the size of the dictionary compared to a regular B-tree. (empirical number)

k-gram indexes

- More space-efficient than permuterm index
- Enumerate all character *k*-grams (sequence of *k* characters) occurring in a term
- 2-grams are called bigrams.
- Example: from April is the cruelest month we get the bigrams: \$a ap pr ri il 1\$ \$i is s\$ \$t th he e\$ \$c cr ru ue el le es st t\$ \$m mo on nt h\$
- \$ is a special word boundary symbol, as before.
- Maintain an inverted index from bigrams to the terms that contain the bigram

Postings list in a 3-gram inverted index

k-gram (bigram, trigram, ...) indexes

- Note that we now have two different types of inverted indexes
- The term-document inverted index for finding documents based on a query consisting of terms
- The *k*-gram index for finding terms based on a query consisting of *k*-grams

Processing wildcarded terms in a bigram index

- Query mon* can now be run as: \$m AND mo AND on
- Gets us all terms with the prefix mon ...
- ... but also many "false positives" like MOON.
- We must postfilter these terms against query.
- Surviving terms are then looked up in the term-document inverted index.
- *k*-gram index vs. permuterm index
 - k-gram index is more space efficient.
 - Permuterm index doesn't require postfiltering.

Exercise

- Google has very limited support for wildcard queries.
- For example, this query doesn't work very well on Google: [gen* universit*]
 - Intention: you are looking for the University of Geneva, but don't know which accents to use for the French words for university and Geneva.
- According to Google search basics, 2010-04-29: "Note that the * operator works only on whole words, not parts of words."
- But this is not entirely true. Try [pythag*] and [m*nchen]
- Exercise: Why doesn't Google fully support wildcard queries?

Processing wildcard queries in the term-document index

- Problem 1: we must potentially execute a large number of Boolean queries.
 - Most straightforward semantics: Conjunction of disjunctions
 - For [gen* universit*]: geneva university OR geneva université OR genève university OR genève université OR general universities OR ...
 - Very expensive
- Problem 2: Users hate to type.
 - If abbreviated queries like [pyth* theo*] for [pythagoras' theorem] are allowed, users will use them a lot.
 - This would significantly increase the cost of answering queries.
 - Somewhat alleviated by Google Suggest

Outline

1 Recap

2 Dictionaries

3 Wildcard queries

5 Spelling correction

6 Soundex

Edit distance and Levenshtein distance

- The edit distance between string s₁ and string s₂ is the minimum number of basic operations that convert s₁ to s₂.
- Levenshtein distance: The admissible basic operations are insert, delete, and replace
- Levenshtein distance dog-do: 1 (deletion)
- Levenshtein distance cat-cart: 1 (insertion)
- Levenshtein distance cat-cut: 1 (replacement)
- Levenshtein distance cat-act: 2
- Damerau-Levenshtein includes transposition as a fourth possible operation.
- Damerau-Levenshtein distance cat-act: 1

Levenshtein distance: Example

		f	а	S	t
	0		2 2	3 3	4 4
6	1	1 2	2 3	3 4	4 5
С	1	2 1	2 2	3 3	4 4
	2	2 2	1 3	3 4	4 5
а	2	3 2	3 1	2 2	3 3
+	3	3 3	3 2	2 3	2 4
L	3	4 3	4 2	3 2	3 2
	4	4 4	4 3	2 3	3 3
S	4	5 4	5 3	4 2	3 3

Each cell of Levenshtein matrix

cost of getting here from	cost of getting here		
my upper left neighbor	from my upper neighbor		
(copy or replace)	(delete)		
	the minimum of the		
cost of getting here from	three possible "move-		
my left neighbor (insert)	ments"; the cheapest		
	way of getting here		

Levenshtein distance: Algorithm

```
LEVENSHTEINDISTANCE(s_1, s_2)
  1 for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for i \leftarrow 0 to |s_2|
  4 do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
     do for i \leftarrow 1 to |s_2|
  6
          do if s_1[i] = s_2[i]
  7
  8
                 then m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]\}
                 else m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]+1\}
  9
 10
      return m[|s_1|, |s_2|]
```

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy (cost 0)

Dynamic programming (Cormen et al.)

- Optimal substructure: The optimal solution to the problem contains within it subsolutions, i.e., optimal solutions to subproblems.
- Overlapping subsolutions: The subsolutions overlap. These subsolutions are computed over and over again when computing the global optimal solution in a brute-force algorithm.
- Subproblem in the case of edit distance: what is the edit distance of two prefixes
- Overlapping subsolutions: We need most distances of prefixes 3 times this corresponds to moving right, diagonally, down.

