Grayscale Image Colorization Using Machine Learning Techniques

Zachary Frenette

University of Waterloo, 200 University Ave W, N2L 3G1

Abstract

From modern medical imaging to antique
photography, there exists vast amounts of
illustrations and photographs that lack color
information. Adding color to these images
could help improve both visual appeal and
expressiveness. Given that the majority of
colorization methods rely heavily on user
interaction, we would like to explore how
machine learning techniques can be applied
to the colorization process of grayscale
images, and then analyze the limitations of
each of these techniques.

1. Introduction

Image colorization can be described as the process of
assigning colors to the pixels of a grayscale image.
This problem is ill-posed in the sense that, without
prior information regarding the image, there is often
more than one possible colorization. In other words,
the colors of an object cannot usually be distinguished
from one another by simply looking at the grayscale
component of the object. For example, all other things
equal, a red balloon would most likely look the same
as a green balloon in a grayscale image. Because of
this property, automatic image colorization is a very
challenging task.

Many of the current methods used for grayscale image
colorization rely heavily on user interaction. Normally,
this is achieved by professional artists who use software
to manually adjust the colors, brightness, contrast and
exposure of the image (Pitié et al., 2008). Not only is
this an expensive procedure, but it is also very time
consuming. On the other hand, the semi-automatic
algorithms that exist for image colorization all suffer
from a variety of limitations. These limitations range
from a lack of robustness, to a requirement for some

Project report for CS886: Applied Machine Learning.
University of Waterloo, Fall 2014.

ZFRENETT@QUWATERLOO.CA

of the data to be manually processed. For example,
there has been some work done for the case where
the user provides the colors of a few regions before
having an algorithm propagate this color information
to the rest of the image (Levin et al., 2004). Similar
work has been done for which the user plays more
of an interactive role by manually coloring some of
these regions in between propagation steps (Charpiat
et al., 2010). There has also been some work done
in the context of fully-automatic algorithms, though
the algorithms proposed only seem to work well when
the image has a few colors (Ashikhmin et al., 2002).
In addition, several discrepancies can typically be
observed in the resulting images.

Recently, machine learning techniques have been
employed in the colorization process of grayscale
images (Charpiat et al., 2010; Liu and Zhang, 2012).
In this project, we compare the performance of some
these machine learning methods, and then analyze
their respective limitations. Section 2 discusses some
of the models that are required in order to present the
colorization methods that we consider. In sections 3
and 4, we formulate image colorization as a machine
learning problem and describe the dataset that will be
used throughout this project. In sections 5 and 6, we
provide a discussion of the methods employed as well
as the results obtained, while in section 7, we finish
with some concluding remarks and potential directions
for future work.

2. Preliminaries

In this section, we define several of the models that will
be used in the development of our image colorization
algorithms.

2.1. The Spatial Image Model

There are several different ways of thinking about the
representation of an image. Intuitively, we can think
of an image as a function f : U — C where U C R? is
a subset of the plane and C is a color space. However,
from a computational perspective, this may not be the

CS 886 Final Project

ideal representation of an image. Instead of trying
to encode a continuous subset of R2, we will encode
a discrete subset U’ of U. More specifically, we will
consider a natural discretization in the spatial image
model (Velho et al., 2008). In this model, we assume
that the domain of f is a rectangle U = [a,b] X [¢, d],
and for some fixed values of §, and d,, we apply the
following discretization:

U ={(zj,yx) € U : x; = js, yr = kb, where j, k € Z}.

Here, U’ is an orthogonal lattice of points, where each
point (x;,yx) is called a pixel. Using this definition
of U’ yields a natural matrix representation of the
image. More specifically, we can define a matrix
I € C™*" where each element I;; = f(z;,yx). In
other words, the value of each element in our matrix
is simply equal to the color of that corresponding
pixel. Given that images on a computer are typically
encoded using this type of representation, we will
adopt this representation throughout the remainder of
this project.

2.2. The LAB Color Model

Images on a computer are typically represented in the
RGB color model, in which the color of each pixel is
determined by a 3-tuple p = (r, g,b) denoting the red,
green, and blue components of that color respectively.
However, the RGB model is a device dependent color
model, and therefore, some of the color points that
are represented in this space may not be absolute.
Hence, the same point may produce different colors on
different devices. Furthermore, this color model was
optimized for performing operations on devices and
therefore is not representative of human perception
(Velho et al., 2008). Because of these properties,
we will instead choose to represent images in the
LAB color model (Charpiat et al., 2010). The colors
in this model comprise of 3 different components,
the first of which represents luminance while the
other two orthogonal components store explicit color
information.

