
1

Query languages

Query languages

• The answers an IR system will provide depend
on the retrieval model

• Information retrieval ≠ Data retrieval
• Main difference: ranking

• A protocol is a lower level language, i.e., it’s a
language for the applications to communicate,
but it is not a query language

• Languages should be able to use the semantics
of the information as well as its structure
• Query expansion, thesaurus and stemming may be

used (more on this later)

2

Keyword-based Querying

• Single-word querying

• Very popular on the WWW

• Which of the following is a single term ?
• on-line
• http://www.acm.org
• data bases

• Depending on the model some terms may not be
indexed

Phrasal Queries

• Retrieve documents with a specific phrase
(ordered list of contiguous words)
• “information theory”

• May allow intervening stop words and/or
stemming.
• “buy camera” matches:

“buy a camera”
“buying the cameras”
etc.

3

Proximity Queries

• List of words with specific maximal distance
constraints between terms.

• Example: “dogs” and “race” within 4 words
match “…dogs will begin the race…”

• May also perform stemming and/or not
count stop words.

Boolean Querying

• Traditional operators:
• AND, OR and NOT
• Sub-expressions may be composed
• Naive users may be confused

• A and (B or C) ≠ A and B or C

• A possibility is to ignore the operators and only pay
attention to the operands, basically OR’ing all of them.
Ranking is based on how well the docs match the set
of query terms. What about NOT though ?

• BUT instead of NOT
• A but B= A and (not B) – first retrieve all documents

satisfying A and then filter those not satisfying B

4

Pattern Matching

• Allow queries that match strings rather than
word tokens.

• Requires more sophisticated data structures
and algorithms to retrieve efficiently.

Simple Patterns

• Prefixes: Pattern that matches start of word.
• “anti” matches “antiquity”, “antibody”, etc.

• Suffixes: Pattern that matches end of word:
• “ix” matches “fix”, “matrix”, etc.

• Substrings: Pattern that matches arbitrary
subsequence of characters.
• “rapt” matches “enrapture”, “velociraptor” etc.

• Ranges: Pair of strings that matches any word
lexicographically (alphabetically) between
them.
• “tin” to “tix” matches “tip”, “tire”, “title”, etc.

5

Allowing Errors

• What if query or document contains typos or
misspellings?

• Judge similarity of words (or arbitrary
strings) using:
• Edit distance (Levenstein distance)
• Longest Common Subsequence (LCS)

• Allow proximity search with bound on string
similarity.

Edit (Levenstein) Distance

• Minimum number of character deletions,
additions, or replacements needed to make
two strings equivalent.
• “misspell” to “mispell” is distance 1
• “misspell” to “mistell” is distance 2
• “misspell” to “misspelling” is distance 3

• Can be computed efficiently using dynamic
programming in O(mn) time where m and n
are the lengths of the two strings being
compared.

6

Longest Common Subsequence (LCS)

• Length of the longest subsequence of
characters shared by two strings.

• A subsequence of a string is obtained
by deleting zero or more characters.

• Examples:
• “misspell” to “mispell” is 7
• “misspelled” to “misinterpretted” is 7

“mis…p…e…ed”

Regular Expressions
• Language for composing complex patterns

from simpler ones.
• An individual character is a regex.
• Union: If e1 and e2 are regexes, then (e1 | e2) is

a regex that matches whatever either e1 or e2
matches.

• Concatenation: If e1 and e2 are regexes, then e1
e2 is a regex that matches a string that consists of
a substring that matches e1 immediately followed
by a substring that matches e2

• Repetition (Kleene closure): If e1 is a regex, then
e1* is a regex that matches a sequence of zero or
more strings that match e1

7

Regular Expression Examples

• (u|e)nabl(e|ing) matches
• unable
• unabling
• enable
• enabling

• (un|en)*able matches
• able
• unable
• unenable
• enununenable

Structured Queries

• So far, we assumed documents that are entirely free of
structure.

