Signature Files

Unlike the case of inverted files where, most of the time, where
IS a tree structure underneath, signature files use hash tables

The main idea is to divide the document into blocks of fixed size
and each block has assigned to it a signature (also fixed size),
which is used to search the document for the queried pattern

The block signature is obtained by OR’ing the hashed bitstrings
of each term in the block

Signature files pose a low overhead (10% to 20% over the text
size), at the cost of forcing a sequential search over the index.

The search complexity is linear instead of sublinear as with the
previous approaches.

However the constant of the complexity is rather low: the
technique is suitable for not very large texts.

Inverted files outperform signature files for most applications

Signature Files

« Consider:

* H(information) = 010001
* H(text) = 010010

* H(data) = 110000

* H(retrieval) = 100010

* The block signatures of a document D containing
the text “textual retrieval and information retrieval”
(after removing stopwords and stemming) for a
block size of two terms — would be:

- B1D = 110010 and
- B2D = 110011

Signature Files - searching

To search for a given term we compare whether the
term’s bitstring could be “inside” the block signatures

Consider we are searching for “text” in document D

« H(text) = 010010 and B1D = 110010

« H(text) bit-wise-AND B1D = 010010 = H(text)

* Therefore “text” could be in B1D (it is in this particular case)
Consider we are now searching for “data”

» H(data) bit-wise-AND B1D = 110000 = H(data)

« H(data) bit-wise-AND B2D = 110000 = H(data)

* Though “data” is not in either block !

Signature files may yield false hits ...

Signature File - layout

Block signature (bitmask)

Logical Blocks Pointers to blocks
In the documents

Signature File - layout

Example

Text

Block 1

Block 2

Block 3

Block 4

This is a.EéXt;

A text has ma.ny

words. Words are|made from letters.

AN

Jf
i3
)

/

000101 f|110101 |[|100100 |['J101101 || — .
Text signature
h (text) = 000101
h (many) = 110000 —
h (words) ~ 100100 ‘Signature function
h (made) = 001100
h(letters) = 100001

Signature Files — design issues

How to keep the probability of a false alarms low ? How to predict how good a
signature is ?

Consider:
« B: the size (humber of bits) of each term’s bitstring
* b: number of terms per document block

 |: the minimum number of bits set (turned on) in B, this depends on the
hashing function

A good model assumes that | bits are randomly set in B

Since each of the b terms sets | bits at random, the probability that a given bit of
the mask is set in a block signature is:

1-1-1/B)" =1-""*

Hence, the probability that the | random bits set in the query are also set in the
mask of any given text block is

(1 _phiB)l

Now, the expected number of the false matches is N-(l—e
where N is the total number of document blocks

'2I'_r|1is expression is minimized for | = B In(2)/b: the probability of false hits equal to

B/b indicates the space overhead to pay

_bl/B)l

Signature Files - alternatives

« There are many strategies which can be used with signature files
« Signature compression
« Given that the bitstring is likely to have many Os a simple run-length encoding

technique can be used
« (0001 0010 0000 0001 is encoded as “328” (each digit in the code represents the

number of Os preceding a 1)
« The main drawback is that comparing bitstrings require decoding at search time

 Bitsliced signature files

 Using the original signature file layout and a bitstring (queried term signature) all
logical blocks are checked as to whether that block could contain that bitstring

. T_his)may take a long time if the signature file is long (this depends on the block
size
« Could we check only at the bits we are interested in?

- Original signature file layout:
- Each row has a bitmask corresponding to a block

- Each column tells whether that bit is set of not

- Bit-sliced signature files layout:
- Each row correspond to a particular bit in the bitmasks

- Each column is the bitmask for the blocks
- The signature file is “transposed”

Signature Files - alternatives

Block signature (bitmask)

Each row is
a file |

YA

Blocks in the
documents

Advantages of bit-slicing:

Given a term bitstring one can read only the lines (files).
corresponding to those set bits and if they are set in a given
column, then the whole column may be rétrieved.

Empty answers are found very fast

Bitsliced Signature File - Example

Term Hash string Document Text Descriptor
cold 1000 000000100100 1 Pease parridge hot, pease porridge cold, 1100111100100101
days 00100100 00001000 g :easzporrlclljemthepm, 1110111101100001

ine days old. 1010110001001100
hm 0ROA1910:0000:9000 4 Some like it hot, some like it cold, 1100111010100111
n 0000100100100000 5 Some like it in the pot, 1110111111100011
it 0000100010000010 6 Nine days old. 1010110001001100
like 0100001000000001
nine 0010100000000100 Signature flle
old 1000100001000000
pease 0000010100000001 ,) ‘
_ Pos. Slice Pos. Slice Pos. Slice Pos. Slice

porridge 0100010000100000

& 0000 0010 0110 0000 1 o B B 5 g At i | 9 000110 13 001002
P 2 110110 6 s o sl s s 10 011011 14 101101
some 0100010000000001 3 011011 7 110110 11 110110 15 000110
the 1010100000000000 4 000000 8 110010 12 000000 16 110110

Bitsliced Signature file

Suffix Trees/Arrays

Suffix trees are a generalization of inverted files

For traditional queries, i.e., those based on simple
terms, inverted files are the structure of choice

However, complex queries like phrase queries are
expensive to solve

This type of index treats the text to be indexed as a
finite, but long string.