Not only is the LAB color model device independent,
but it was also designed in a way to approximate
the human perception of brightness and color. In
particular, the Euclidean distance between two colors
in this model approximates the difference in perceived
color, which provides a natural distance metric for
measuring the similarity between two colors. It is
worth noting that the color gamut of this model is
larger than the color gamut of human vision. This
means that there are points in this space that do not
correspond to any of the colors that are perceivable by
the human eye. For additional details regarding the

different characteristics of these two color models, we
refer the interested reader to the work of Hunt (Hunt,
2005).

2.3. Markov Random Fields

A Markov random field is a graphical model which has
the structure of an undirected graph. The vertices of
this graph correspond to random variables while the
edges model the conditional independencies between
them. More formally, a Markov random field is a tuple
M = (V,F,A,N), where V. = {v1,...,v,} is a set
of vertices, F = {F; : i € V} is a set of random
variables, A is a set of labels, and N : V — 2V
is a neighborhood function (Bishop, 2006). The set
A contains a label for each possible outcome of the
random variables contained in F. In particular, we will
use the notation \; € A to denote the label assigned
to the random variable F;. Furthermore, we will use
the notation Fs = {F; :i € S} and Ag ={)\; : i € S}
to denote specific sets of random variables and labels
respectively.

A Markov random field must also satisfy the Markov
property. That is, for any particular realization of the
random variables, we have that:

P(F; = M| Fy—i = Av—i) = P(F; = N[Fniy = Ang))-

In other words, F; is independent of any other random
variable given its neighbors. Markov random fields
are often used to model labeling problems where
some particular labeling is desired. In our case,
we will be interested in labeling the pixels of a
grayscale image with colors from our color space
C. From an algorithmic point of view, this desired
labeling is obtained by trying to find an assignment of
colors that minimizes an appropriate energy function
E(Ay). Markov random fields have many other useful
properties, though not all of them will be needed for
this project (Wang et al., 2013). The properties that
will be needed will be discussed in section 5 when
the details of the machine learning algorithms are
presented.

3. Machine Learning Formulation

There are several differences between the traditional
supervised learning paradigm and the one we will
adopt for this project. Under typical circumstances,
we are given a fixed training set where the training
examples are sampled independently from some
underlying distribution D. This set is then processed
by some learning algorithm before it can be used
to classify new data points, which are also sampled
independently from this same distribution. In our

CS 886 Final Project

case, we are given a collection of colored images 7 =
{I,...,Ix} as well as a grayscale image I’, and the
goal is to assign a color from C to each of the pixels of
I'. Tt is worth observing that Z plays the role of our
training set while the pixels of I’ represent the new
data points that we wish to label and classify.

Unlike in the traditional supervised learning paradigm,
our training set Z is of small size and its content
varies depending on the grayscale image I'. More
specifically, our training set is chosen to be a small
set of colored images which are all similar to the
grayscale image that we are trying to colorize. For
our project, the training set will consist of a single
colored image, though it is possible to consider cases
where the training set contains several images. As a
result, for each of the grayscale images that we want
to colorize, a new training set needs to be chosen and
the learning algorithm needs to be re-executed.

4. Dataset Used

Our dataset will primarily consist of a subset of the
colored images made available by Jégou, Douze and
Schmid from their work on image retrieval (Jégou
et al., 2008). More specifically, this dataset entails a
wide variety of outdoor images, some of which include
natural scenery, man-made objects, animals, lakes
and waterfalls. Furthermore, this collection contains
images that have been rotated, and that contain
changes in perspective or illumination. These changes
will help us test the robustness and limitations of the
machine learning algorithms we apply. Lastly, it is
worth noting that, although primarily outdoor scenes,
this dataset contains a handful of indoor images as
well.

For testing purposes, we will select a small subset of
the images and transform them into their grayscale
counterpart. Although in practice we will not know
the real colorings of these images, it will facilitate the
task of measuring the error and performance of each
machine learning algorithm. Reasonable error metrics
for the case in which the true colorization of an image
is not known still requires additional research.

