
Indexing and Searching
Textual Data



Motivation
• Just like in traditional RDBMSs searching for data may be costly
• In a RDB one can take (a lot of) advantage from the well 

defined structure of (and constraints on) the data
• Linear scan involves finding the occurrences of  a pattern in a 

text when the text is not preprocessed
• Linear scan is appropriate when the text is small and it is the 

only choice if the text collection is very volatile (i.e. undergoes 
modifications very frequently) or the index space overhead 
cannot be afforded. 

• Linear scan of the data is not feasible for non-trivial datasets 
(real life)

• Indices are not optional in IR (not meaning that they are in 
RDBMS)

• It is worthwhile building and maintaining an index when the 
collection is large and semi-static (updated at reasonably 
regular intervals)

• Main approaches:
• Inverted files (or lists)
• Suffix arrays
• Signature files



Inverted Files
• There are two main elements: 

• vocabulary – set of unique terms 
• Occurrences – where those terms appear 

• The occurrences can be recorded as terms or byte offsets
• Using term offset simplifies phrase and proximity queries, 

whereas byte offsets allow direct access to the matching text 
positions

The words are converted to lower-case and some are not indexed. The 
occurrences point to character positions in the text



Inverted Files

• According to Heap’s law the vocabulary grows as 
O(nβ), where β is a constant between 0 and 1 
dependent on the text, being between 0.4 and 0.6 in 
practice:
• The number of indexed terms is often several orders of 

magnitude smaller when compared to the documents size 
(Mbs vs Gbs)

• The space consumed by the occurrence list is not 
trivial.  Each time the term appears it must be added to 
a list in the inverted file:
• O(n) extra space. Even omitting stopwords the space 

overhead of the occurrences is between 30% and 40% of the 
text size.

• That may lead to a quite considerable index overhead



Inverted Files
• Coarser addressing may be used
• All occurrences within a block (perhaps a whole document) are 

identified by the same block offset
• Much smaller overhead: only 5% overhead over the text size are 

obtained with this technique
• If the exact occurrence positions are required (e.g., proximity 

searches), then an online search over the qualifying blocks has 
to be performed (hardly feasible,specially on-line)

• The sample text split into four blocks, and an inverted index using 
block addressing built on it. The occurrences denote block numbers. 
Notice that both occurrences of ‘words’ collapsed into one.



Inverted Files
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• Sizes of an inverted file as approximate percentages of the size the whole text 
collection. For each collection, the right column considers that stopwords are not 
indexed while the left column considers that all words are indexed.

• The blocks can be of fixed size (imposing a logical block structure over the text 
database) or they can be defined using the natural division of the text collection into 
files, documents, Web pages, or others

• The division into blocks of fixed size improves efficiency at retrieval time
• Alternatively, the division using natural cuts may eliminate the need for online 

traversal:
• If one block per retrieval unit is used and the exact match positions are not required, there 

is no need to traverse the text for single-word queries, since it is enough to know which 
retrieval units to report. But if, on the other hand, many retrieval units are packed into a 
single block, the block has to be traversed to determine which units to retrieve



Inverted Files - searching

• Searching using an inverted file
• Vocabulary search

• The terms used in the query are searched separately. 
Notice that phrases and proximity queries are split into 
single words. 

• Retrieval of occurrences lists
• The lists of the occurrences of all the words found are 

retrieved
• Filtering answer

• If the query was boolean then the retrieved lists have to 
be “booleany” processed as well

• If the inverted file used blocking and the query used 
proximity (for instance) then the actual byte/term offset 
has to be obtained from the documents



Inverted Files - searching
• Processing the lists of occurrences (filtering the answer set) may be critical
• For instance, how to process a proximity query (involving two terms) ?

• The lists are built in increasing order, so they may be traversed in a 
synchronous way, and each occurrence is checked for the proximity

• If one list is much shorter than the others , it may be better to binary 
search its elements into longer lists instead of performing a linear 
merge. It is possible to prove using Zipf’s law that this is normally the 
case. This is important because the most time-demanding operation on 
inverted indices is the merging or intersection of the lists of occurrences.

• What if blocking is used ?
• No positional information is kept, so a linear scan of the document is 

required. It is then better to intersect the lists to obtain the blocks which 
contain all the searched words and then sequentially search in those 
blocks only.

