
1

Text Processing

Text Processing

• Document pre-processing
1. Lexical analysis
2. Stopword elimination
3. Stemming
4. Index-term selection
5. Thesauri

• Text Compression
1. Statistical methods
2. Huffman coding
3. Dictionary methods
4. Ziv-Lempel compression

2

Document Pre-processing
• Document pre-processing is the process of incorporating a new

document into an information retrieval system.
• The goal is to

– Represent the document efficiently in terms of both space (for storing
the document) and time (for processing retrieval requests)
requirements.

– Maintain good retrieval performance (precision and recall).
• Document pre-processing is a complex process that leads to the

representation of each document by a selected set of index terms.
• However, some Web search engines are giving up on much of this

process and index all (or virtually all) the words in a document).
• Document pre-processing includes 5 stages:

– Lexical analysis
– Stopword elimination
– Stemming
– Index-term selection
– Construction of thesauri

Lexical Analysis
• Objective: Determine the words of the document.
• Lexical analysis separates the input alphabet into

– Word characters (e.g., the letters a-z)
– Word separators (e.g., space, newline, tab)

• The following decisions may have impact on retrieval
– Digits: Used to be ignored, but the trend now is to identify

numbers (e.g., telephone numbers, credit card numbers) and
mixed strings (e.g., model numbers) as words.

– Punctuation marks: Usually treated as word separators (but in
documents about programming languages “x.id” may be different
from “xid”)

– Hyphens: Should we interpret “pre-processing” as “pre
processing” or as “preprocessing”?

– Letter case: Often ignored, but then a search for “First Bank” (a
specific bank) would retrieve a document with the phrase “Bank
of America was the first bank to offer its customers…”

3

Stopword Elimination
• Objective: Filter out words that occur in most of the documents.
• Such words have no value for retrieval purposes (they are said to

have low discrimination value).
• These words are referred to as stopwords. They include

– Articles (a, an, the, …)
– Prepositions (in, on, of, …)
– Conjunctions (and, or, but, if, …)
– Pronouns (I, you, them, it…)
– Possibly some verbs, nouns, adverbs, adjectives (make, thing, similar,

…)
• A typical stopword list may include several hundred words.
• The 100 most frequent words add-up to about 50% of the words in a

document.
• Hence, stopword elimination improves the size of the indexing

structures.
• Elimination of stop words might reduce recall. After elimination of

“or”, “to”, “not”, it might be difficult to find relevant documents for the
query “to be or not to be”.

Stemming
• Objective: Replace all the variants of a word with the single stem of

the word.
• Variants include plurals, gerund forms (ing-form), third person

suffixes, past tense suffixes, etc.
• Example: connect: connects, connected, connecting,

connection,…
• All have similar semantics and relate to a single concept.
• In parallel, stemming must be performed on the user query.

4

Stemming (cont.)
• Stemming improves

– Storage and search efficiency: less terms are stored.
– Recall:

• without stemming a query about “connection”, matches only
documents that have “connection”.

• With stemming, the query is about “connect” and matches in addition
documents that originally had “connects”, “connected”, “connecting”,
etc.

• However, stemming may hurt precision, because users
can no longer target just a particular form.

• Stemming may be performed using
– Algorithms that remove suffixes according to substitution rules,

e.g.:
• IF a word ends in “ies”, but not “eies” or “aies” THEN “ies” “y”

(flies fly)
• IF a word ends in “es”, but not “aes”, “ees”, or “oes” then “es” “e”

(engines engine)
• IF a word ends in “s”, but not “us” or “ss” THEN “s” NULL

(documents document)
– Large dictionaries, that provide the stem of each word.

Index Term Selection (Indexing)
• Objective: Increase efficiency by extracting from the

resulting document a selected set of terms to be used for
indexing the document.
– If full text representation is adopted then all words are used for

indexing.
• Indexing is a critical process: User's ability to find

documents on a particular subject is limited by the
indexing process having created index terms for this
subject.

• Index can be done manually or automatically.
• Historically, manual indexing was performed by

professional indexers associated with library
organizations.

• However, automatic indexing is more common now (or,
with full text representations, indexing is altogether
avoided).