Weighted edit distance

- As above, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors, e.g., *m* more likely to be mistyped as *n* than as *q*.
- Therefore, replacing *m* by *n* is a smaller edit distance than by *q*.
- We now require a weight matrix as input.
- Modify dynamic programming to handle weights

Exercise

- Compute Levenshtein distance matrix for OSLO SNOW
- What are the Levenshtein editing operations that transform cat into catcat?

		S	n	0	W
	0		2 2	33	4 4
0	$\frac{1}{1}$				
s	$\frac{2}{2}$				
Ι	$\frac{3}{3}$				
ο	4 4				

		S	n	0	W
	0	1 1	2 2	33	4 4
0	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & ? \end{array}$			
s	$\frac{2}{2}$				
Ι	3				
ο	4 4				

		S	n	0	W
	0	1 1	2 2	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$			
s	$\frac{2}{2}$				
Ι	3				
ο	4 4				

		S	n	0	W
	0		22	33	4 4
0	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	$\begin{array}{c c} 2 & 3 \\ \hline 2 & ? \end{array}$		
s	2				
Ι	<u>3</u> 3				
ο	4 4				

		S	n	0	W
	0		2 2	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2		
s	$\frac{2}{2}$				
Ι	3				
ο	4 4				

		S	n	0	W
	0		2 2	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$\begin{array}{c cc} 2 & 4 \\ \hline 3 & ? \end{array}$	
s	$\frac{2}{2}$				
Ι	3				
ο	4 4				

		S	n	0	W
	0		2 2	33	4 4
0	$\left \begin{array}{c} 1 \\ \hline 1 \end{array} \right $	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	2 4 3 2	
s	2 2				
Ι	3				
ο	4				

		S	n	0	W
	0		22	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 ?
s	$\frac{2}{2}$				
Ι	3				
ο	4 4				

		S	n	0	W
	0		2 2	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$				
Ι	3				
ο	4 4				

		S	n	0	W
	0		22	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & ? \end{array}$			
Ι	3				
ο	4 4				

		S	n	0	W
	0		2 2	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$			
Ι	3				
ο	4				

		S	n	0	W
	0		2 2	33	4 4
ο	$\begin{array}{ c c }\hline 1\\\hline 1\end{array}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	2	1 2 3 1	$\begin{array}{c c} 2 & 3 \\ \hline 2 & ? \end{array}$		
Ι	3				
ο	4				

		S	n	0	W
	0	1 1	22	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2		
Ι	3				
ο	4				

		S	n	0	W
	0	1 1	22	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & ? \end{array}$	
Ι	3				
ο	4 4				

		S	n	0	W
	0	11	22	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	
Ι	3				
ο	4 4				

		S	n	0	W
	0	11	22	33	4 4
0	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	3 4 4 ?
Ι	3				
ο	4 4				

		S	n	0	W
	0	1 1	22	33	4 4
0	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	3 4 4 3
Ι	3				
ο	4 4				

		S	n	0	W
	0	1 1	2 2	33	4 4
0	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	3 4 4 3
I	3	3 2 4 ?			
ο	4 4				

		S	n	0	W
	0	11	2 2	33	4 4
0	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	2 4 3 2	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	33 33	3 4 4 3
I	3	32 42			
ο	4 4				

		S	n	0	W
	0	11	22	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	23 22	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	3 4 4 3
I	3	32 42	$\begin{array}{c c} 2 & 3 \\ \hline 3 & ? \end{array}$		
ο	4 4				

		S	n o		W
	0	1 1	2 2	33	4 4
0	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	2 4 3 2	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	33 33	3 4 4 3
I	3	32 42	2 3 3 2		
ο	4 4				

			9	5	n		0		W	
	0)	1	1	2	2	3	3	4	4
0	1		1	2	2	3	2	4	4	5
0	1		2	1	2	2	3	2	3	3
6	2	2	1	2	2	3	3	3	3	4
S	2	2	3	1	2	2	3	3	4	3
1	3	6	3	2	2	3	3	4		
	3	}	4	2	3	2	3	?		
	4	ŀ								
0	4	ŀ								

		9	5	n		0		W	
	 0	1	1	2	2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
6	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4		
	3	4	2	3	2	3	3		
	4								
0	4								

			9	5	n		0		W	
	- ()	1	1	2	2	3	3	4	4
	1	1	1	2	2	3	2	4	4	5
0	1	1	2	1	2	2	3	2	3	3
6	2	2	1	2	2	3	3	3	3	4
S	2	2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
		3	4	2	3	2	3	3	4	?
	4	1								
0	2	1								

			S		r	n)	v	v
	(0	1	1	2	2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
6		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
		3	4	2	3	2	3	3	4	4
	4	4								
0	4	4								

		S	n	0	W
	0		22	33	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
1	3	3 2	2 3	3 4	4 4
	3	4 2	3 2	3 3	4 4
	4	4 3			
0	4	5 ?			

