Text Processing

Text Processing

+ Document pre-processing
1. Lexical analysis
2. Stopword elimination
3. Stemming
4. Index-term selection
5. Thesauri
+ Text Compression
1. Statistical methods
2. Huffman coding
3. Dictionary methods
4. Ziv-Lempel compression

Document Pre-processing

Document pre-processing is the process of incorporating a new
document into an information retrieval system.
The goal is to

— Represent the document efficiently in terms of both space (for storing
the document) and time (for processing retrieval requests)
requirements.

— Maintain good retrieval performance (precision and recall).
Document pre-processing is a complex process that leads to the
representation of each document by a selected set of index terms.
However, some Web search engines are giving up on much of this
process and index all (or virtually all) the words in a document).
Document pre-processing includes 5 stages:

— Lexical analysis
Stopword elimination
Stemming
Index-term selection
Construction of thesauri

Lexical Analysis

Objective: Determine the words of the document.

Lexical analysis separates the input alphabet into
— Word characters (e.g., the letters a-z)
— Word separators (e.g., space, newline, tab)

The following decisions may have impact on retrieval

— Digits: Used to be ignored, but the trend now is to identify
numbers (e.g., telephone numbers, credit card numbers) and
mixed strings (e.g., model numbers) as words.

— Punctuation marks: Usually treated as word separators (but in
documents about programming languages “x.id” may be different
from “xid”)

— Hyphens: Should we interpret “pre-processing” as “pre
processing” or as “preprocessing”?

— Letter case: Often ignored, but then a search for “First Bank” (a
specific bank) would retrieve a document with the phrase “Bank
of America was the first bank to offer its customers...”

Stopword Elimination

Objective: Filter out words that occur in most of the documents.
Such words have no value for retrieval purposes (they are said to
have low discrimination value).
These words are referred to as stopwords. They include
— Articles (a, an, the, ...)
Prepositions (in, on, of, ...)
Conjunctions (and, or, but, if, ...)
Pronouns (I, you, them, it...)
Possibly some verbs, nouns, adverbs, adjectives (make, thing, similar,

A typical stopword list may include several hundred words.

The 100 most frequent words add-up to about 50% of the words in a
document.

Hence, stopword elimination improves the size of the indexing
structures.

Elimination of stop words might reduce recall. After elimination of
“or”, “to”, “not”, it might be difficult to find relevant documents for the

query “to be or not to be”.

Stemming

Objective: Replace all the variants of a word with the single stem of
the word.

Variants include plurals, gerund forms (ing-form), third person
suffixes, past tense suffixes, etc.

Example: connect: connects, connected, connecting,
connection,...

All have similar semantics and relate to a single concept.
In parallel, stemming must be performed on the user query.

Query ferm variant Document term variant

Query term variant Document term variant

matching

Query 1erm variant Document term variant

Stemming (cont.)

Stemming improves
— Storage and search efficiency: less terms are stored.
— Recall.

+ without stemming a query about “connection”, matches only
documents that have “connection”.

» With stemming, the query is about “connect” and matches in addition
documents that originally had “connects”, “connected”, “connecting”,
etc.

However, stemming may hurt precision, because users
can no longer target just a particular form.

Stemming may be performed using

— Algorithms that remove suffixes according to substitution rules,
e.g..

» |F a word ends in “ies”, but not “eies” or “aies” THEN “ies” > “y”
(flies > fly)

» |IF a word ends in “es”, but not “aes”, “ees”, or “oes” then “es”> “e”
(engines - engine)

* IF aword ends in “s”, but not “us” or “ss” THEN “s” > NULL
(documents > document)

— Large dictionaries, that provide the stem of each word.

Index Term Selection (Indexing)

Objective: Increase efficiency by extracting from the

resulting document a selected set of terms to be used for

indexing the document.

— If full text representation is adopted then all words are used for
indexing.

Indexing is a critical process: User's ability to find

documents on a particular subject is limited by the

indexing process having created index terms for this

subject.

Index can be done manually or automatically.
Historically, manual indexing was performed by
professional indexers associated with library
organizations.

However, automatic indexing is more common now (or,
with full text representations, indexing is altogether
avoided).

Index Term Selection (cont.)

Reducing the size of the index:
* Recall that articles, prepositions, conjunctions, pronouns

have already been removed through a stopword list.