Thus each position in the text represent a suffix of that
text (i.e. a string that goes from that text position to the
end of the text.

Each suffix is uniquely identified by its position

Not all text points need to be indexed. Index points are
selected from the text, which point to the beginning of
the text positions which will be retrievable.

Suffix Trees

* Note that the choice of index points is crucial to the

retrieval capabillities

6 2 11 17 19 c1 2B 3 d . 44

This 18 a text. A text has many words.

Wwords are made

...and the index points/suffixes:

| text. A text has many words., .. letters,.

CaXt has many words. ... letilers.

Index point

(suffix: a string that goes from that text position to the end of the text)

from le

11

@

latters.

many words. ..

28

words, letters.,

y 1S letters,

133
40

]'.Ir I‘-l!"_i';_

[T Ol

letters,

50

e — . o = -

60

i [g 11 17 19 14 | 15 40 1 o 1] 55

Tk
| T S e e e g |
This i & text. A text has many worde. Words are made from latters. |
Text
Suffix Trie Patricia Tree :
(0] [60]
[i]
/ a, Js0] / : i}f”’i“m_
-"f 1 T i L .-"F-h"-'"f.. _A'm "'r:j
'f-“.-—— ___-;'H. "._._'|'\-\. _d-: i 1 —____-I'\.i -\.___TI
."H i -\-HH"'I‘-._. EE-. _I ll'\'—\‘l]lll:"‘.“ :.‘FJ_
Y x‘“w-.~| o 1 e ..’I”.Iq | 'w.K Hﬂ.‘_":' — _{ﬂ
1'1 H""'\-\. e ¥ X P ¥ 1 _"“.-"H %, I.-".__TK'I__,-'—"'-_.
v o — —— —] \ Ry :
" . o L L % e ¥ - —\—_____'_II
\], [a] N\ LB
Y, g 4d n 4D
e =, o~ g ‘s _..---._'I__,-’" ";-";t___——‘__ e
S I'; F s T _/ A et —
b |2 | T 33 |

Suffix tree is a trie data structure built over the suffixes of the text.
The pointers to the suffixes are stored at the leaf nodes
To improve space utilization, the trie is compacted into a Patricia tree.

This involves compressing unary paths, i.e. paths where each node has
just one child.

Once unarygaths are not present the tree has O(n) nodes instead of the
worst-case O(n?) of the Trie.

The problem with this structure is its space:
» Depending on the implementation, each node of the trie takes 12 to 24

bytes, and therefore even if only beginnings are indexed, a space
overhead of 120% to 240% over the text size produced.

Suffix arrays

6o |50 f28 | 18 | 1 0 l Suffix Array
| f I 4 i i
Thi il 2 .
Text
lett | bt ! | ward _| supra-Index
- F | F
60 | 50 | 2a ECBET | an | 1A Suffix Array

Suffix arrays provide essentially the same functionality as suffix trees with much less
space requirements.

If the leaves of the suffix tree are traversed in left-to-right order (top to bottom in the
figure), all the suffixes of the text retrieved lexicographical order.

A suffix array is simply an array containing all the pointers to the text suffixes listed in
lexicographical order

Since the%store one pointer per indexed suffix, the space requirements are almost the
same as those for inverted indices, i.e. close to 40% overhead over the text size

Suffix arrays are designed to allow binary searches done by comparing the contents of
each pointer.

If the suffix array is large (the usual case), this binary search performs poorly because of
the number of random disk accesses.

To remedy this situation, one idea is to use of supra-indices over the suffix array.

The simplest supra-index is no more than a sampling of one_ out of b suffix array entries,
where for each sample the first | suffix characters are stored in the supra index.

This supra-index is used as a first step of the search to reduce external access

Suffix trees/arrays - Searching

T [l -
rom Jletctarm

Thig iz a text, A text has many il Words are made f .j

Text

| Tl Ll il | | T axl ikl] |
Tl | {1 0] | d P A

Vacabulary
Supra-Index

: 126 |18 [11 |a0 [o Suffix Array

Many basic patterns such as words, prefixes, and phrases can be searched in O(m) time by a
simple trie search.

However, suffix trees are not practical for large texts, as explained.

Suffix arrays can perform the same search operations in O(log n) time by doing a binary search
instead of a trie search.

This is achieved as follows:

» the search pattern orizginates two ‘limiting patterns’ P1 and P2, so that we want any suffix S
such that P1 < S < PZ.

* We binary search both limiting patterns in the suffix array.

* Then, all the elements lying between both positions point to exactly those suffixes that start
like the original pattern {l.e., to the pattern positions in the text).

* Forinstance, in the example, in order to find the word 'text' we search for 'text’ and 'texu’,
obtaining the portion of the array that contains the pointers 19 and 11.

» All these queries retrieve a subtree of the suflix tree or an interval of the suffix array.

. Thde results have to be collected later, which may imply sorting them in ascending text
order.