		S	n	0	W
	0	1 1	22	33	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
1	3	3 2	2 3	3 4	4 4
I	3	4 2	3 2	3 3	4 4
	4	4 3			
0	4	5 3			

		S	n	0	W
	0		2 2	33	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
6	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
I	3	4 2	3 2	3 3	4 4
	4	4 3	3 3		
0	4	5 3	4 ?		

			S		r	n		0		v
		0	1	1	2	2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
I		3	4	2	3	2	3	3	4	4
		4	4	3	3	3				
0		4	5	3	4	3				

			S		r	n		0		v
	0		1	1	2	2	3	3	4	4
	1		1	2	2	3	2	4	4	5
0	1		2	1	2	2	3	2	3	3
	2		1	2	2	3	3	3	3	4
S	2		3	1	2	2	3	3	4	3
	3		3	2	2	3	3	4	4	4
I	3		4	2	3	2	3	3	4	4
	4		4	3	3	3	2	4		
0	4		5	3	4	3	4	?		

			9	S		۱	0	0		v
		0	1	1	2	2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
I		3	4	2	3	2	3	3	4	4
		4	4	3	3	3	2	4		
0		4	5	3	4	3	4	2		

			9	S		۱	0		v	V
	0)	1	1	2	2	3	3	4	4
	1		1	2	2	3	2	4	4	5
0	1		2	1	2	2	3	2	3	3
	2		1	2	2	3	3	3	3	4
S	2		3	1	2	2	3	3	4	3
	3		3	2	2	3	3	4	4	4
I	3		4	2	3	2	3	3	4	4
	4		4	3	3	3	2	4	4	5
0	4		5	3	4	3	4	2	3	?

		S		n		0		v	v
	0			2	2	3	3	4	4
	1	1 2	2	2	3	2	4	4	5
0	1	2 1	L	2	2	3	2	3	3
	2	1 2	2	2	3	3	3	3	4
S	2	3 1	L	2	2	3	3	4	3
1	3	3 2	2	2	3	3	4	4	4
I	3	4 2	2	3	2	3	3	4	4
	4	4 3	3	3	3	2	4	4	5
0	4	5 3	3	4	3	4	2	3	3

		S	n o		W
	0	11	22	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	2 4 3 2	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c cc} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	3 4 4 3
Ι	<u>3</u> 3	32 42	2 3 3 2	3 4 3 3	4 4 4 4
0	4	4 3 5 3	3 3 4 3	$\begin{array}{c c} 2 & 4 \\ \hline 4 & 2 \end{array}$	4 5 3 3

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
s	2	1 2	2 3	3 3	3 4
5	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
1	3	4 2	3 2	3 3	4 4
	4	4 3	3 3	2 4	4 5
0	4	5 3	4 3	4 2	3 3

How do I read out the editing operations that transform $\ensuremath{\operatorname{OSLO}}$ into $\ensuremath{\operatorname{SNOW}}\xspace?$

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
6	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
I	3	4 2	3 2	3 3	4 4
	4	4 3	3 3	2 4	4 5
0	4	5 3	4 3	4 2	3 3

cost	operation	input	output
1	insert	*	W

		S	s n		W
	0	1 1	2 2	33	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
I	3	4 2	3 2	3 3	4 4
	4	4 3	3 3	2 4	4 5
0	4	5 3	4 3	4 2	3 3

cost	operation	input	output
0	(copy)	0	0
1	insert	*	W

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
I	3	4 2	3 2	3 3	4 4
	4	4 3	3 3	2 4	4 5
0	4	5 3	4 3	4 2	3 3

cost	operation	input	output
1	replace	1	n
0	(copy)	0	0
1	insert	*	W

		S	n	0	W
	0	1 1	2 2	33	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	2 4 3 2	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	$ \begin{array}{c cc} 2 & 3 \\ \hline 2 & 2 \end{array} $	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	$\begin{array}{c c} 3 & 4 \\ \hline 4 & 3 \end{array}$
I	$\frac{3}{3}$	32 42	2 3 3 2	3 4 3 3	<u>4</u> 4 <u>4</u> 4
ο	4	4 3 5 3	3 3 4 3	2 4 4 2	4 5 3 3

