
JAVA SEALED 
CLASSES
Efthimios Alepis



INTRODUCTION

• Sealed classes and interfaces restrict which other classes or 

interfaces may extend or implement them

• By sealing a class, you can specify which classes are 

permitted to extend it and prevent any other arbitrary class 

from doing so

20XX 2



GOALS

20XX 3

• Allow the author of a class or interface to control which code is responsible for implementing it.

• Provide a more declarative way than access modifiers to restrict the use of a superclass.

• Support future directions in pattern matching by providing a foundation for the exhaustive analysis of 

patterns.



HOW TO USE THEM

20XX 4

• To seal a class, add the sealed modifier to its declaration. Then, after any extends and implements 

clauses, add the permits clause. This clause specifies the classes that may extend the sealed class.

• Alternatively, you can define permitted subclasses in the same file as the sealed class. If you do so, 

then you can omit the permits clause.



CONSTRAINTS ON PERMITTED SUBCLASSES

20XX 5

• Permitted subclasses have the following constraints:

• They must be accessible by the sealed class at compile time.

• They must directly extend the sealed class.

• They must have exactly one of the following modifiers to describe how it continues the sealing 

initiated by its superclass:

• final: Cannot be extended further

• sealed: Can only be extended by its permitted subclasses

• non-sealed: Can be extended by unknown subclasses; a sealed class cannot prevent its 

permitted subclasses from doing this

• They must be in the same module as the sealed class (if the sealed class is in a named module) 

or in the same package (if the sealed class is in the unnamed module).



DECLARING SEALED INTERFACES

20XX 6

• Like sealed classes, to seal an interface, add the sealed modifier to its declaration. 

• Then, after any extends clause, add the permits clause, which specifies the classes that can 

implement the sealed interface and the interfaces that can extend the sealed interface.



20XX 7



EXAMPLE

20XX 8

public sealed class Shape permits Circle, Square, Rectangle{

}

public final class Circle extends Shape {
public float radius;

}

public non-sealed class Square extends Shape {
public double side;

}

public sealed class Rectangle extends Shape permits 
FilledRectangle {

public double length, width;
}

public final class FilledRectangle extends Rectangle {
public int red, green, blue;

}



REFLECTION

20XX 9

• Sealed classes are also supported by the reflection API, where two public methods have been added 

to the java.lang.Class:

• The isSealed method returns true if the given class or interface is sealed.

• Method getPermittedSubclasses returns an array of objects representing all the permitted 

subclasses.



SUMMARY

The permits clause allows a sealed class, such as the 
Shape class shown earlier, to be accessible-for-
invocation by code in any module, but accessible-for-
implementation by code in only the same module as 
the sealed class (or same package if in the unnamed 
module). This makes the type system more expressive 
than the access-control system. With access control 
alone, if Shape is accessible-for-invocation by code in 
any module (because its package is exported), then 
Shape is also accessible-for-implementation in any 
module; and if Shape is not accessible-for-
implementation in any other module, then Shape is 
also not accessible-for-invocation in any other module.

20XX 10



FURTHER READING

https://openjdk.org/jeps/409

https://docs.oracle.com/en/java/javase/20/language/seale

d-classes-and-interfaces.html

20XX 11

https://openjdk.org/jeps/409
https://docs.oracle.com/en/java/javase/20/language/sealed-classes-and-interfaces.html
https://docs.oracle.com/en/java/javase/20/language/sealed-classes-and-interfaces.html

	Slide 1: Java Sealed classes
	Slide 2: INTRODUCTION
	Slide 3: Goals
	Slide 4: How to use them
	Slide 5: Constraints on Permitted Subclasses
	Slide 6: Declaring Sealed Interfaces
	Slide 7
	Slide 8: Example
	Slide 9: Reflection
	Slide 10: SUMMARY
	Slide 11: Further reading

