N

JAVA SEALED
CLASSES



INTRODUCTION

* Sealed classes and interfaces restrict which other classes or
interfaces may extend or implement them

* By sealing a class, you can specify which classes are
permitted to extend it and prevent any other arbitrary class
from doing so

20XX




GOALS

Allow the author of a class or interface to control which code is responsible for implementing it.
Provide a more declarative way than access modifiers to restrict the use of a superclass.

Support future directions in pattern matching by providing a foundation for the exhaustive analysis of
patterns.



HOW TO USE THEM

To seal a class, add the sealed modifier to its declaration. Then, after any extends and implements
clauses, add the permits clause. This clause specifies the classes that may extend the sealed class.
Alternatively, you can define permitted subclasses in the same file as the sealed class. If you do so,
then you can omit the permits clause.



CONSTRAINTS ON PERMITTED SUBCLASSES

* Permitted subclasses have the following constraints:
* They must be accessible by the sealed class at compile time.
* They must directly extend the sealed class.
* They must have exactly one of the following modifiers to describe how it continues the sealing
initiated by its superclass:
* final: Cannot be extended further
* sealed: Can only be extended by its permitted subclasses
* non-sealed: Can be extended by unknown subclasses; a sealed class cannot prevent its
permitted subclasses from doing this
* They must be in the same module as the sealed class (if the sealed class is in a hamed module)
or in the same package (if the sealed class is in the unnamed module).



DECLARING SEALED INTERFACES

* Like sealed classes, to seal an interface, add the sealed modifier to its declaration.

* Then, after any extends clause, add the permits clause, which specifies the classes that can
implement the sealed interface and the interfaces that can extend the sealed interface.



% © % Shape

@ = Shape()

[ T )

© %= Rectangle  ©%* Circle © % Square

@ = Rectangle() @ = Circle() @ = Square()
A

© = FilledRectangle

@ = Filled RectanglH)



EXAMPLE

public sealed class Shape permits Circle, Square, Rectangle{

}

public final class Circle extends Shape { public non-sealed class Square extends Shape {

public float radius; public double side;
} }
public sealed class Rectangle extends Shape permits public final class FilledRectangle extends Rectangle {
FilledRectangle { public int red, green, blue;

public double length, width; }
}

20XX



REFLECTION

Sealed classes are also supported by the reflection API, where two public methods have been added
to the java.lang.Class:

* The isSealed method returns true if the given class or interface is sealed.
* Method getPermittedSubclasses returns an array of objects representing all the permitted
subclasses.



SUMMARY

The permits clause allows a sealed class, such as the
Shape class shown earlier, to be accessible-for-
invocation by code in any module, but accessible-for-
implementation by code in only the same module as
the sealed class (or same package if in the unnamed
module). This makes the type system more expressive
than the access-control system. With access control
alone, if Shape is accessible-for-invocation by code in
any module (because its package is exported), then
Shape is also accessible-for-implementation in any
module; and if Shape is not accessible-for-
implementation in any other module, then Shape is
also not accessible-for-invocation in any other module.



20XX

FURTHER READING

https://openjdk.org/jeps/409

https://docs.oracle.com/en/java/javase/20/language/seale

d-classes-and-interfaces.html

11


https://openjdk.org/jeps/409
https://docs.oracle.com/en/java/javase/20/language/sealed-classes-and-interfaces.html
https://docs.oracle.com/en/java/javase/20/language/sealed-classes-and-interfaces.html

	Slide 1: Java Sealed classes
	Slide 2: INTRODUCTION
	Slide 3: Goals
	Slide 4: How to use them
	Slide 5: Constraints on Permitted Subclasses
	Slide 6: Declaring Sealed Interfaces
	Slide 7
	Slide 8: Example
	Slide 9: Reflection
	Slide 10: SUMMARY
	Slide 11: Further reading

