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ABSTRACT
We present a new example-based method to colorize a gray
image. As input, the user needs only to supply a reference
color image which is semantically similar to the target image.
We extract features from these images at the resolution of
superpixels, and exploit these features to guide the coloriza-
tion process. Our use of a superpixel representation speeds
up the colorization process. More importantly, it also em-
powers the colorizations to exhibit a much higher extent of
spatial consistency in the colorization as compared to that
using independent pixels. We adopt a fast cascade feature
matching scheme to automatically find correspondences be-
tween superpixels of the reference and target images. Each
correspondence is assigned a confidence based on the feature
matching costs computed at different steps in the cascade,
and high confidence correspondences are used to assign an
initial set of chromatic values to the target superpixels. To
further enforce the spatial coherence of these initial color
assignments, we develop an image space voting framework
which draws evidence from neighboring superpixels to iden-
tify and to correct invalid color assignments. Experimental
results and user study on a broad range of images demon-
strate that our method with a fixed set of parameters yields
better colorization results as compared to existing methods.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations;

General Terms
Algorithms

∗denotes equal contributions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

Keywords
Automatic colorization, cascade feature matching

1. INTRODUCTION
The goal of image colorization is to add colors to a gray im-

age such that the colorized image is perceptually meaningful
and visually appealing. A key challenge of this problem is
that it is under constrained since there are potentially many
colors that can be assigned to the gray pixels of an input im-
age (e.g. leaves may be colored in green, yellow and brown).
Hence, there is no one correct solution to the colorization
problem and human intervention often plays an important
role in the colorization process.

In general, colorization methods can be broadly divided
into two main classes: interactive colorization methods and
automatic colorization methods. Interactive colorization tech-
niques [9, 7, 18, 15, 13] require a user to manually mark
color scribbles on the target image. Colors from these scrib-
bles are then smoothly propagated across the entire image
based on an optimization framework. A key weakness of
such methods is that they demand extensive efforts from a
user. Additionally, for such methods, colorization quality is
strongly dependent on the user supplied color scribbles, and
it is often difficult for a novice user to provide sufficiently
good color scribbles to achieve desirable colorization results.
Automatic colorization methods [17, 6, 2, 12] take a different
approach to image colorization. Specifically, rather than ob-
taining chromatic values from the user, these methods take
a reference color image as input, and transfer colors from the
reference image to the target image. While these methods
can reduce the extent of user effort, in many cases, these
methods often require careful tuning of a large number of
parameters to yield satisfactory results.

In this paper, we propose a new automatic colorization
method which exploits multiple image features to transfer
the color information from reference color image to input
gray image. Specifically, other than intensity and stan-
dard deviation features which are used by other colorization
methods e.g. [17, 8], we incorporate the highly discriminative
SURF and Gabor features in our method. The power of dis-
criminative image features to reliably find correspondence
between images has been demonstrated by Liu et al. [11]
where they exploit SIFT features to find correspondences
between images for scene alignment. The use of informa-
tion rich Gabor and SURF features empowers our method
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to reliably find correspondences between the reference and
target images for color transfer. Here, we choose Gabor fea-
ture for its effective representation of texture and popularity
in the computer vision domain, while SURF feature is cho-
sen for its excellent discriminative ability and compactness.
We find correspondences at the resolutions of superpixels.
This affords our method to exhibit a stronger level of spa-
tial coherency than that possible with independent pixels.
To support fast color transfer, we use a fast cascade feature
matching scheme to quickly find correspondences between
reference and target superpixels. At the first cascade step,
we identify for each target superpixel a set of reference su-
perpixels which are most similar to the target based on a
particular feature type. This set of reference superpixels are
screened at subsequent steps of the cascade using different
feature types to sieve out matching reference superpixels.
An initial set of color values is then assigned to target su-
perpixels based on its matching reference superpixels. We
note that these matchings are found based solely on im-
age features and thus could be unreliable at image regions
where features cannot be reliably extracted [16] (e.g. at re-
gions corresponding to object boundaries). To improve the
colorization results, we further enforce spatial consistency in
the colorization by exploiting an image space voting frame-
work which draws evidence from neighboring superpixels to
quickly identify and correct invalid matchings. This leads to
improved colorization results.

We evaluate our method on a diverse range of images com-
prising portrait, painting, landscape as well as on images
containing deformable and rigid foreground objects. Exper-
imental results demonstrate that our method, while straight-
forward, is sufficiently powerful to yield perceptually mean-
ingful and visually appealing colorizations on these complex
images. Additionally, comparison against existing state-of-
the-art methods also demonstrates our method to be more
effective at colorization, even with a fixed set of parameters.

2. RELATED WORK
Adding realistic colors to a gray image can improve the

photorealism of the image, and has attracted much attention
in the research community. Levin et al. [9] proposed a sim-
ple yet effective colorization algorithm that requires a user
to provide color scribbles at various image regions. These
color scribbles are then propagated automatically to the en-
tire image by a least-squares optimization method. Huang
et al. [7] improved on this method to reduce color blending
at image edges. Yatziv and Sapiro [18] used multiple scrib-
bles to colorize a pixel, where the combination weights are
computed by a distance measure between the pixel and the
scribble. While these methods have been shown to achieve
good colorization results, a main shortcoming of these previ-
ous approaches is that they require a large number of color
scribbles on the gray image as input. To reduce the num-
ber of color scribbles, Qu et al. [15] and Luan et al. [13]
propagated scribbles that are marked on an image patch
to other patches that have similar texture features. While
their methods reduce the number of required scribbles, like
all other interactive colorization methods, they demand sub-
stantial artistic skills of the user to mark appropriate colors
on image patches to yield desirable colorizations.