5. Description of Methods Used

In this section, we describe each of the methods and
steps used in our image colorization algorithms.

5.1. Preprocessing Step

In order to extract a meaningful set of features and
facilitate training, each image in our training set will

be preprocessed in two ways. As described in section
2.2, we begin by converting the representation of
each image from the RGB color model to the LAB
color model. This conversion is accomplished through
a series of non-linear transformations, although the
details of said transformations are not important for
this project (Hunt, 2005).

Next, we reduce the size of the color space of each
image to a manageable subset of colors through
a process called color space quantization (Charpiat
et al., 2010; Velho et al., 2008). A typical image in
our dataset has tens of thousands of different colors,
many of which only appear in a small handful of
pixels. Hence reducing the size of our color space will
not only help eliminate outliers, but also allow us to
work with significantly less prediction classes. Using
an algorithm like k-means, we can cluster groups of
contiguous pixels having similar colors into k different
bins (Bishop, 2006). By assigning a color to each of
the bins, we can then recolor the image by only using
k different colors. It is worth noting that we are only
performing quantization on the (a,b)-components of
each pixel since the luminance component does not
store explicit color information. For this project, we
will consider k = 16 different color classes.

5.2. Feature Extraction

In essence, we are interested in labeling pixels with
their appropriate color. Hence the features that we
select should reflect the properties of the pixels instead
of the entire image. However, features on individual
pixels do not convey much information. Instead, for
a given pixel p of the image, we will extract features
from a & x & window centered at p. This will allow us
to obtain information about the local neighborhood
of p. As a result, we will be interested in 4 classes of
features over this d x§ window: SURF descriptors (Bay
et al., 2006), the magnitude of the 2D Discrete Fourier
Transform (DFT), the grayscale histogram, and the
localized mean and standard diviation of the intensity.
In particular, we will calculate SURF descriptors over
three different scales, while the other features are
extracted over a 11 x 11 window centered at p. This
gives us an ungodly 763 dimensional feature vector.

As the dimensionality of our feature vector is quite
large, we will apply the Principal Component Analysis
(PCA) algorithm in order to reduce its dimensionality
(Bishop, 2006). In particular, we will reduce the
dimensionality in a way such that 90% of the variance
in our data is maintained. For each image, feature
vectors will be extracted from a random sample of NV
pixels, which we choose to be approximately 4% of the

CS 886 Final Project

pixels in the image.

5.3. Initial Color Prediction Phase

Predicting the colors of the pixels in our grayscale
image is done in two phases. In the first phase, we
obtain initial estimates for the probabilities of the
colors of each pixel. After obtaining these estimates,
the image is modeled as a Markov random field where
graph cuts are used in order to obtain a globally
spatial coherent labeling of the pixels. This section
will address the first phase of the colorization process
while section 5.4 will discuss the application of graph
cuts in obtaining a final coloring of the image.

In order to estimate the desired probabilities, we
consider two different machine learning models. The
first model that we consider is linear logistic regression.
Let ¢’ = {c1,¢2,...,cr} denote the quantized color
space after applying k-means clustering and let ¢,
denote the feature vector for pixel p. Under this
model, we are interested in learning linear decision
boundaries that model P(C' = ¢;|¢,) where ¢; is a color
in C’. Although simple, linear logistic regression can
be parameterized to control regularization and thus
should provide a good baseline. It is worth noting
that the implementation of linear logistic regression
selected is using a one versus all approach rather
than a true multinomial regression technique. In
particular, k& different logistic regression models are
trained as follows. For each model, the data is divided
in a way such that all feature vectors with output
class ¢; are grouped together as positive instances
while the other feature vectors are treated as negative
instances. However, this approach creates a skew
between positive and negative instances. Therefore,
in order to help minimize bias, examples are sampled
inversely proportional to their frequencies in the
training set.