5

Index Term Selection (cont.)
Reducing the size of the index:
• Recall that articles, prepositions, conjunctions, pronouns

have already been removed through a stopword list.
– Recall that the 100 most frequent words account for 50% of all

word occurrences.
• Words that are very infrequent (occur only a few times in

a collection) are often removed, under the assumption
that they would probably not be in the user’s vocabulary.
– Recall that words that occur 1-3 times account for 75% of the

vocabulary.
• Nouns are often preferred over verbs, adjectives, or

adverbs.

Thesauri
Objective: Standardize the index terms that were selected.
• In its simplest form a thesaurus is

– A list of “important” words (concepts).
– For each word, an associated list of synonyms.

• A thesaurus may be generic (cover all of English) or concentrate on a
particular domain of knowledge.

• The role of a thesaurus in information retrieval
1. Provide a standard vocabulary for indexing
2. Help users locate proper query terms.
3. Provide hierarchies for automatic broadening or narrowing of queries.

• Here, our interest is in providing a standard vocabulary (a controlled
vocabulary).

• Essentially, in this final stage, each indexing term is replaced by the
concept that defines its thesaurus class.

• A sample thesaurus entry:
– EYEGLASSES

UF SPECTACLES
BT MEDICAL EQUIPMENT AND SUPPLIES
BT OPTICAL DEVICES
NT MONOCLES
NT SUNGLASSES
RT CONTACT LENSES
RT EYE PATCHES
RT GOGGLES

(UF=used for, BT=broader term, NT=narrower term, RT=related term)

6

Text Compression

• Data Encoding: Transform encoding units (characters,
words, etc.) into code values.
– Objective is to reduce size (compression)

• Lossless encoding: The transformation is reversible –
original file can be recovered from encoded (compressed)
file.

• Compression ratio:
– S: size of the uncompressed file.
– C: size of the compressed size file.
– Compression-rate = S/C.
– Example:

• S= 300,000 bytes, C=100,000 bytes.
• Compression rate: 300,000 /100,000=3:1.

Text Compression (cont.)
• Advantages of compression:

– Reduction in storage size.
– Reduction in transmission time.
– Reduction in processing times (e.g., searching).

• Disadvantages:
– Requires time for compression/decompression.
– Processing of compressed text is more complex.

• Specific for information retrieval:
– Decompression time is often more critical than compression

time.
• Unlike transmission-motivated compression (modems), documents

in an information retrieval system are encoded once and decoded
many times.

– Prefer compression techniques that allow searching in the
compressed file (without decompressing it).

7

Text Compression (cont.)
Basic methods:
• Statistical methods:

– Estimate the probability of occurrence of each encoding unit
(character or word) in the alphabet.

– Assign codes to units: more frequent units are assigned shorter
codes.

– In information retrieval, word-encoding is preferred over
character encoding.

• Dictionary methods:
– Substitute a phrase (string of units) by a pointer to a dictionary or

a previous occurrence of the phrase.
• Compression is achieved because the pointer is shorter

than the phrase.

Statistical Methods
• Recall from the discussion of information theory:

– Assume a message from an alphabet of n symbols.
– Assume that the probability of the i’th symbol is pi.
– The average information content (entropy) of a symbol is

• Optimal encoding is achieved when a symbol with
probability pi is assigned a code whose length is
log2(1/pi) = –log2(pi) .

• Hence, E also represents optimal average code length
(measured in bits per character).

• Therefore, E is the lower bound on compression.

8

Statistical Methods (cont.)
• Statistical methods must first estimate the frequencies of the

encoding units, and then assign codes based on these frequencies.
• Approaches:

– Static: Use a single distribution for all texts.
• Fast, but not optimal because different texts exhibit different distributions.
• The encoding table is stored in the application (not in the text).
• Decompression can start at any point in the file.

– Dynamic (semi-static): Determine the frequencies in a preliminary pass.
• Excellent compression, but a total of two passes is required.
• The encoding table is stored at the beginning of the text.
• Decompression can start at any point in the file.

– Adaptive: Progressively learn the distribution of the text while
compressing; each character is encoded on the basis of the preceding
characters in a text.