• The traversal and merging of the obtained lists are sensitive operations
• Using Heap’s and the Zipf’s laws, it has been demonstrated that the cost of 

solving queries is sublinear in the text size, even for complex queries 
involving list merging. The time complexity is O(na), where a depends on 
the query and is close to 0.4…0.8 for queries with reasonable selectivity.



Inverted Files - layout
Vocabulary

Number of 
occurrences

Occurrences Lists

Indexed
Terms

Posting File

This could be 
a. a trie like structure:O(m) cost for searching a pattern of 

length m
b. a hash table: O(1) cost for searching a pattern of length m
c. simple storing of words in lexicographical order

• O(log n) cost for binary searching a pattern in a text 
of n terms.

• cheaper in space



Inverted Files-layout



Implementing the cosine rule
• Concepts

• Making the ranking process efficient in terms of time and space
• Two main issues:

• How to store the within-document frequencies
• How to evaluate the cosine formula

• Within - document frequencies
• Each inverted file entry must be augmented by including with each 

document pointer the number of times the term appears in that document
• That is, fd,t must be stored in the inverted file entry along with the 

document number dt
• Most fd,t values are small and are frequently either 1 or 2
• How should we code them? 
• Unary code works well but Gamma code should be chosen if we use a 

simple code



Calculating the cosine value (cont.)
• Calculating the cosine value:
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• Notes:
• t is in the vocabulary
• fd,t is now included in the corresponding occurrence list entry  
• Wq is a constant for each query and will be disregarded
• Wd  and maxl fl,d must be computed and stored
• We need a set of accumulators to accumulate the document cosine values (since we 
will process query terms one by one and each query term will cause us to process the 
documents in the occurrence list of the term)



Calculating the cosine value (cont.)

To retrieve r documents using the cosine measure,
1. Set A ←{ }. A is the set of accumulators.
2. For each query term t in Q,

(a) Stem t.
(b) Search the vocabulary.
(c) Record nt and the address of It, the inverted file entry for t. 
(d) Set Wt ← log(N /nt).

(e) Read the inverted file entry It.
(f) For each (d, fd,t) pair in It,

i. If Ad not in A then
Set Ad ←0
Set A ← A + {Ad}

ii. Set Ad ← Ad +  fd,t * (0.5 + [0.5 * ft,q / maxl fl,q ]) *  Wt * Wt.
3. For each Ad in A,

Set Ad ← Ad/(Wd* maxl fl,d).
Ad is now proportional to the value cosine( q, Dd).

4. For 1 ≤ i ≤ r,
(a) Select d such that Ad = max{A}.
(b) Look up the address of document d.
(c) Retrieve document d and present it to the user.
(d) Set A ← A - {Ad}



Calculating the cosine value (cont.)

• We only present the top r << N documents, so we should not 
pay the price of a full sort of the cosine values:
• Conventional sorting algorithms require at least N log N 

comparisons to sort N records, and for N ~1000000 this 
corresponds to 20 million operations, or several seconds on 
typical computers.

• How to reduce the sorting time?
• Sort only the accumulators that are nonzero. In many 

cases, the set A contain accumulators for only a small 
proportion of the documents.

• Use of a min-heap structure



Calculating the cosine value (cont.)

Selection using a min-heap of r items:

O(N log r ) steps are required

To select the top r cosine values:
1. Set H ← {}. H is the min-heap.
2. For 1 ≤ d ≤ r,

(a) Record address of document d.
(b) Set H ← H + {Ad}

3. Build H into a heap.
4. For r + 1 ≤ d ≤ N,

(a) If Ad > min{H} then
i. Set H ← H - min{H} + {Ad}
ii. Sift H 
iii. Record address of document d.

H now contains the top r exact cosine 
values.

5. For 1 ≤ i ≤ r,
(a) Select d such that Ad = max{H}.
(b) Retrieve document d and present it to 
the user. 
(c) Set H ← H - {Ad}



Inverted Files - construction
• Each word of the text is read and searched in the vocabulary

• If it is not found, it is added to the vocabulary with a empty list of occurrences 
and the new position is added to the end of its list of occurrences

• Once the text is exhausted, the vocabulary is written to disk with the list of 
occurrences. Two files are created:
• in the first file, the list of occurrences are stored contiguously (posting file)
• in the second file, the vocabulary is stored in lexicographical order and, for each 

word, a pointer to its list in the first file is also included. This allows the vocabulary to 
be kept in memory at search time

• The overall process is O(n) worst-case time
• For large texts, building the index in main memory is not feasible (wouldn’t fit, 

and swapping would be unbearable)
• Building it entirely in disk is not a good idea either (would take a long time)
• An option is to use the previous algorithm until the main memory is exhausted. 