The second model we consider is support vector
machines, which are one of the most popular classifiers
used in the literature for image colorization (Charpiat
et al., 2010). In this model, we are interested in
learning the decision boundaries directly rather than
first learning the conditional probability distribution
P(C = ¢i|¢,). Once again, a one versus all approach
is taken for classification. That is, we train k support
vector machines that perform binary classification,
and the training data is divided in a manner that
is analogous to what is described for linear logistic
regression. To allow for more flexibility, a Gaussian
kernel is used to create non-linear boundaries. In
addition, as images are noisy by nature, soft-margin
classifiers are used in order to allow a small degree

of misclassifications. Since we are not learning the
distribution P(C = ¢;|¢,) directly, we will use the
distance between a new data point and the margin as
a proxy for confidence. These values are then used in
the post-processing phase by the graph cut algorithm.

It is worth mentioning that there are other simple
machine learning models that can be used to perform
multiclass classification, such as nearest neighbors and
decision trees (Bishop, 2006). However, the main
reason they were not considered as models for image
colorization is that there is no straightforward way
to obtain probability estimates for the different color
classes. We will return to this idea when we discuss
possible avenues for future work.

5.4. Post Processing Phase Using Graph Cuts

The colorization process of a grayscale image I’ starts
by computing the feature vectors ¢, for every pixel
in I'’. These feature vectors are then passed to one
of the models described in the previous section where
probability estimates are derived for each color class.
In order to achieve a globally spatial coherent coloring,
the grayscale image is then modeled as a Markov
random field M = (V,F,A,N). In particular, we
begin by setting a vertex and a random variable for
every pixel in our grayscale image. That is, we define
the sets V = {v, : p€ I'} and F = {F,, : v, € V}.
The labels of our Markov random field correspond
to the possible colors that a pixel can have. In our
case, we have that A = {A. : ¢ € C’'}. The last
thing to define is our neighborhood function, which
is what models the edges in our graph. When building
a Markov random field, we assume that our graph
satisfies the Markov property. As such, there are
several reasonable choices for a neighborhood function
when modeling an image (Boykov and Veksler, 2006).
For our application, we will choose a neighborhood
function such that every vertex is connected to the 8
other vertices surrounding it.

In essence, a graph cut algorithm works by trying
to find an assignment of labels that minimizes some
energy function defined on our Markov random field
(Boykov and Veksler, 2006). In our case, this energy
function should accomplish two things. First, we
would like the coloring between adjacent pixels to be
smooth, while allowing color discontinuities at edge
boundaries. Second, we would like to encourage a
labeling of pixels by colors that were initially predicted
with high confidence. Let Ay = {), : v, € V'} denote
some labeling of the vertices and let g(p) denote the
magnitude of the gradient at pixel p. In addition, we
define s(p, A) to be the estimated probability that p has

CS 886 Final Project

the color labeled by A. With these auxiliary terms, we
can define our energy function £(Ay) as follows:

Eo(Av) =D g(0) - IXp = Apllz = D s(p A3 (Ap, A)

AEA

E(Av) =) &(Av).

Here, p’ is used to denote the neighbors of p according
to our neighborhood function N, and 0 is a function
that produces 1 if and only if its two parameters are
equal. The first term in our summation is used to
penalize color variation where it is not expected, while
the second term encourages the use of high confidence
colors.

In our project, we have made use of the graph cut
implementation provided by Delong, Osokin, Isack,
and Boykov (Delong et al., 2012). Despite the fact
that finding an optimal solution is NP-Hard, their
algorithm can approximate the solution within a
reasonable amount of time.

6. Error Analysis and Discussion

Our experiments have produced mixed results. In
particular, the quality of the coloring obtained varies
greatly from image to image and depends heavily
on the choice of parameters. For images containing
generic outdoor scenery, the algorithms tend to do
reasonably well. Although several patches are colored
incorrectly, the general colors are all present. However,
for most indoor images with many different colors, the
two algorithms perform quite badly. In particular,
Figure 1 shows the results of a colorization that
both models struggled with. We can observe that
several important colors are missing in the results,
as well as heavy patches of noise and discoloration.
One possible explanation for these difficulties is that
the image has many colors that are only present
in small contiguous areas. Therefore, since we are
sampling our training examples randomly, it could
very well be the case that we are not extracting enough
information from those regions. This is made evident
by noticing that, especially for the support vector
machine model, most of the image is colored yellow,
the dominant color found in our training image. These
observations suggest that a better sampling method
may be required in order to achieve better results.