• Fast, and close to optimal compression.
• Decompression must start from the beginning

Huffman Coding

• General:
– Huffman coding is one of the best known compression

techniques (1952).
– It is used in the Unix programs pack/unpack.
– It is a statistical method based on variable length codes.
– Compression is achieved by assigning shorter codes to more

frequent units.
– Decompression is unique because no code is the prefix of

another.
– Encoding units may be either bytes or words.
– Does not exploit the dependencies between the encoding units.
– Yields optimum average code length when these units are

independent.
– Can be used with the static, dynamic and adaptive approaches.

9

Huffman Coding (cont.)
• Method:

1. Build a table of the encoding units and their frequencies (probabilities).
2. Combine the two least frequent units into a unit with the sum of the

probabilities and encode it in a new “unit”.

New unit: p1 + p2

Unit 1: p1 Unit 2: p2

3. Repeat this process until the entire dictionary is represented by a root
whose probability is 1.0.

4. When there is a tie for the two least frequent units, any tie-breaking
procedure is acceptable.

Huffman coding/decoding
• Example:

– p(A)=0,3, p(B)=0,3, p(C)=0,1, p(D)=0,15, p(E)=0,15

10

Huffman Coding (cont.)

• Example (word encoding):
– Assume the dictionary is 10 words long:
– The Huffman tree is:

Huffman Coding (cont.)
• Example (cont.):

– The resulting code:
– Average code length:

– The entropy (compression lower
bound) is

– Fixed code length would have required
log2 10 = 3.32 bits (which, in practice,
would require 4 bits).

– Compression ratio:
S/C = 3.32/3.05 = 1,088:1

11

Huffman Coding (cont.)
• Example: When the letters A-Z are thus encoded:

– Code lengths are between 3 and 10 bits.
– Average code length is 4.12 bits.
– A fixed code would have required log226 = 4.70 bits (i.e., 5 bits).

• More compression is obtained by encoding words:
– With the 800 most frequent English words (small table!) are

encoded in this method (all other words are in plain ASCII), 40-
50% compression has been reported.

• Huffman codes are prefix-specific:
– No code is the beginning of another code.
– Hence, a left-to-right decoding operation is unique.
– It is possible to search the compressed text.

• Α={α1,α2,α3} µε P(α1)=0,95, P(α2)=0,02 ,P(α3)=0,03
• Entropy for Α: 0,335 bits/symbol
• Average Huffman code length: 1,05 bits/σύµβολο: 213% higher than entropy

• The reason: symbol α1 is encoded with 1 bit (>> 0,1520 = log2(1/P(α1)))

12

Αριθµητική κωδικοποίηση
• Πιο σύγχρονη µέθοδος κωδικοποίησης
• Συνήθως υψηλότερα ποσοστά συµπίεσης σε σχέση µε την

κωδικοποίηση Huffman
• Η κωδικοποίηση Huffman αντιστοιχεί σε κάθε σύµβολο ένα κωδικό

µε ακέραιο αριθµό δυαδικών ψηφίων.
• Η αριθµητική κωδικοποίηση µπορεί να χειριστεί όλο το µήνυµα σαν

µία µονάδα
• Ένα µήνυµα αναπαρίσταται µε ένα διάστηµα [α,β) όπου α και β

πραγµατικοί αριθµοί στο διάστηµα [0,1].
• Τα σύµβολα αντιστοιχούν σε υποδιαστήµατα του [0,1] τα εύρη των

οποίων είναι ανάλογα µε την πιθανότητα εµφάνισής των συµβόλων
• Το µήνυµα πρέπει να τελειώνει µε ένα ειδικό τερµατικό σύµβολο

π.χ “$” προκειµένου να µην υπάρχει ασάφεια στην
αποκωδικοποίηση του µηνύµατος

• Καθώς το µήνυµα µεγαλώνει, το µήκος του διαστήµατος µειώνεται
και ο αριθµός των δυαδικών ψηφίων που χρειάζονται για την
αναπαράσταση του διαστήµατος αυξάνει.