cost	operation	input	output
0	(copy)	S	S
1	replace	1	n
0	(copy)	0	0
1	insert	*	W

		S	n	0	W
	0	1 1	2 2	3 3	4 4
ο	$\frac{1}{1}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 1 \end{array}$	2 3 2 2	$ \begin{array}{c cc} 2 & 4 \\ 3 & 2 \end{array} $	4 5 3 3
s	$\frac{2}{2}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 1 \end{array}$	2 3 2 2	$\begin{array}{c c} 3 & 3 \\ \hline 3 & 3 \end{array}$	3 4 4 3
Ι	3	3 2 4 2	2 3 3 2	3 4 3 3	4 4 4 4
ο	4 4	4 3 5 3	3 3 4 3	$\begin{array}{c c} 2 & 4 \\ \hline 4 & 2 \end{array}$	4 5 3 3

cost	operation	input	output		
1	delete	0	*		
0	(copy)	S	S		
1	replace	I	n		
0	(copy)	0	0		
1	insert	*	W		

			(С		a t		С		а		t		
		0	1	1	2	2	3	3	4	4	5	5	6	6
		1	0	2	2	3	3	4	3	5	5	6	6	7
C		1	2	0	1	1	2	2	3	3	4	4	5	5
2		2	2	1	0	2	2	3	3	4	3	5	5	6
а		2	3	1	2	0	1	1	2	2	3	3	4	4
+		3	3	2	2	1	0	2	2	3	3	4	3	5
L		3	4	2	3	1	2	0	1	1	2	2	3	3

			С		а	1	t	(2	â	à	t	t
	 0	1	1	2	2	3	3	4	4	5	5	6	6
с	 $\frac{1}{1}$	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4	6 5	7 5
а	 2 2	23	1 1	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4
t	 3 3	3 4	2 2	2 3	1 1	0 2	2 0	$\frac{2}{1}$	3 1	3 2	4 2	3 3	5 3

cost	operation	input	output
1	insert	*	с
1	insert	*	а
1	insert	*	t
0	(copy)	с	с
0	(copy)	а	а
0	(copy)	t	t

			0	ä	à	1	t	(5	á	à	f	t
	 0	1	1	2	2	3	3	4	4	5	5	6	6
с	 $\frac{1}{1}$	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4	6 5	7 5
а	 2 2	23	1 1	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4
t	 3 3	3 4	2	2 3	1 1	0 2	2 0	$\frac{2}{1}$	3 1	3 2	4 2	3 3	5 3

cost	operation	input	output
0	(copy)	с	с
1	insert	*	а
1	insert	*	t
1	insert	*	с
0	(copy)	а	а
0	(copy)	t	t

			0	ä	à	1	t	(5	á	à	f	t
	 0	1	1	2	2	3	3	4	4	5	5	6	6
с	 $\frac{1}{1}$	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4	6 5	7 5
а	 2 2	23	1 1	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4
t	 3 3	3 4	2	2 3	1 1	0 2	2 0	$\frac{2}{1}$	3 1	3 2	4 2	3 3	5 3

cost	operation	input	output
0	(copy)	с	с
0	(copy)	а	а
1	insert	*	t
1	insert	*	с
1	insert	*	а
0	(copy)	t	t

			0	i	a	1	t	(0	á	a	1	t
	 0	1	1	2	2	3	3	4	4	5	5	6	6
с	 $\frac{1}{1}$	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4	6 5	7 5
а	 2 2	23	1 1	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3	5 4	6 4
t	 3 3	3 4	2	2 3	1 1	0 2	2 0	2 1	3 1	3 2	4 2	3 3	5 3

cost	operation	input	output
0	(copy)	с	с
0	(copy)	а	а
0	(copy)	t	t
1	insert	*	с
1	insert	*	а
1	insert	*	t

Outline

1 Recap

2 Dictionaries

3 Wildcard queries

4 Edit distance

6 Soundex

Spelling correction

Two principal uses

- Correcting documents being indexed
- Correcting user queries
- Two different methods for spelling correction
- Isolated word spelling correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g., *an asteroid that fell form the sky*
- Context-sensitive spelling correction
 - Look at surrounding words
 - Can correct *form/from* error above

Correcting documents

- We're not interested in interactive spelling correction of documents (e.g., MS Word) in this class.
- In IR, we use document correction primarily for OCR'ed documents. (OCR = optical character recognition)
- The general philosophy in IR is: don't change the documents.

