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Query Operations

Query Operations

• The main goal: refine a query and improve the usefulness of the 
obtained answer

• Starting with a “naive” query, the IR system should be able to 
observe the user’s judgment on relevance and use it to improve 
retrieval effectiveness

• Note that this involves possible addition of new query terms as 
well as reweighting of terms in the original query

• Approaches for improving the initial query
• Feedback information from the user (relevance feedback methods)
• Information derived from the set of initially retrieved documents (local 

analysis)
• Information derived from the document collection (global analysis)
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Relevance Feedback

• The user issues a query, and marks some documents 
as relevant. The query engine then uses the terms 
indexing those documents (a vector model is 
assumed) to expand and reweight the original query 
terms

• The whole idea is move the query away from the set of 
non-relevant documents (or closer to the relevant 
ones)

• Basic assumptions:
• Relevant documents resemble each other
• The term-weight vectors of non-relevant documents are dissimilar 

from the ones for the relevant documents
• Advantages:

• All users need to do is to judge relevance
• Allows incremental searching (“browsing” like)
• Relevance definition is based on interaction

Relevance Feedback Architecture
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Term Reweighting in the Vector Model

• The vector model measures similarity between 
documents by using vectors for the documents 
and for the queries

• By declaring a set of document relevant, we 
may move the query closer to them

• Let us use the following notation:
• Dr, set of relevant docs, identified by the user, 

among the ones retrieved
• Dn, set of non-relevant docs among the ones 

retrieved
• Cr, set of relevant docs in the collection

Term Reweighting in the Vector Model

• If Cr is known in advance (that’s not a realistic assumption):

where N is the number of documents 

• Realistic possibilities:

• One can use α = β = γ = 1, or γ < β (meaning that the relevant docs are more 

important than the non-relevant); γ = 0 is even more strict (positive feedback)

∑∑
∉∀∈∀ −

−=
rjrj Cd

j
rCd

j
r

opt d
CN

d
C

q 11

Standard_Rochio
j r j n

new old j j
d D d Dr n

q q d d
D D
β γα

∀ ∈ ∀ ∈

= + −∑ ∑

Ide_Regular
j r j n

new old j j
d D d D

q q d dα β γ
∀ ∈ ∀ ∈

= + −∑ ∑

max ( ) Ide_Dec_Hi
j r

new old j non relevant j
d D

q q d dα β γ −
∀ ∈

= + −∑



4

Example Rocchio Calculation
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Term Reweighting in the Vector Model

• How good is the modified query ?
• If one measures precision-recall figures using the old and the 

new queries he/she is likely to find great improvement
• By construction, reformulated query will rank explicitly-marked 

relevant documents higher and explicitly-marked irrelevant 
documents lower.

• This should be considered with care: the term reweighting will 
further increase the precision-recall figures for the documents 
used in the previous steps

• A better idea is to use the residual collection: remove from the
corpus any documents flagged as relevant before.

• Measure recall/precision performance on the remaining residual 
collection.

• Compared to complete corpus, specific recall/precision 
numbers may decrease since relevant documents were 
removed.

• However, relative performance on the residual collection 
provides fair data on the effectiveness of relevance feedback.
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Non-user relevance feedback

• User relevance feedback
• Clustering hypothesis

• known relevant documents contain terms which can be used to 
describe a larger cluster of relevant documents

• Description of cluster built interactively with user 
assistance

• Other approach
• Obtain cluster description automatically
• Identify terms related to query terms

• Synonyms, stemming variations
• Terms close to query terms in text

• Local strategies
• Global strategies

• Pose initial query
• Rank documents from collection
• Extract candidate expansion 
terms from supposedly relevant 
documents
• Select terms and reformulate 
query
• Do final ranking of documents
• Present results

Automatic Local Analysis
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Local Clustering

• We use the idea of stemming to characterize 
the similarity between terms

• Let us define, for a query Q:
• S(s) as the variants of a stem s

• S(read) = {reading, reads, readable, …}
• Dl as the local set of returned docs 
• Vl as the local set of all distinct words in Dl
• Sl as the set of stems of the terms in Vl

Local Clustering

• Local analysis of docs may be too expensive, 
specially in a WWW context:
• Retrieving the text of 100 Web documents for local 

analysis would take too long
• Note that Vl and Sl can be obtained at indexing 

time (with a somewhat small overhead)
• How to form clusters of terms ?
• We’ll see three ideas: association clusters, 

metric clusters, scalar clusters
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Association Clusters
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• Unnormalized correlation factor favors more frequent terms.