Another common source of error that we observe
is the inability to differentiate between regions that
have similar textures but different colors. Since our
features are all extracted within a small window
surrounding p, we do not capture differences between

I

(c) Colored using LR (d) Colored using SVM

Figure 1. Sample coloring of a school classroom

two regions that are locally similar, but that are
part of differently colored objects. For example,
we can see that in Figure 2, both our models had
difficulties differentiating between the ragged green
leaves and some of the mountainous regions. In
fact, these difficulties are much more apparent for
the logistic regression model than they are for the
support vector machine model. This suggests that
simply incorporating localized features for each pixel
may not be enough to achieve good colorizations. For
example, one might try explicitly incorporating an
object recognition step or a region segmentation step.
This would allow us to add features that keep track of
which region or which object each pixel belongs with.

Another important observation is that our algorithms
appear to be robust against certain transformations.
In particular, we have observed that both models
seem to perform well when the test image is more
or less a rotation of the training image. This is
somewhat expected because a large portion of our
features are obtained from SURF descriptors, which
were originally designed to be unaffected by rotations
(Bay et al., 2006). One such example can be seen
in Figure 3. Besides for a few discolored patches,
both models deliver promising results. On the other
hand, our algorithms perform quite poorly when there
is a significant difference between the brightness of
the training image and the test image. A change
in brightness affects the luminance component of
every pixel, and hence changes a large portion of
our feature vector. The Fourier transform, the
grayscale histogram, and the mean of the intensity

CS 886 Final Project

(a) Training image (b) Test image

(c) Colored using LR

(d) Colored using SVM

Figure 2. Sample coloring of a mountainous region

are all features that depend directly on luminance
values. Therefore, since the same pixel in both images
would produce very different feature vectors, it is
not unreasonable to expect that our machine learning
models would struggle with this task.!

Due to the ill-posed nature of the problem, it is difficult
to design reasonable error metrics. For example,
whether an image is aesthetically pleasing or not
is entirely subjective, and thus difficult to quantify.
Consequently, this makes parameter optimization a
challenging task. Under normal circumstances, model
parameters are learned through a process called
cross-validation (Bishop, 2006). During this process,
the training set is partitioned into a smaller training
set and a validation set. ~ When values for the
parameters are selected, the performance of the model
can then be measured against the validation set. This
procedure allows us to learn near-optimal values for
our parameters since it provides an unbiased estimate
of the generalization error. In our case, since we have
no concrete measure of error, we cannot automatically
assess the selection of our parameters. Therefore,
parameter tuning was done manually on a per image
basis, which we believe played a significant role in all
of the errors described above.

7. Conclusions

In this project, we have explored how machine learning
techniques can be applied to the colorization process of

! Additional examples can be found in Appendix A.

(c) Colored using LR (d) Colored using SVM

Figure 3. Sample coloring of a rotated village

grayscale images. In particular, we have looked at two
types of models: linear logistic regression and support
vector machines. Moreover, we discussed various
types of errors that occurred during the colorization
process of these images. We argued that these errors
were caused by localized features and unstructured
sampling. Furthermore, we explained that these errors
were amplified by the fact that our parameters were all
chosen manually. However, despite these difficulties,
our methods show promise in accurately coloring
various types of images, particularly outdoor scenery.
In regards to image transformations, we discussed why
our two methods were robust against image rotations
but not changes in brightness. More specifically, our
models are robust against image rotations because a
large portion of our features are derived from SURF
descriptors. On the other hand, our models struggle
with changes in brightness because this transformation
produces significantly different feature vectors.

In terms of future work, there are many avenues
that one could explore. For example, it would be
worth investigating if different classifiers can produce
better results. Algorithms such as nearest neighbors
and decision trees are simple classifiers that tend
to do well in practice. Though in order to make
effective use of these classifiers for image colorization,
probability estimates for each color class is required.
One potential way to obtain these estimates for nearest
neighbors would be to use the Voronoi diagram as
the decision boundary. Then the distance between a
new data point and that boundary could be a proxy
for probability. There has also been some work done

CS 886 Final Project

in obtaining accurate probability estimates for the
case of decision trees (Zadrozny and Elkan, 2001).
Improvements could also be made with regards to the
types of features that we extract. Obtaining global
features could help reduce coloring errors that are
caused by regions sharing many local similarities. For
example, one could perform a region segmentation
step in order to extract global information regarding
the different areas of an image. Not only would this
provide global features, but it would also help with
the sampling step. Instead of randomly selecting
our training pixels, we could sample a subset of the
pixels from every region of the image. This would
likely provide a more accurate characterization of the
different colors and textures within the image.