When no more memory is available, the partial index Ii obtained up to now is 
written to disk and erased the main memory before continuing with the rest of 
the text

• Once the text is exhausted, a number of partial indices Ii exist on disk
• The partial indices are merged to obtain the final index



Inverted Files - construction

• The procedure works as follows:
• Build and save partial indices l1 , I2 , …, In
• Merge Ij and Ij+1 into a single partial index Ij,j+1

• Merging indices mean that their sorted vocabularies are merged, and 
if a term appears in both indices then the respective lists should be 
merged (keeping the document order)

• Then indices Ij,j+1 and Ij+2,j+3 are merged into partial index Ij,j+3, 
and so on and so forth until a single index is obtained

• Several partial indices can be merged together at once. In 
practice, it is a good idea to merge even 20 partial indices at 
once.



Example

I 1...8

I 1...4 I 5...8

I 1...2 I 3...4 I 5...6 I 7...8

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8

1 2 4 5

3 6

7

final index

initial indices

level 1

level 2

level 3



Inverted Files - construction

• This procedure takes O(n log (n/M)) time plus 
O(n) to build the partial indices – where n is the 
text size in characters and M is the amount of 
main memory available

• Adding a new document is a matter of merging 
its (partial) index (indices) to the index already 
built

• Deletion can be done in O(n) time – scanning 
over all lists of terms occurring in the deleted 
document



Sort-based construction

Concept
• Use of disk is inescapable for the size of collection
• Sequential access is the only efficient processing mode for
• large disk files (transfer rates high, random seeks low)
• Algorithm

• Parse text into triples <t,d,fd,t> and write temporary file
• Mergesort the temporary file into non-descending t,d order
• Sorting the temporary file, gives the required inverted file 

order: 
• records are ordered by increasing t and, within equal values of t, by 

increasing d. 



Sort-based construction



Sort-based construction



Inverted File Compression
• An inverted file is typically composed of

1. vocabulary: a vector containing all the distinct terms in the text collection, 
stored in main memory if possible

2. inverted list (IL) stored in disc: for each term in the vocabulary, a list of pointers 
to all occurrences of that term stored in ascending (or descending) sequence 

• Important parameters:
• N - number of documents in db
• n - number of (distinct) terms
• F - number of term occurrences         
• f - number of inverted list entries

• Uncompressed inverted files can require 50-100% of the 
space of the text they index

• Log N bits needed for each document id: total space is f log N 
bits for document-level inverted lists

• Inverted list compression helps to reduce size of index, cost 
of I/O

(in TREC, 99)
741.856
535.346
333.338.738
134.994.414
Total size: 2G



Inverted File Compression
• The IL for a term t contains ft entries:

(d1, d2,…,dft)• where d1, d2,…,dft are the number of documents in which term t appears and 
dk < dk+1 .

• The list of document numbers is  in ascending order and all processing 
sequential can start from the beginning of the list:
• The list can be stored as an initial position followed by a list of d-gaps, the 

differences dk+1- dk. For instance the list (3,5,20,21,23,76,77,78) can be stored as
(3,2,15,1,2,53,1,1)

• If g1=d1, g2=d2-d1,   …, we know that 

• For long lists, most d-gaps are small. 
• These facts can be used for compression
• Models:

• Describe the probability density of gap sizes
• Each gap has an  associated probability, defined by its code length:

(Shannon theorem)  
• Goal: higher probability gaps get coded in fewer bits, etc.
• Global - every inverted file entry is compressed with the same model
• Local – the inverted list of each term uses its own model (usually based upon a 

parameter such as the frequency of the term)
• Local models outperform global models but are more complex to implement
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Global, non-parametric methods
• Flat binary

• bits per pointer (fixed-length representation)
• Implicit probability model: each gap size is equally 

likely(uniformly random in 1 to N, p(g)=1/N)
• Unary coding: 
represent each g>0 by   g-1 digits 1, then 0
1 -> 0,  2 -> 10,   3 -> 110, 4-> 1110, …