— Recall that the 100 most frequent words account for 50% of all
word occurrences.

» Words that are very infrequent (occur only a few times in

a collection) are often removed, under the assumption

that they would probably not be in the user’s vocabulary.

— Recall that words that occur 1-3 times account for 75% of the
vocabulary.

* Nouns are often preferred over verbs, adjectives, or
adverbs.

Thesauri

Objective: Standardize the index terms that were selected.
* Inits simplest form a thesaurus is
— Alist of “important” words (concepts).
— For each word, an associated list of synonyms.
» Athesaurus may be generic (cover all of English) or concentrate on a
particular domain of knowledge.
* The role of a thesaurus in information retrieval
1. Provide a standard vocabulary for indexing
2. Help users locate proper query terms.

3. Provide hierarchies for automatic broadening or narrowing of queries.

* Here, our interest is in providing a standard vocabulary (a controlled
vocabulary).

+ Essentially, in this final stage, each indexing term is replaced by the
concept that defines its thesaurus class.

* A sample thesaurus entry:
— EYEGLASSES
UF SPECTACLES
BT MEDICAL EQUIPMENT AND SUPPLIES
BT OPTICAL DEVICES
NT MONOCLES
NT SUNGLASSES
RT CONTACT LENSES
RT EYE PATCHES
RT GOGGLES

(UF=used for, BT=broader term, NT=narrower term, RT=related term)

Text Compression

» Data Encoding: Transform encoding units (characters,
words, etc.) into code values.
— Objective is to reduce size (compression)

» Lossless encoding: The transformation is reversible —
original file can be recovered from encoded (compressed)
file.

» Compression ratio:
S: size of the uncompressed file.
C: size of the compressed size file.
Compression-rate = S/C.
Example:
» S= 300,000 bytes, C=100,000 bytes.
» Compression rate: 300,000 /100,000=3:1.

Text Compression (cont.)

* Advantages of compression:
— Reduction in storage size.
— Reduction in transmission time.
— Reduction in processing times (e.g., searching).

* Disadvantages:
— Requires time for compression/decompression.
— Processing of compressed text is more complex.

» Specific for information retrieval:
— Decompression time is often more critical than compression
time.

* Unlike transmission-motivated compression (modems), documents
in an information retrieval system are encoded once and decoded
many times.

— Prefer compression techniques that allow searching in the
compressed file (without decompressing it).

Text Compression (cont.)

Basic methods:

» Statistical methods:

— Estimate the probability of occurrence of each encoding unit
(character or word) in the alphabet.

— Assign codes to units: more frequent units are assigned shorter
codes.

— In information retrieval, word-encoding is preferred over
character encoding.
* Dictionary methods:
— Substitute a phrase (string of units) by a pointer to a dictionary or
a previous occurrence of the phrase.
» Compression is achieved because the pointer is shorter
than the phrase.

Statistical Methods

Recall from the discussion of information theory:
— Assume a message from an alphabet of n symbols.

— Assume that the probability of the i'th symbol is pi.

— The average information content (entropy) of a symbol is

E==) p,log«(p,)
i=1

* Optimal encoding is achieved when a symbol with
probability pi is assigned a code whose length is
log2(1/pi) = —log2(pi) .

* Hence, E also represents optimal average code length
(measured in bits per character).

» Therefore, E is the lower bound on compression.

Statistical Methods (cont.)

Statistical methods must first estimate the frequencies of the
encoding units, and then assign codes based on these frequencies.
Approaches:

— Static: Use a single distribution for all texts.

« Fast, but not optimal because different texts exhibit different distributions.
» The encoding table is stored in the application (not in the text).
« Decompression can start at any point in the file.
— Dynamic (semi-static): Determine the frequencies in a preliminary pass.
« Excellent compression, but a total of two passes is required.
» The encoding table is stored at the beginning of the text.
» Decompression can start at any point in the file.

— Adaptive: Progressively learn the distribution of the text while
compressing; each character is encoded on the basis of the preceding
characters in a text.

» Fast, and close to optimal compression.
» Decompression must start from the beginning

Huffman Coding

General:

— Huffman coding is one of the best known compression
techniques (1952).

— ltis used in the Unix programs pack/unpack.
— ltis a statistical method based on variable length codes.

— Compression is achieved by assigning shorter codes to more
frequent units.

— Decompression is unique because no code is the prefix of
another.