• Structured documents would allow more powerful queries.
• Queries could combine text queries with structural queries:

queries that relate to the structure of the document.
• Example: Retrieve documents that contain a page in which

the phrase “terrorist attack”appears in the text and a photo
whose caption contains the phrase “World Trade Center”.

• The corresponding query could be:samepage(“terrorist
attack”, photo(caption(“World Trade Center”))).

• The three main structures:
1. Form-like fixed structure
2. Hypertext structure
3. Hierarchical structure

8

Structured Queries (cont.)
Fixed Structure

• Document is divided to a fixed set of fields, much like a filled form.
• Fields may be associated with types, such as date.
• Each field has text
• Fields cannot nest or overlap.
• Queries (multiple-words, Boolean, proximity, patterns, etc.) are targeted at
particular fields.

• Suitable for documents such as mail messages, with fields for
• Sender
• Receiver
• Date
• Subject
• Message body

• Lends itself to storage and manipulation in relational databases.
• However, there may not be any domain constraints for the fields – such
constraints are important for a RDBMS to be efficient
• On the one hand it requires a well-defined structure, which is something we
may not want to impose
•There is a on-going effort to extend RDBMS to incorporate full-text retrieval
capabilities, though not in a full text retrieval but rather in a structured text
retrieval setting (XML-ish stuff)

Structured Queries (cont.)

Hypertext.

• The most general document structure.
• The term hypertext was coined by American computer scientist Ted
Nelson in 1965 to describe textual information that could be accessed in a
nonlinear way.
• The prefix hyper describes the speed and facility with which users could
jump to and from related areas of text.
• Each document is divided into regions (nodes),where a region could be
a section, a paragraph, or an entire document; regions may be nested.
• The nodes are connected with directed links. A link is anchored in a
phrase or a word in one node and leads to another node.
• Result is a network of document parts.
• However, the WWW was used for browsing only, until the first search engines
appeared
• Even today the searches are mostly based on HTML documents and do not
explore (with some exceptions) the graph nature of a page.

9

Structured Queries (cont.)

Hierarchical structure.

• Intermediate model between fixed structure and
hypertext.

• The “anarchic”hypertext network is restricted to a
hierarchical structure.

• The model allows recursive decomposition of
documents.

• Queries may combine
• Regular text queries, which are targeted at particular

areas (the target area is defined by a “path
expression”).

• Queries on the structure itself; for example “retrieve
documents with at least 5 sections”

Query example

Structured Queries (cont.)

10

11

WAIS (Wide Area Information Servers)

• Searching of databases on the Internet.
• In response to a word or words entered by a user,

WAIS displays a list of names of documents on the
server computer that match the query.

• Documents containing numerous uses of the
keywords appear at the top of the list; those with only
a single reference appear at the bottom of the list

• WAIS servers are specialized, each dealing with a
specific subject, such as astronomy, physics, cooking,
or political issues.

SFQL (Structured Full-text Query
Language)

• Document retrieval language based on SQL.
• Merging of database and information retrieval technologies.
• Documents are stored in relations.
• Each document is a row.
• Documents are assumed to be marked (“tagged”) by a standard markup language, such

as SGML.
• There are columns for “tagged”regions of the documents; for example,

• Date
• Abstract
• The full text

• The familiar SELECT statement is used to express queries. It consists of three basic
clauses:

• The from clause lists the document collections.
• The where clause specifies the criteria for including documents (records)in the result.
• The select clause specifies a list of tag-fields to be returned from matched documents

(records).
• Example:

Select author
From Washington-Post union Washington-Times
Where title contains“Michael Jordan”and date > 10/1/01 and article contains “return”

within 3 words of “game”;

12

Conclusion

• The truth is there is not really a standard IR
query language, nor interface …

• Main reason (IMHO): if one cannot precisely
state what information is needed, how to come
up with a precise language to express that ?