• Code  length for g:   g

• Worst case for sum: N (hence for all IL’s: nN, extremely large 
quantity)            

• P(g): Pr[g] = 2-g  for gaps of length g
• Binary Exponential  decay; favors small gaps, large gaps are 

coded in too many bits
• if does not hold in practice: compression penalty

log N⎡ ⎤⎢ ⎥
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Global, non-parametric methods

• There are many codes whose implied probability distributions lie somewhere 
between the uniform distribution assumed by the binary code and the binary 
exponential decay implied by the unary code

Gamma ( γ) code : 
• a number g is represented by
• Prefix code: unary code for . Specifies how many bits are 

required to code g
• Suffix code :binary code, with                 digits, for 

• Example:
• Encoding g = 10
• Unary code: = 1+3 = 4 = 1110
• Binary code: =10-8 = 2 = 010
• Gamma code for x=10 is 1110010

• Decoding:
• Extract unary code (cu); Extract binary code (cb)
• g is represented in ≈ 1+2log2 g bits (one log2 g for power of 2 and one log2

g for the remainder)
• Implicit probability model: Pr(g) ≈ 2-(1+2log2 g) = 1/2g2 (remember g2 = 22log2 g) 

(inverse square)

21 log g+ ⎢ ⎥⎣ ⎦

2log g⎢ ⎥⎣ ⎦
2log2 gg ⎢ ⎥⎣ ⎦−

21 log 10+ ⎢ ⎥⎣ ⎦
2log 1010 2⎢ ⎥⎣ ⎦−

12 uc
bg c−= +



• Delta (   )   code :δ

log

prefix:  represent  1 log  in gamma code

suffix:  represent 2   in binary (as in gamma)g

g

g ⎢ ⎥⎣ ⎦

+ ⎢ ⎥⎣ ⎦

−

:
7:   1 log7 3,    1 log3 2,  prefix is  101
      suffix is 11,   code is   10111  

+ = + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Examples

(1 2 1 log log )

Code lenght for g:  1 2 log(1 log ) log

                              1 2log log log
1Implicit Probability model:   ( ) 2

2 (log
g g

g g

g g

p g
g g

− + ⎢ + ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
+ +

= ≈ 2        
)



Golomb code
• Global, parametric code
• Semi-static, uses text collection statistics 
• Very effective when the gap probability distribution is 

geometric:
• The likelihood of a gap being of size g is the probability of having g-1 

non-occurrences (within consecutive documents) of that particular term 
followed by one occurrence. 

• If a term occurs within a document with a probability p, the probability of 
a gap of size g is:

which is the geometric distribution 
• The probability p that any randomly selected document contains any 

randomly chosen term can be estimated as p=f / Nn.
• Golomb code:

1. Select a basis b (based on text collection statistics)
2. g>0 we represent    g-1
• Prefix:  let                         (integer division), represent in unary, q+1
• Suffix:  the remainder is  (g-1)-qb (in [0..b-1]) represented  by a binary 

tree code
• some leaves at distance 
• the others at distance 

( 1) /q g b= −⎢ ⎥⎣ ⎦

log b⎡ ⎤⎢ ⎥

logb⎢ ⎥⎣ ⎦

1( ) (1 )gP g p p−= −



• The binary tree code:

• cut 2j leaves from the full binary tree of 
depth k

• assign  leaves, in order, to the values in 
[0..b-1]

• Example:  b=6 

let    log  , 2kk b j b= = −⎡ ⎤⎢ ⎥

0 1
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1 10
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Summary of Golomb code
Prefix:  unary code of    1 ( 1) /

Suffix: code of length between log    and log

g b

b b

+ −⎢ ⎥⎣ ⎦
⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥

( 1) / 1/ 1

length 1 ( 1) / log
1 1 1 1Implicit Probability mode; p(g)
2 2 2 (2 )g b b g

g b b

b b− −

≈ + − +⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥

≈ ⋅ ≈ ⋅

• Exponential decay like unary,  slower rate, affected by b 
• Q: how is b chosen?
• The Golomb code matches the entropy of geometric distribution for:

• Assuming that p=f/(Nn)<<1, a useful simplification is 

2
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log 2 0.69e N nb
p f

⋅
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Example codes for integer
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