Ο κωδικοποιητής Αριθµητικής Κωδικοποίησης

BEGIN
low = 0.0; high = 1.0; range = 1.0;
while (symbol != terminator)
{

get (symbol);
high = low + range * Range_high(symbol);
low = low + range * Range_low(symbol);
range = high - low;

}
output a code so that low <= code < high;

END

13

Παράδειγµα
Κωδικοποίηση του µηνύµατος “CAEE$”

Symbol Probability Range
A 0.2 [0, 0.2)
B 0.1 [0.2, 0.3)
C 0.2 [0.3, 0.5)
D 0.05 [0.5, 0.55)
E 0.3 [0.55, 0.85)
F 0.05 [0.85, 0.9)
$ 0.1 [0.9, 1.0)

Η κατανοµή πιθανότητας των συµβόλων

• Σταδιακή µείωση του εύρους του διαστήµατος [α,β)
• Αρχικά α=0, β=1
• Απαραίτητη η ύπαρξη τερµατικού συµβόλου. ∆ιαφορετικά π.χ. τα µηνύµατα

A, AA, AAA, AAAA, AAAAA,…. κωδικοποιούνται όλα µε το 0:
– Αδύνατη η αποκωδικοποίηση: ο ίδιος κωδικός αντιστοιχεί σε πολλά µηνύµατα

14

Οι τιµές των παραµέτρων κατά την εκτέλεση του αλγόριθµου

Symbol low high range
0 1.0 1.0

C 0.3 0.5 0.2
A 0.30 0.34 0.04
E 0.322 0.334 0.012
E 0.3286 0.3322 0.0036
$ 0.33184 0.33220 0.00036

Αλγόριθµος προσδιορισµού του αριθµού (0.3320312510=0.010101012) µε τη
συντοµότερη δυαδική αναπαράσταση ο οποίος ανήκει στο τελικό διάστηµα
[low, high)=[0.33184 , 0.33220).

BEGIN
code = 0;
k = 1;
while (value(code) < low)
{ assign 1 to the kth binary fraction bit

if (value(code) > high)
replace the kth bit by 0

k = k + 1;
}

END

Αποκωδικοποιητής Αριθµητικής Κωδικοποίησης
BEGIN

get binary code and convert to
decimal value = value(code);
range=1; low=0; high=1;
Do
{ find a symbol s so that

Range_low(s) <= (value-low)/(high-low) < Range_high(s);
output s;
high = low + range * Range_high(symbol);
low = low + range * Range_low(symbol);
range = high - low;
}

Until symbol s is a terminator
END

Αποκωδικοποίηση του 0.33203125 σε “CAEE$”
Output Symbol low high range
C 0.3 0.5 0.2
A 0.30 0.34 0.04
E 0.322 0.334 0.012
E 0.3286 0.3322 0.0036
$ 0.33184 0.33220 0.00036

15

Dictionary Methods
• Dictionary methods construct a dictionary of phrases, and replace

their occurrences with dictionary pointers.
• The choice of phrases may be static, dynamic or adaptive.
• A simple method (digrams):

– Construct a dictionary of pairs of letters that occur together frequently
(e.g., ou, ea, ch, …).

– If n such pairs are used, a pointer (location in the dictionary) requires
log2 n bits.

– At each step in the encoding, the next pair is examined.
• If it corresponds to a dictionary pair, it is replaced by its encoding, and the

encoding position moves by 2 characters.
• Otherwise, the single character encoding is kept, and the position moves by

one character.
– To assure that decoding is unambiguous, an extra bit is needed to

indicate whether the next unit is a single character code or a digram
code.

Input Parsing

• 25 entries in dictionary: five bits per dictionary index
• Greedy parsing: the encoder finds the longest dictionary phrase that matches a prefix of the un-

coded portion of the input stream and the index of that dictionary entry is used to encode the
input prefix.

• Longest fragment first (LFF) parsing: the encoder parses the input by repeatedly locating the
longest substring of the uncoded portion of the input which matches a dictionary entry and
replacing it with the corresponding dictionary reference. This process continues until the input is
completely replaced by references.

• In general, the compression performance of LFF lies between greedy and optimal parsing.
• However, to determine an optimal or LFF parsing, a sequential encoder must be capable of

looking at arbitrarily large prefixes of the input. Consequently, greedy parsing is widely used in
sequential compression systems since it requires only limited look-ahead and is computed
on-line.

16

Ziv-Lempel Compression
• General:

– The Ziv-Lempel method (1977) uses a single-pass
adaptive scheme.

– While compressing, it constructs a dictionary from
phrases encountered so far.

– Many popular programs (Unix compress/uncompress,
GNU gzip/gunzip, and Windows WinZip) are based
on the Ziv-Lempel algorithm.