On a different note, it might be worth investigating
how the performance of our algorithms could be
improved if multiple training images are used. This
framework would also generalize nicely to film
colorization since contiguous movie frames are all
similar to one another. In such a setting, the goal
would be to color the scenes of a black and white
movie. The training set would consist of the first few
frames of a particular scene, and these colored frames
would then serve as a basis for automatically coloring
the remaining frames of that scene. Finally, we believe
that it would be worthwhile to develop concrete error
metrics for the image colorization problem. This would
facilitate the task of automatically learning model
parameters, which would likely reduce many of the
errors that arise during the colorization process of
grayscale images.

Acknowledgments

We would like to thank Professor Dan Lizotte for his
helpful suggestions during the course of this project.
His feedback is greatly appreciated.

References

M. Ashikhmin, K. Mueller, and T. Welsh. Transferring
Color to Greyscale Images. ACM Trans. Graph., 21
(3):277-280, 2002.

H. Bay, T. Tuytelaars, and L. Van Gool. SURF:
Speeded Up Robust Features. In ECCV, pages 404
— 417, 2006.

C. M. Bishop. Pattern Recognition and Machine
Learning. Springer-Verlag New York, Inc., 2006.
ISBN 0387310738.

Y. Boykov and O. Veksler. Graph Cuts in Vision and
Graphics: Theories and Applications, 2006.

G. Charpiat, I. Bezrukov, Y. Altun, M. Hofmann,
and B. Scholkopf. Machine Learning Methods for
Automatic Image Colorization. In Computational
Photography: Methods and Applications, pages 395
—418. CRC Press, 2010.

A. Delong, A. Osokin, H.N. Isack, and Y. Boykov.
Fast Approximate Energy Minimization With Label
Costs. International Journal of Computer Vision,
96(1):1-27, 2012.

R.W.G. Hunt. The Reproduction of Colour. Wiley,
2005. ISBN 9780470024263.

H. Jégou, M. Douze, and C. Schmid. Hamming
Embedding and Weak Geometric Consistency for
Large Scale Image Search. In Proceedings of the 10th
European Conference on Computer Vision: Part I,

pages 304-317, 2008. ISBN 978-3-540-88681-5.

A. Levin, D. Lischinski, and Y. Weiss. Colorization
Using Optimization. In ACM SIGGRAPH 2004
Papers, pages 689-694. ACM, 2004.

S. Liu and X. Zhang. Automatic Grayscale Image
Colorization Using Histogram Regression. Pattern
Recognition Letters, 33(13):1673 — 1681, 2012.

F. Pitié, A. Kokaram, and R. Dahyot. Enhancement
of Digital Photographs Using Color Transfer
Techniques. In Single-Sensor Imaging: Methods and
Applications for Digital Cameras, pages 295 — 321.
CRC Press, 2008.

L. Velho, A. C. Frery, and J. Gomes. Image Processing
for Computer Graphics and Vision. Springer
Publishing Company, Incorporated, 2nd edition,
2008. ISBN 1848001924, 9781848001923.

C. Wang, N. Komodakis, and N. Paragios. Markov
Random Field Modeling, Inference and Learning
in Computer Vision and Image Understanding: A
Survey. Computer Vision and Image Understanding,
117(11):1610 — 1627, 2013.

B. Zadrozny and C. Elkan. Obtaining Calibrated
Probability Estimates from Decision Trees and
Naive Bayesian Classifiers. In Proceedings of the
Eighteenth International Conference on Machine
Learning, pages 609-616. Morgan Kaufmann, 2001.

CS 886 Final Project

A. Colorization Examples

(a) Training image (b) Test image

B

(c) Colored using LR (d) Colored using SVM

Figure 4. Sample coloring of a fish under water

s e R i

(a) Training image (b) Test image

(c¢) Colored using LR (d) Colored using SVM

Figure 5. Sample coloring of small icebergs

(a) Training image (b) Test image

(d) Colored using SVM

Figure 6. Sample coloring of a small food tray

()

Sin "I-.K

Colored using LR (d) Colored using SVM

Figure 7. Sample coloring of desert rocks