Correcting queries

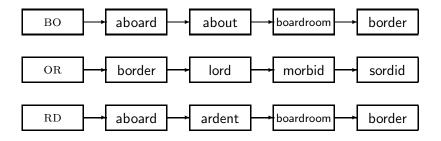
- First: isolated word spelling correction
- Premise 1: There is a list of "correct words" from which the correct spellings come.
- Premise 2: We have a way of computing the distance between a misspelled word and a correct word.
- Simple spelling correction algorithm: return the "correct" word that has the smallest distance to the misspelled word.
- Example: *informaton* \rightarrow *information*

- For the list of correct words, we can use the vocabulary of all words that occur in our collection.
- Why is this problematic?
- Alternatives:
- A standard dictionary (Webster's, OED, etc.)
- An industry-specific dictionary (for specialized IR systems)
- The term vocabulary of the collection, appropriately weighted

Distance between misspelled word and "correct" word

We will study several alternatives:

- Edit distance and Levenshtein distance
- Weighted edit distance
- k-gram overlap


Using edit distance for spelling correction

- Obvious way: Compute the edit distance of the query term to every term in the vocubulary.
- This exhaustive search is very expensive!
- Alternative: Given query, first enumerate all character sequences within a preset (possibly weighted) edit distance
- Intersect this set with our list of "correct" words
- Then suggest terms in the intersection to the user.

k-gram indexes for spelling correction

- Enumerate all k-grams in the query term
- Example: 2-gram (bigram) index, misspelled word bordroom
- Bigrams: bo, or, rd, dr, ro, oo, om
- Use the *k*-gram index to retrieve "correct" words that match query term *k*-grams
- Threshold by number of matching k-grams
- E.g., only vocabulary terms that differ by at most 3 k-grams
- This list still contains a lot of implausible corrections, compute the edit distance of all matching terms to the query term and select only those with the smallest distance.

k-gram indexes for spelling correction: bordroom

Context-sensitive spelling correction

- Our example was: an asteroid that fell form the sky
- How can we correct *form* here?
- One idea: hit-based spelling correction
 - Retrieve "correct" terms close to each query term
 - for flew form munich: flea for flew, from for form, munch for munich
 - Now try all possible resulting phrases as queries with one word "fixed" at a time
 - Try query "flea form munich"
 - Try query "flew from munich"
 - Try query "flew form munch"
 - The correct query "flew from munich" has the most hits.
- Suppose we have 7 alternatives for *flew*, 20 for *form* and 3 for *munich*, how many "corrected" phrases will we enumerate?

Context-sensitive spelling correction

- The "hit-based" algorithm we just outlined is not very efficient.
- More efficient alternative: look at "collection" of queries, not documents (i.e. log or history of queries)

General issues in spelling correction

- automatic vs. suggested correction
 - automatic correction disempowers the user.
- User interface
 - Did you mean only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs. powerful UI
- Cost
 - Spelling correction is potentially expensive.
 - Avoid running on every query?
 - Maybe just on queries that match few documents.
 - Guess: Spelling correction of major search engines is efficient enough to be run on every query.

Outline

1 Recap

- 2 Dictionaries
- ③ Wildcard queries
- 4 Edit distance
- **5** Spelling correction

Soundex

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
- Example: chebyshev / tchebyscheff
- Algorithm:
 - Turn every token to be indexed into a 4-character reduced form
 - Do the same with query terms
 - Build and search an index on the reduced forms

Soundex algorithm

- Retain the first letter of the term.
- Change all occurrences of the following letters to '0' (zero): A, E, I, O, U, H, W, Y
- Ohange letters to digits as follows:
 - B, F, P, V to 1
 - ${\scriptstyle \bullet}$ C, G, J, K, Q, S, X, Z to 2
 - D,T to 3
 - L to 4
 - M, N to 5
 - R to 6
- Repeatedly remove one out of each pair of consecutive identical digits
- Remove all zeros from the resulting string; pad the resulting string with trailing zeros and return the first four positions, which will consist of a letter followed by three digits

Example: Soundex of HERMAN

- Retain H
- $ERMAN \rightarrow ORMON$
- $0RM0N \rightarrow 06505$
- $06505 \rightarrow 06505$
- $06505 \rightarrow 655$
- Return *H655*
- Note: HERMANN will generate the same code

How useful is Soundex?

- Not very for information retrieval
- Ok for "high recall" tasks in other applications (e.g., Interpol)
- Zobel and Dart (1996) suggest better alternatives for phonetic matching in IR.

Exercise

• Compute Soundex code of your last name

Take-away

- Tolerant retrieval: What to do if there is no exact match between query term and document term
- Wildcard queries
- Spelling correction

Resources

- Chapter 3 of IIR
- Resources at http://ifnlp.org/ir
 - trie vs hash vs ternary tree
 - Soundex demo
 - Edit distance demo
 - Peter Norvig's spelling corrector
 - Google: wild card search, spelling correction gone wrong, a misspelling that is more frequent that the correct spelling