— Encoding units may be either bytes or words.
— Does not exploit the dependencies between the encoding units.

— Yields optimum average code length when these units are
independent.

— Can be used with the static, dynamic and adaptive approaches.

Huffman Coding (cont.)

* Method:
1. Build a table of the encoding units and their frequencies (probabilities).

2. Combine the two least frequent units into a unit with the sum of the
probabilities and encode it in a new “unit”.

New unit: p1 + p2

Unit 1: p1 Unit 2: p2

3. Repeat this process until the entire dictionary is represented by a root
whose probability is 1.0.

4. When there is a tie for the two least frequent units, any tie-breaking
procedure is acceptable.

Huffman coding/decoding

Example:
- P(A)=0.3, p(B)=0,3, p(C)=0,1, p(D)=0,15, p(E)=0,15
coding tree probability symbol code
step 1: scan all leaves, assign 1_ 30% A 11
{1,0) to the two with lowest 1

B0

probability -> intermediate root 60%
| 0 30% B 10

steps 2-n: scan current "tops”

(intermediate roots or leaves), 1

assign (1,0) to the two with —— 100 % —10% C 011

lowest probability, = ... 1 259,

end: n codes by descendin 0

Img m ?933::, hllt]ay':noountalrgu 0 409 L 15% D 010

represent code o

150, F 00
symbol code

A 11

B 10 |Blalc | D AIBLEIBLALE
c 011 10 11 011 010 11 10 00 10 11 00
D 010 -
E 00 -

Huffman Coding (cont.)

° [. Encoding Occurrence
Example (word encoding): o | Dt
— Assume the dictionary is 10 words long: i)

. th 270
— The Huffman tree is: -
1.0 of 170
and 131
to 099
a 088
in 074
that 032
i 27 . is 043
Z x of a g X} to and it 040
I 0.170 0088 0.080 0131
0.073 on 033
g 1 in is that
0.074 0.043 0.052
C',E{JHBB 010[4'2'
Encoding Code value | CodeTength
* Example (cont.): unit @
— The resulting code: the 01 2
— Average code length: of 001 3
10
: d 111 3
> pi-l:=3.05Dbits
— to 110 3
. a 100 3
— The entropy (compression lower :
bound) iS m 0001 4
10 that 1011 4
—Zp_r‘logzp.-:l()lbirs i 1010 4
=l it 00001 5
— Fixed code length would have required on 00000 3

log, 10 = 3.32 bits (which, in practice,
would require 4 bits).

— Compression ratio:
S/C =3.32/3.05 = 1,088:1

10

Huffman Coding (cont.)

* Example: When the letters A-Z are thus encoded:
— Code lengths are between 3 and 10 bits.
— Average code length is 4.12 bits.

— A fixed code would have required l0g226 = 4.70 bits (i.e., 5 bits).

* More compression is obtained by encoding words:
— With the 800 most frequent English words (small table!) are
encoded in this method (all other words are in plain ASCII), 40-
50% compression has been reported.
» Huffman codes are prefix-specific:
— No code is the beginning of another code.
— Hence, a left-to-right decoding operation is unique.
— Itis possible to search the compressed text.

Huffman code for three-letter alphabet

Letter Codeword

i 0
a 11
az 10

* A={a,,a,,a;} ue P(a,)=0,95, P(a,)=0,02 ,P(a,)=0,03

* Entropy for A: 0,335 bits/symbol

* Average Huffman code length: 1,05 bits/cUGpBoAo: 213% higher than entropy
* The reason: symbol a, is encoded with 1 bit (>> 0,1520 = log,(1/P(a,)))

11

ApIBUNTIKA KWAIKOTTOINON

Mo ouyypovn uEBodOG KWwOIKOTTOINONG

2UuvABwWGs uYnASTEPA TTOOOOTA GUUTTIEGNG O€ OXEQN UE TNV
kwolkoTtroinon Huffman

H kwdikoTtroinan Huffman avtioTtoixei o€ kaBe cUPPBOAO £va KwIKO
ME aKképalo apiBuo duadiKwy Wn@iwv.

H apiBunTikr KwOIKOTTOINON UTTOPEi va XEIPIOTEI OAO TO UrVUUG AV
Mia povada

‘Eva yrivupa avatrapiotartal ge £va didotnua [a,B) étrou a kai B
TTpayuatikoi apiBuoi oto didotnua [0,1].