– Compression is slightly better than Huffman codes
(S/C of 2,2:1 vs. 1,81:1).

– Disadvantage for information retrieval: decompressed
file cannot be searched and decoding cannot start at
a random place in the file.

Ziv-Lempel Compression

• Phrases are replaced with a pointer to where they have occurred earlier in the text.
• Α phrase might be a word, part of a word, or several words.
• It can be replaced with a pointer as Iong as it has occurred once before in the text,
so coding adapts quickly to a new topic.
• For example, the phrases "dictionary," "fact," and "LoonquawI" occur frequently in
the particular examples, yet they are not particularly common in general.
• More common words are aIso susceptibIe to this type of coding because
repetitions are never far apart (e.g. the phrases "an," "integer," and "the.“)

17

LZ78 Compression/Decompression

• LZ78 Compression:
1. Initialize the dictionary to contain all “phrases” of length one.
2. Examine the input stream and search for the longest prefix which

has appeared in the dictionary.
3. Encode this prefix by its index in the dictionary.
4. Add the prefix followed by the next symbol in the input stream to

the dictionary.
5. Go to Step 2.

• LZ78 Decompression:
1. Initialize the dictionary to contain all “phrases” of length one.
2. Decode the first value in the input stream using the dictionary.
3. Decode the next value in the input stream using the dictionary.
4. Add to the dictionary a phrase made of the previous decoded

phrase and the first symbol of the current decoded phrase.
5. Go to step 3.

LZ78 Compression (cont.)

• Compression output:
13 pointers of 4 bits require
a total of 52 bits.

• In practice, the Lempel-Ziv
algorithm works well only
when the input data is
sufficiently large and there
is sufficient redundancy in
the data.

• Example:
– Assume a dictionary of 16 phrases (4 bit index).

18

LZ78 Compression (cont.)

• Dictionary size:
– In theory, it can grow without bound.
– In practice, it is limited:

• Once the limit is reached, no more entries are added.
• Typical size is 4096 entries (12 bit index).

– The dictionary can also be a “sliding window” over the
most recent input:

• New phrases are shifted-in and old phrases are shifted-out.
• The decoder and encoder follow the same dictionary update

rules to assure that their dictionaries are synchronized.

LZ77: Sliding Window Lempel-
Ziv

• Dictionary and buffer “windows” are fixed length
and slide with the cursor

• On each step:
• Output (p, l, c) where

p = relative position of the longest match in the
dictionary

l = length of longest match
c = next char in buffer beyond longest match

• Advance window by l + 1

a a c a a c a b c a b a b a c

Dictionary
(previously coded)

Lookahead
Buffer

Cursor

19

LZ77: Example
a a c a a c a b c a b a a a c (_,0,a)

a a c a a c a b c a b a a a c (1,1,c)

a a c a a c a b c a b a a a c (3,4,b)

a a c a a c a b c a b a a a c (3,3,a)

a a c a a c a b c a b a a a c (1,2,c)

Dictionary (size = 6) Longest match

Next characterBuffer (size = 4)

LZ77 (cont.)
• A window of moderate size, typically N<= 8192, can work well for a

variety of texts for the following reasons.
• Common words and fragments of words occur regularly enough in a

text to appear more than once in a window. Some English examples
are "the," "of," "pre-," "-ing"; while a source program may use
keywords such as "while," "if," "then."

• Specialist words tend to occur in clusters: for example, words in a
paragraph on a technical topic, or local identifiers in a procedure of a
source program.

• · Less common words may be made up of fragments of other words.
For example, “experimentally" could be constructed from "expectant"
and other suitable words.

• Runs of characters are coded compactly. For example, k spaces
followed by the letter b may be coded recursively as <0, 0, ‘ '> <1,
k-1, b>, the first triple establishing the space character, and the
second repeating it k -1 times.

20

LZ77 Decoding
• Decoder keeps same dictionary window

as encoder.
• For each message it looks it up in the

dictionary and inserts a copy
• What if l > p? (only part of the message

is in the dictionary.)
• E.g. dict = abcd, codeword = (2,9,e)
• Simply copy from left to right

for (i = 0; i < length; i++)
out[cursor+i] = out[cursor-offset+i]

• Out = abcdcdcdcdcdce

