

Fallout Measure
 Recall = R ∩ A / R What is the recall when there are no relevant docs to be retrieved ? Precision = R ∩ A / A What is the precision if no docs are retrieved ? Both recall and precision are concerned with retrieved relevant docs Fallout is concerned with retrieved but non-relevant docs F = A - R / D - R

User-oriented Measure of Performance

- It is also important to take into account what the (different) users feel about the answer sets
- Users may consider the same answer set of different usefulness, this is specially true if they know (in different degrees) the answers they "should" obtain
- In addition to *R* and *A* let us also consider the following subsets of *R*:
 - K: set of answers which are known to the user and,
 - *U*: set of answers which were not known by the user and were retrieved

<u> </u>			
Collection Name	Number Of Documents	Number Of Queries	Raw Size (Mbytes)
CACM	3,204	64	1.5
CISI	1,460	112	1.3
CRAN	1,400	225	1.6
MED	1,033	30	1.1
TIME	425	83	1.5
Most co	llections av	ailable from	http://www.sigir.org

Obtaining Relevance Judgments · Exhaustive assessment can be too expensive TREC has 50 topics for >2 million docs each year • Random sampling won't work either If relevant docs are rare, none may be found! • IR systems can help focus the sample • Each system finds some relevant documents • Different systems find different relevant documents • Together, enough systems will find most of them **Pooled Assessment Method** · Each system submits top 100 documents • All are placed in a single pool • Duplicates are eliminated · Placed in an arbitrary order to avoid bias • Evaluated by the person that wrote the topic Assume un-evaluated documents not relevant

