
1

Query Operations

Query Operations

• The main goal: refine a query and improve the usefulness of the
obtained answer

• Starting with a “naive” query, the IR system should be able to
observe the user’s judgment on relevance and use it to improve
retrieval effectiveness

• Note that this involves possible addition of new query terms as
well as reweighting of terms in the original query

• Approaches for improving the initial query
• Feedback information from the user (relevance feedback methods)
• Information derived from the set of initially retrieved documents (local

analysis)
• Information derived from the document collection (global analysis)

2

Relevance Feedback

• The user issues a query, and marks some documents
as relevant. The query engine then uses the terms
indexing those documents (a vector model is
assumed) to expand and reweight the original query
terms

• The whole idea is move the query away from the set of
non-relevant documents (or closer to the relevant
ones)

• Basic assumptions:
• Relevant documents resemble each other
• The term-weight vectors of non-relevant documents are dissimilar

from the ones for the relevant documents
• Advantages:

• All users need to do is to judge relevance
• Allows incremental searching (“browsing” like)
• Relevance definition is based on interaction

Relevance Feedback Architecture

RankingsIR
System

Document
corpus

Ranked
Documents

1. Doc1
2. Doc2
3. Doc3

.

.
1. Doc1 ⇓
2. Doc2 ⇑
3. Doc3 ⇓

.

.
Feedback

Query
String

Revised
Query

ReRanked
Documents

1. Doc2
2. Doc4
3. Doc5

.

.

Query
Reformulation

3

Term Reweighting in the Vector Model

• The vector model measures similarity between
documents by using vectors for the documents
and for the queries

• By declaring a set of document relevant, we
may move the query closer to them

• Let us use the following notation:
• Dr, set of relevant docs, identified by the user,

among the ones retrieved
• Dn, set of non-relevant docs among the ones

retrieved
• Cr, set of relevant docs in the collection

Term Reweighting in the Vector Model

• If Cr is known in advance (that’s not a realistic assumption):

where N is the number of documents

• Realistic possibilities:

• One can use α = β = γ = 1, or γ < β (meaning that the relevant docs are more

important than the non-relevant); γ = 0 is even more strict (positive feedback)

∑∑
∉∀∈∀ −

−=
rjrj Cd

j
rCd

j
r

opt d
CN

d
C

q 11

Standard_Rochio
j r j n

new old j j
d D d Dr n

q q d d
D D
β γα

∀ ∈ ∀ ∈

= + −∑ ∑

Ide_Regular
j r j n

new old j j
d D d D

q q d dα β γ
∀ ∈ ∀ ∈

= + −∑ ∑

max () Ide_Dec_Hi
j r

new old j non relevant j
d D

q q d dα β γ −
∀ ∈

= + −∑

4

Example Rocchio Calculation

()

)04.1,033.0,488.0,022.0,527.0,01.0,002.0,000875.0,011.0(
12

25.0
75.0

1
)950,.00.0,450,.00.0,500,.00.0,00.0,00.0,00.0(
)00.0,020,.00.0,025,.005,.00.0,020,.010,.030(.

)120,.100,.100,.025,.050,.002,.020,.009,.020(.
)120,.00.0,00.0,050,.025,.025,.00.0,00.0,030(.

121

1

2

1

=

⎟
⎠
⎞

⎜
⎝
⎛ ×−⎟

⎠
⎞

⎜
⎝
⎛ +×+×=

=
=
=
=
=

=
=

new

new

Q

SRRQQ

Q
S

R
R

γβα

γ
β
α

Relevant
docs

Non-rel doc

Original Query

Constants

Rocchio Calculation

Resulting feedback query

Term Reweighting in the Vector Model

• How good is the modified query ?
• If one measures precision-recall figures using the old and the

new queries he/she is likely to find great improvement
• By construction, reformulated query will rank explicitly-marked

relevant documents higher and explicitly-marked irrelevant
documents lower.

• This should be considered with care: the term reweighting will
further increase the precision-recall figures for the documents
used in the previous steps

• A better idea is to use the residual collection: remove from the
corpus any documents flagged as relevant before.

• Measure recall/precision performance on the remaining residual
collection.

• Compared to complete corpus, specific recall/precision
numbers may decrease since relevant documents were
removed.

• However, relative performance on the residual collection
provides fair data on the effectiveness of relevance feedback.

5

Non-user relevance feedback

• User relevance feedback
• Clustering hypothesis

• known relevant documents contain terms which can be used to
describe a larger cluster of relevant documents

• Description of cluster built interactively with user
assistance

• Other approach
• Obtain cluster description automatically
• Identify terms related to query terms

• Synonyms, stemming variations
• Terms close to query terms in text

• Local strategies
• Global strategies

• Pose initial query
• Rank documents from collection
• Extract candidate expansion
terms from supposedly relevant
documents
• Select terms and reformulate
query
• Do final ranking of documents
• Present results

Automatic Local Analysis

6

Local Clustering

• We use the idea of stemming to characterize
the similarity between terms

• Let us define, for a query Q:
• S(s) as the variants of a stem s

• S(read) = {reading, reads, readable, …}
• Dl as the local set of returned docs
• Vl as the local set of all distinct words in Dl
• Sl as the set of stems of the terms in Vl

Local Clustering

• Local analysis of docs may be too expensive,
specially in a WWW context:
• Retrieving the text of 100 Web documents for local

analysis would take too long
• Note that Vl and Sl can be obtained at indexing

time (with a somewhat small overhead)
• How to form clusters of terms ?
• We’ll see three ideas: association clusters,

metric clusters, scalar clusters

7

Association Clusters

, , (Unnormalized) oru v u vs c=

s1 s2 s3 …………………..sn
s1
s2
s3
.
.
sn

c11 c12 c13…………………c1n
c21
c31
.
.

cn1

cuv: Correlation factor between term u and term v

, ,u v

j l

uv s j s j
d D

c f f
∈

= ×∑ fik : Frequency of stem i in document k

Association matrix S:

,
,

, , ,

(Normalized)u v
u v

u u u u u v

c
s

c c c
=

+ −
• Unnormalized correlation factor favors more frequent terms.