Ta cuupoAa avtioToixouv o€ utrodiaoTriuara Tou [0,1] Ta €Upn Twv
oTToiwV gival avdhoya pe Tnv mOaveTNTa EYPAVIOHG TWV CUPBOAWY
To Prpvupa TTPETTEl VA TEAEIWVEI PE Eva EIBIKO TEPUATIKO TUUBOAO
X “$” TTpokeIyévou va Pnv UTTapxel aoapeia aTnv
ATTOKWOIKOTTOINGN TOU UNVUUATOG

KaBwg 10 puAvupha JeyaAwvel, To KOG Tou DIACTANATOG UEIWVETAI
KAl 0 apIBUOG Twv OUadIKWY Yniwv TTou XpelialovTal yia TNV
avatrapdaoTacn Tou SIaoTAUATOG AUEAVEL.

O kwdikoTroINTAS ApIBuNTIKAS KwdikoTroinong

BEGIN
low = 0.0; high = 1.0; range = 1.0;
while (symbol != terminator)

{
get (symbol);
high = low + range * Range_high(symbol);
low = low + range * Range_low(symbol);
range = high - low;

}

output a code so that low <= code < high;

END

12

Mapdadeiyua

KwdikoTroinon Tou unvuuatog “CAEES$”

Symbol Probability Range

A 0.2 [0, 0.2)

B 0.1 [0.2,0.3)

C 0.2 [0.3,0.5)

D 0.05 [0.5, 0.55)
E 0.3 [0.55, 0.85)
F 0.05 [0.85,0.9)
$ 0.1 [0.9, 1.0)

H katavopur meavotnTag Twv cuuBOAwyY

10 s 0y 0,334 i 2 03122
== = = o m————
s /s As s S s s
r
09 = it M) ,"' - ’,‘ e .
O8RS 4 ¥ ‘ + L i ..!....-"I...o‘ -+ Fy I
‘ » 3 1
] H H
2 H i
] { i
e/ E Yl [Eo3 I
¢ : |
4 Il 1
3 { H
/ ! [
055 4 e B — 4
X D 4 D4 y s Dy np o4 D
05 Jeces v H L] [} o+
i 1 ' 1
i [} Ll]
i [1 ! [}
. . r Y . 1 " .
(c [§ . (S Y C ! (
H p 1 i
U * [1
01 =eemes ' - [',. - '.‘ - H
Bo% B s B [B ? B il B
Y ! 1 \ |
02 + L ‘ I L S 1
\ Y \
» L) [} [
% \) 5
A N s \ 1 v oA i oA
\ \ \ |
1 1 \
4 e —t_ i 1
a] o1 0322 03286 [RLY EE)

>1adlakr peiwan Tou eUpoug Tou dIaaThPaTog [a,B)
Apxikda a=0, B=1
ATrapaitnTn N UTTapén TEPUATIKOU GUUBOAOU. AIOQOPETIKA TT.X. TA pnvupara
A, AA, AAA, AAAA, ... KwOIKOTToI0UVTaI OAQ HE TO O:

— AJdUvarn n amokwdIKOTToiNan: o id10g KWdIKAG avTIGTOIXEl O TTOAAG pnviuara

13

O1 TIPEG TWV TTAPAUETPWYV KATA TNV EKTEAEOT TOU OAy6pIBuOU

Symbol low high range
0 1.0 1.0
Cc 0.3 0.5 0.2
A 0.30 0.34 0.04
E 0.322 0.334 0.012
E 0.3286 0.3322 0.0036
$ 0.33184 0.33220 0.00036

AAy6p18pog TTpoodiopiopou Tou apiBuol (0.33203125,,=0.01010101,) pe Tn
OUVTONOTEPN SUABIKA AVATTAPACTAON O OTT0i0g AVAKEI OTO TEAIKO SiIdoTnpa
[low, high)=[0.33184 , 0.33220).