« This is a complication of suffix trees or arrays with respect to inverted indices.
« Simple phrase searching is a good case for these indices.

« A proximity search has to be solved element-wise: the matches for each element must be
collected and sorted and then they have to be intersected as for inverted files.

Construction in Main Memory

A suffix tree for a text of n characters can be built in O(n) time.
The algorithm performs poorly if the suffix tree does not fit in main memor¥, which is
r

especially stringent because of the large space requirements of the suffix

€es.

Suffix array construction:

Suffix array is a set of pointers lexicographically sorted.

The tptointers are collected in ascending text order and then sorted by the text they
point to.

In order to compare two suffix array entries the corresponding text positions must be
accessed.

These accesses are basically random.
Hence, both the suffix array and the text must be in main memory.
This algorithm costs O(n log n) string comparisons.

Suffix array construction with O(n log n) character comparisons:

All the suffixes are bucket-sorted in O(n) time according to the first letter only.
Then, each bucket is bucket-sorted again, now according to their first two letters.

At iteration i, the suffixes begin already sorted by their 2+ first letters and end up
sorted by their first 2 letters.

ib\s at)each iteration the total cost of all the bucket sorts is O(n), the total time is O(n
og n).

Sorting the strings in the i-th iteration:
- all suffixes are sorted by their first 2+ |etters,

- to sort the text positions Ta... and Th... belonging to in the same bucket, itis .
enough to determine the relative order between text positions T_,,""and T,,,""in
the clrrent stage of the search.

- This can be done in constant time by storing the reverse permutation.

Construction of Suffix Arrays for Large
Texts

Use of an external memory sorting algorithm:
« each comparison involves accessing the text at random positions on the disk.
« This will severely degrade the performance of the sorting process.

An algorithm especially designed for large texts:
« Split the text into blocks that can be sorted in main memory.

« For each block, build its suffix array in main memory and merge it with the rest of
the array already built for the previous text.

How to merge a large suffix array (already built) with the small suffix array
(just built)?

« determine how man%/ elements of the large array are to be placed between each
pair of elements in the small array,

« Then use that information to merge the arrays without accessing the text.
Hence, the information that we need is how many suffixes of the large text lie

between each pair of pasitions of the small suffix array. We compute
counters that store this information:

The text corresponding to the large array is sequentially read into main memory.
« Each suffix of that text is searched in the small suffix array (in main memory).

* Once we find the inter-element position where the suffix lies, we just increment
the appropriate counter.

* O(M) the main memory to index: O(nIM) text blocks.

« Each block is merged against an array of size OQ?), where all the O(n) suffixes of
the large text are binary searched in the small suffix array.

« This gives a total CPU complexity of O(n? log(M)IM).

Construction of Suffix Arrays for Large Texts (Cont.)

small text small text
(@)
(b) lon
small suffix array small suffix array J
l text
local suffix array is built :
countets Counters are
computed
small text
long suffix array
(©) small suffix array
counters * final suffix array

The suffix arrays are merged

Construction of Suffix Arrays for Large Texts
(Cont.)

Processed so far

I N
- N

1 6 911 1719 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words |are made from Iletters.

A text 17 > |counter |2
a text. ... 9 ' are ... 46
has ... 24 counter |0
is ... 6 \ from... |55
many ... 28 \ counter |2
text ... 19 letters ... | 60
tex.t. 11 counter 10
ThiS .. 1 made ... |50
Words ... 40

words. ... 33 counter |6

4 \ - \
Full e N e
i 146 OR | 46 23467
evaluation PO
,-f’;
246 237
y AND AND) .nunx AND . Mn"u 4 P .i'n.HI'.I-_xE
Iazy .-’f \\ "/ ‘ b / N . 7 4 \ / N ,”” :
| OR 2 4 OR 2 a OR 3 a OR 4 & ¥ OR & p OR 7
. * & W : i % ! &,
evaluation 4 R A A e e 2N P /N
4 3 a a 4 7 8 7 T

* Set manipulation algorithms: these algorithms are used when operating on sets, which is the case in Boolean
queries
» Once the leaves (basic queries) of the query syntax tree are solved, the relevant documents must be worked on by
composition operators.
* As all operations need to pair the same document in both their operands, it is good practice to keep the sets sorted,
so that operations like intersection, union, etc. can proceed sequentially on both lists and also generate a sorted list.
 Evaluation of the syntax tree:
« full evaluation - both operands are first completely obtained and then the complete result is generated.
* lazy evaluation - results are delivered only when required, and to obtain that result some data is recursively
required to both operands.
* Full evaluation allows some optimizations to be performed because the sizes of the results are known in advance:
» for instance, merging a very short list against a very long one can proceed by binary searching the elements of
the short list in the long one.
 Lazy evaluation allows the application to control when to do the work of obtaining new results, instead of
blocking it for a long time.
*The complexity of solving these types of queries, apart from the cost of obtaining the results at the leaves, is
normally linear in the total size of all the intermediate results.
*This time may dominate the others, when there are huge intermediate results. This is more noticeable to the user
when the final result is small.