• Normalized correlation factor is 1 if two terms have the same 
frequency in all documents.

Association Clusters (cont.)

• Given S, how can we build the association 
clusters ?

• Assume a function Su(n) which returns  the n 
largest values of the u-th row of S

• Su(n) returns the values associated with the 
stems which yielded higher association with 
stem u across all documents

• Then the set of stems associated with Su(n) is a 
cluster of terms around su with no user 
intervention !
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Example: n=6, |Dl|=4

C is left unnormalized.
the closest neighbor of…

• k1 – k3
• k2 – k5
• k3 – k1
• k4 – k3
• k5 – k2 and k4
• k6 – k3

Metric Clusters
• Association correlation does not account for the proximity of 

terms in documents, just co-occurrence frequencies within 
documents.

• Metric correlations account for term proximity.
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Metric clusters are in general more effective than associative clusters
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Scalar Clusters
• Consider the rows      and       of the association matrix 

S – if  they are “similar” then stems u and v are likely to 
be similar as well.

• For example consider the following documents (overly 
simplified):
• Document 1: “the last reading was very high”
• Document 2: “the last measurement was very high”
• Terms “reading” and “measurement” are considered as 

similar
• To measure such similarity we use the cosine between      

,   . The new association matrix S is defined as

• We can then obtain a cluster for u by re-using the idea 
of Su(n)
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Global Analysis

• Thus far we’ve used a local analysis in the 
sense that only the documents returned were 
taken into account

• Can we take the whole set of documents into 
account ?

• Indeed we can build a “thesaurus” using all 
documents, however, this is an expensive task. 
Fortunately, can be done once and updated 
incrementally

• Some experiments have shown this to be a 
worthwhile approach
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Similarity Thesaurus

• The similarity thesaurus is based on term to term relationships 
rather than on a matrix of co-occurrence.

• This relationship are not derived directly from co-occurrence of 
terms inside documents.

• They are obtained by considering that the terms are concepts in 
a concept space.

• In this concept space, each term is indexed by the documents in 
which it appears.

• Terms assume the original role of documents while documents 
are interpreted as indexing elements

Similarity Thesaurus
• The following definitions establish the proper framework

• t: number of terms in the collection

• N: number of documents in the collection

• fi,j: frequency of occurrence of the term ki in the document dj

• tj: vocabulary of document dj (number of distinct index terms in the document)

• itfj: inverse term frequency for document dj, namely
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Similarity Thesaurus
• The relationship between two terms ku and ky is computed as a 

correlation factor cu,v given by

• The global similarity thesaurus is built through the computation of 
correlation factor Cu,v for each pair of indexing terms [ku ,kv ] in the 
collection

• This computation is expensive
• Global similarity thesaurus has to be computed only once and can

be updated incrementally
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Similarity Thesaurus
• Query expansion is done in three steps as follows:

• Represent the query in the concept space used for representation of the 
index terms

where wi,q is a weight associated to the index-query pair[ki ,q]
• Based on the global similarity thesaurus, compute a similarity sim(q,kv ) 

between each term kv correlated to the query terms and the whole query 
q:

where cu,v is the correlation factor
• Expand the query with the top r ranked terms according to sim(q,kv) to 

form the expanded query q’
• We assign a weight wv to each expansion term kv in the query q’:

• The expanded query q’ is then used to retrieve new documents to the 
user

i
qk

qi kw
i

∑
∈

= ,q

∑
∈

×=⋅=
qk

vu,qu,vv
u

cwkq)ksim(q,

∑
∈

=

qk
qu,

v
q'v,

u

w
)ksim(q,w



12

Similarity Thesaurus

• Query q has two terms t, t’
• qc the query concept defined by the weighted sum of t, t’ (see last overhead)
• Terms t1, t2 most similar to query concept: expansion of q using these terms
• Expansion in previous methods has been based on correlation to single query 

terms: expansion of q with terms t3 and t4.

Query Expansion
• Is it economically viable ?
• Local analysis would need to retrieve all 

documents in the answer (not only “headers”)
• On the one hand, it might be too expensive to 

be processed on the client due to the network 
contention

• Further to that, processing it in the server 
(which has the documents) may be problematic 
as the system’s throughput is bound to 
decrease

• Global analysis is “cheaper”, can be done 
incrementally and seems to be effective