BEGIN
code = 0;
k=1;
while (value(code) < low)
{ assign 1 to the kth binary fraction bit
if (value(code) > high)
replace the kth bit by 0
k=k+1;
}
END

ATtTOKWOAIKOTTOINTAG ApIBUNTIKAG KwdikoTroinong

BEGIN

get binary code and convert to

decimal value = value(code);

range=1; low=0; high=1;

Do

{ find a symbol s so that
Range_low(s) <= (value-low)/(high-low) < Range_high(s);
output s;
high = low + range * Range_high(symbol);
low = low + range * Range_low(symbol);
range = high - low;

Until symbol s is a terminator
END

AtrokwdikoTroinon Tou 0.33203125 o “CAEE$”
Output Symbol low high range

c 0.3 0.5 0.2

A 0.30 0.34 0.04

E 0.322 0.334 0.012

E 0.3286 0.3322 0.0036
$ 0.33184 0.33220 0.00036

14

Dictionary Methods

» Dictionary methods construct a dictionary of phrases, and replace
their occurrences with dictionary pointers.
* The choice of phrases may be static, dynamic or adaptive.
* A simple method (digrams):
— Construct a dictionary of pairs of letters that occur together frequently
(e.g., ou, ea, ch, ...).
— If n such pairs are used, a pointer (location in the dictionary) requires
log, n bits.
— At each step in the encoding, the next pair is examined.

« Ifit corresponds to a dictionary pair, it is replaced by its encoding, and the
encoding position moves by 2 characters.

» Otherwise, the single character encoding is kept, and the position moves by
one character.

— To assure that decoding is unambiguous, an extra bit is needed to
indicate whether the next unit is a single character code or a digram

code.
Input Parsing
|I||IIII: COMPression rablos measure coimpression
Dictionary [= {press,
cOmpy, pres, sion,
Asll, COI, PRE, WEE
10, e, On, r'a,
a,c, e, b,om, o, p, o8, bon, <hlank =}
Cireedy: comp/rfe/sfsion) fraftfiofs) fmefafsfure) feomp/rie s/ sion
LFF: com/pressfifon) fraftfic mjeasfuref feompressfijon
Optimal: com/pres/sion/ fra/ftfio/s/ fmfeasfure/ feom | pres/sion

25 entries in dictionary: five bits per dictionary index

Greedy parsing: the encoder finds the longest dictionary phrase that matches a prefix of the un-
coded portion of the input stream and the index of that dictionary entry is used to encode the
input prefix.

Longest fragment first (LFF) parsing: the encoder parses the input by repeatedly locating the
longest substring of the uncoded portion of the input which matches a dictionary entry and
replacing it with the corresponding dictionary reference. This process continues until the input is
completely replaced by references.

In general, the compression performance of LFF lies between greedy and optimal parsing.

However, to determine an optimal or LFF parsing, a sequential encoder must be capable of
looking at arbitrarily large prefixes of the input. Consequently, greedy parsing is widely used in

sequential compression systems since it requires only limited look-ahead and is computed
on-line.

15

Ziv-Lempel Compression

» General.

— The Ziv-Lempel method (1977) uses a single-pass
adaptive scheme.

— While compressing, it constructs a dictionary from
phrases encountered so far.

— Many popular programs (Unix compress/uncompress,
GNU gzip/gunzip, and Windows WinZip) are based
on the Ziv-Lempel algorithm.

— Compression is slightly better than Huffman codes
(S/C of 2,2:1 vs. 1,81:1).

— Disadvantage for information retrieval: decompressed
file cannot be searched and decoding cannot start at
a random place in the file.

Z|v-LemoeI Comoressmn

Approaches 10 teat compr

id Deep "‘uu b at last’
" Boodmomng)

Loonquaw nervously, ‘'G5 you Filleg
rases that are expecied to cocur “An answer for youT' inferruptes
faquelm\.' Indaxes are chosen 5o majestically. “Yes. | have.

that on average they take less The twe men shivered with sxpectancy. pitirg
space thar] the phrase they i
encods, 50 compression is lty is ang? breathed Phoudhg,

:mxx:ngs
gora

y IS O :Dr.'.'-'rc:‘ Deop Thugmﬂ
also kr\own a8 “mac To the gr ual ‘Cuestion of Life, the
“eodebook” approach, As »
example, Figure 8-1 shows T
some compiler efror messages ¢
be compressed using a dicionary
containing common words. The
Talegraph and Braille systems in
Chapter 1 use forms of dictionary
coding, in contrast to Morse, which And you're ready to g\.e. 1o us? urged
uses a statistical approach. ‘am.!

* Phrases are replaced with a pointer to where they have occurred earlier in the text.

* A phrase might be a word, part of a word, or several words.