• Normalized correlation factor is 1 if two terms have the same
frequency in all documents.

Association Clusters (cont.)

• Given S, how can we build the association
clusters ?

• Assume a function Su(n) which returns the n
largest values of the u-th row of S

• Su(n) returns the values associated with the
stems which yielded higher association with
stem u across all documents

• Then the set of stems associated with Su(n) is a
cluster of terms around su with no user
intervention !

8

Example: n=6, |Dl|=4

C is left unnormalized.
the closest neighbor of…

• k1 – k3
• k2 – k5
• k3 – k1
• k4 – k3
• k5 – k2 and k4
• k6 – k3

Metric Clusters
• Association correlation does not account for the proximity of

terms in documents, just co-occurrence frequencies within
documents.

• Metric correlations account for term proximity.

,
() ()

1
(,)

i u j v

u v
k V s k V s i j

c
r k k∈ ∈

= ∑ ∑
V(su), V(sv) : sets of keywords which have su and sv as their respective stems.
r(ki,kj): Distance in words between word occurrences ki and kj

(∞ if ki and kj are occurrences in different documents).
Association matrix S:

, ,

,
,

(Unnormalized) or

(Normalized)
() ()

u v u v

u v
u v

u v

s c
c

s
V s V s

=

=
×

Metric clusters are in general more effective than associative clusters

9

Scalar Clusters
• Consider the rows and of the association matrix

S – if they are “similar” then stems u and v are likely to
be similar as well.

• For example consider the following documents (overly
simplified):
• Document 1: “the last reading was very high”
• Document 2: “the last measurement was very high”
• Terms “reading” and “measurement” are considered as

similar
• To measure such similarity we use the cosine between

, . The new association matrix S is defined as

• We can then obtain a cluster for u by re-using the idea
of Su(n)

,
u v

u v
u v

s
s s

s s
⋅

=
×

uS vS

uS vS

Global Analysis

• Thus far we’ve used a local analysis in the
sense that only the documents returned were
taken into account

• Can we take the whole set of documents into
account ?

• Indeed we can build a “thesaurus” using all
documents, however, this is an expensive task.
Fortunately, can be done once and updated
incrementally

• Some experiments have shown this to be a
worthwhile approach

10

Similarity Thesaurus

• The similarity thesaurus is based on term to term relationships
rather than on a matrix of co-occurrence.

• This relationship are not derived directly from co-occurrence of
terms inside documents.

• They are obtained by considering that the terms are concepts in
a concept space.

• In this concept space, each term is indexed by the documents in
which it appears.

• Terms assume the original role of documents while documents
are interpreted as indexing elements

Similarity Thesaurus
• The following definitions establish the proper framework

• t: number of terms in the collection

• N: number of documents in the collection

• fi,j: frequency of occurrence of the term ki in the document dj

• tj: vocabulary of document dj (number of distinct index terms in the document)

• itfj: inverse term frequency for document dj, namely

j
j t

titf log=

We associate to term ki the vector),....,,(k ,2,1,i Niii www=
→

where wi,j is a weight associated to index-document pair[ki ,dj].
These weights are computed as follows

∑
=

×+

××+
=

N

l
j

lil

li

j
jij

ji

ji

itf
f

f

itf
f

f

w

1

22

,

,

,

,

,

)
)(max

5.05.0(

)
)(max

5.05.0(

11

Similarity Thesaurus
• The relationship between two terms ku and ky is computed as a

correlation factor cu,v given by

• The global similarity thesaurus is built through the computation of
correlation factor Cu,v for each pair of indexing terms [ku ,kv] in the
collection

• This computation is expensive
• Global similarity thesaurus has to be computed only once and can

be updated incrementally

∑
∀

×=⋅=
jd

jv,ju,vuvu, wwkkc

Similarity Thesaurus
• Query expansion is done in three steps as follows:

• Represent the query in the concept space used for representation of the
index terms

where wi,q is a weight associated to the index-query pair[ki ,q]
• Based on the global similarity thesaurus, compute a similarity sim(q,kv)

between each term kv correlated to the query terms and the whole query
q:

where cu,v is the correlation factor
• Expand the query with the top r ranked terms according to sim(q,kv) to

form the expanded query q’
• We assign a weight wv to each expansion term kv in the query q’:

• The expanded query q’ is then used to retrieve new documents to the
user

i
qk

qi kw
i

∑
∈

= ,q

∑
∈

×=⋅=
qk

vu,qu,vv
u

cwkq)ksim(q,

∑
∈

=

qk
qu,

v
q'v,

u

w
)ksim(q,w

12

Similarity Thesaurus

• Query q has two terms t, t’
• qc the query concept defined by the weighted sum of t, t’ (see last overhead)
• Terms t1, t2 most similar to query concept: expansion of q using these terms
• Expansion in previous methods has been based on correlation to single query

terms: expansion of q with terms t3 and t4.

Query Expansion
• Is it economically viable ?
• Local analysis would need to retrieve all

documents in the answer (not only “headers”)
• On the one hand, it might be too expensive to

be processed on the client due to the network
contention

• Further to that, processing it in the server
(which has the documents) may be problematic
as the system’s throughput is bound to
decrease

• Global analysis is “cheaper”, can be done
incrementally and seems to be effective