* It can be replaced with a pointer as long as it has occurred once before in the text,
so coding adapts quickly to a new topic.

» For example, the phrases "dictionary," "fact," and "Loonquaw!" occur frequently in
the particular examples, yet they are not particularly common in general.

* More common words are also susceptible to this type of coding because
repetitions are never far apart (e.g. the phrases "an," "integer," and "the.”)

16

LZ78 Compression/Decompression

» LZ78 Compression:
1. Initialize the dictionary to contain all “phrases” of length one.

2. Examine the input stream and search for the longest prefix which
has appeared in the dictionary.

3. Encode this prefix by its index in the dictionary.

4. Add the prefix followed by the next symbol in the input stream to
the dictionary.

5. Go to Step 2.

» LZ78 Decompression:
1. Initialize the dictionary to contain all “phrases” of length one.
2. Decode the first value in the input stream using the dictionary.
3. Decode the next value in the input stream using the dictionary.

4. Add to the dictionary a phrase made of the previous decoded
phrase and the first symbol of the current decoded phrase.

5. Go to step 3.

LZ78 Compression (cont.)

* Example:
— Assume a dictionary of 16 phrases (4 bit index).

Data abbaa‘b b|a a|b a|b|b a|a a‘a b‘a|a b|b a|b‘a
Encryption |0 |1]|1]0 2 4 2 6 5 3 7 3 8
Dictionary
Compression OUtpUt: Index Entry Index Entry
13 pointers of 4 bits require 0 8 | aba
a total of 52 bits. 1l 9 | abba
In practice, the Lempel-Ziv
algorithm works well only 2|ab 10 | aaa
when the input data is 3|bb 11 | aab
sufficiently large and there 4| ba 12 | baab
is sufficient redundancy in
the data. 5| aa 13 | bba
6 | abb 14
7 | baa 15

17

LZ78 Compression (cont.)

Dictionary size:
— In theory, it can grow without bound.
— In practice, it is limited:
» Once the limit is reached, no more entries are added.
» Typical size is 4096 entries (12 bit index).
— The dictionary can also be a “sliding window” over the
most recent input:
* New phrases are shifted-in and old phrases are shifted-out.

* The decoder and encoder follow the same dictionary update
rules to assure that their dictionaries are synchronized.

LZ77: Sliding Window Lempel-

ZiV Cursor
[ala]c[a]alc]a[b]c]a[blalb]a]c]
Dictionary Lookahead
(previously coded) Buffer

» Dictionary and buffer “windows” are fixed length
and slide with the cursor
* On each step:
* Output (p, /, c) where
p = relative position of the longest match in the
dictionary
I = length of longest match
¢ = next char in buffer beyond longest match

» Advance window by / + 1

18

LZ77: Example

alajclalalc|albfc]a]blalalalc| (_,0,a)

alajclalalc]alb]c]alb]JaJalalc] (1,1,c)

[alalclalalc]alb]clalb]aJalac]| (3,4,b)

lala|c]alalc]alblclalb]alalac] (3,3,a)

lala|clala]c|alb]clalb]alalalc]| (1,2,c)

[] Dictionary (size = 6) [] Longest match

| [T | Buffer (size = 4) [] Next character

LZ77 (cont.)

A window of moderate size, typically N<= 8192, can work well for a
variety of texts for the following reasons.

Common words and fragments of words occur regularly enough in a
text to appear more than once in a window. Some English examples
are "the," "of," "pre-," "-ing"; while a source program may use
keywords such as "while," "if," "then."

Specialist words tend to occur in clusters: for example, words in a
paragraph on a technical topic, or local identifiers in a procedure of a
source program.

- Less common words may be made up of fragments of other words.
For example, “experimentally" could be constructed from "expectant"
and other suitable words.

Runs of characters are coded compactly. For example, k spaces
followed by the letter b may be coded recursively as <0, 0, ‘ > <1,
k-1, b>, the first triple establishing the space character, and the
second repeating it k -1 times.

19

LZ77 Decoding

Decoder keeps same dictionary window
as encoder.

For each message it looks it up in the
dictionary and inserts a copy

What if / > p? (only part of the message
is in the dictionary.)

E.g. dict = abcd, codeword = (2,9,e)

« Simply copy from left to right
for (i = 0; 1 < length; i1++)
outJcursor+i] = out[cursor-offset+i]

+ QOut = abcdcdcdcdcdce

20