Rather than obtaining colors directly from a user, Welsh
et al. [17] obtained colors from a user-supplied reference
color image. They extracted small image patches at each

pixel of the target image and matched these patches to those
of the reference image. These matches are then used to di-
rectly transfer colors from the reference image to the target
image. Their method requires the user to manually mark
corresponding regions between the reference and target to
yield satisfactory color transfer, and is considerably less in-
tuitive than our method which only needs a user-supplied
reference image. Additionally, their method completely ig-
nores spatial information of the pixels and hence their col-
orizations often yield very weak spatial consistency.

To address the spatial coherency problem, Irony et al. [8]
proposed a method which used a segmented reference color
image as an additional input. Here, they exploit color and
texture information from segmented regions of the reference
image to automatically segment the target gray image into
a set of locally homogeneous image patches. Colors from
the segmented regions of the reference image are then trans-
ferred to the image patches of the target image as color scrib-
bles. Colors are propagated across the entire image by [9].
Their method demands segmentation masks as input, and
is unsuitable for colorizing complex images e.g. foreground
objects with fine scale structures. Charpiat et al. [2] assign
colors to a gray image by minimizing an energy function
using the graph cut approach. While their algorithm does
not requires any user intervention during the colorization
process, colorization results by their method are heavily in-
fluenced by the choice of many parameters.

Liu et al. [12] proposed an example-based colorization
technique which is robust to illumination variations in the
target and reference images. Their method downloads multi-
ple reference images from the internet based on user-supplied
keywords, and computes precise per-pixel registration be-
tween the reference and target images for color transfer. A
key weakness of their method is that it is limited to col-
orizing foreground objects for which an exact replica of the
target gray foreground object can be found. Consequently,
their method is limited to rigid objects (e.g. landmarks) and
is unsuitable for colorizing images which contain deformable
objects such as those shown in this paper.

Recently, Chia et al. [3] developed a method which also
exploits internet images for colorization. Relevant internet
images are found with a novel image filtering framework,
and colors are transferred from the reference to target with
the belief-propagation framework. Very good colorization
results are achieved by their method, though their method
requires manual segmentation of major foreground objects
of the target gray image.

In all previous works that we have discussed above in this
section, Irony et al. [8] method is more similar to the pro-
posed algorithm which also uses nearest-neighbor search and
image space voting. However, our algorithm differs from
their work in the following aspects:

• Irony’s method requires manually segmented reference
color image as an additional input. This segmented
image is used to construct a feature space and a corre-
sponding classifier, and hence affects the colorization
result significantly. To minimize user intervention, the
use of automatic image segmentation, which often gen-
erates small image segments in case of dense textured
image regions, leads to poor colorization.

• To enforce the spatial consistency, Irony performs im-
age space voting in feature space followed by a global
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Figure 1: Overview of our colorization method. We work at the level of superpixels to extract different types of image

features from the reference and target images, and find correspondences between features by a fast cascade feature

matching scheme. These correspondences provide cues to the initial set of color assignments, which is refined by an

image voting step to yield the final colorized result.

optimization. Their voting scheme identifies similar
image regions in gray image with the same texture
features as specified by the input reference color im-
age segmentation mask. In our algorithm, the use of
superpixels helps us to achieve spatial consistency in
small image regions. After computing the initial color
values for each of these superpixels, we group these su-
perpixels and perform the image space voting in color
space to update their previously assigned color values.
Our primary focus is to enforce uniform color values
to all connected pixels that are the part of same im-
age segment. It enables us to achieve higher spatial
consistency and better colorization results.

• Irony used the Discrete Cosine Transform (DCT) co-
efficients of a fix block size as a texture descriptor.
While DCT coefficients are not sensitive to transla-
tions and rotations, they are more sensitive to scale
changes. Here, we use a rich set of image features, in-
cluding features computed at different scales, to find
appropriate matches in reference image to transfer the
color information.

3. COLORIZATION METHOD
The proposed algorithm colorizes gray input images by

a user-supplied reference color image. We do not restrict
the reference image to contain identical object instances as
the input image. Instead, our only constraint is that the
reference images should be semantically similar to the input
image i.e. the reference image needs only to contain similar
scene object types as the input image (e.g. castle). An
overview of our method is given in Figure 1. As shown, our
method comprises four key stages: (a) superpixel extraction
(b) feature extraction, (c) feature matching, and (d) image
space voting. We describe each of these steps below.

3.1 Superpixel extraction
We extract features from the color reference and target

gray images at the resolution of superpixels, and transfer
colors between superpixels to yield image colorization. An
advantage of using a superpixel based representation is that
it speeds up the colorization method. More importantly, it
also affords our method with an ability to maintain stronger
spatial coherency in the colorization as compared to that us-
ing individual pixels. To compute the superpixels, we use a
geometric-flow based algorithm proposed by [10]. The algo-
rithm computes the compact superpixels with uniform size
and shape and preserves original image edges.

For all experiments presented in this paper, the input time
step value and the maximum number of iterations are taken
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as 0.5 and 500, respectively. These values are the default
parameter values provided by the authors along with their
source code1. Depending on the image size, the input num-
ber of superpixels are chosen to keep an average superpixel
size of around 40 pixels.

3.2 Feature extraction
For each superpixel in input gray image and reference

color image, we compute 172−dimensional (2+2+40+128)
feature vector based on their intensity, standard deviation,
gabor features and SURF descriptors. To compute this fea-
ture vector for a superpixel, we compute a 172−dimensional
feature vector at each image pixel and then compute the
mean value of all feature vectors that belong to the pixels
within a superpixel to represent that superpixel. We com-
pute this feature vector as follows:

Intensity features A two-dimensional feature vector is
computed for each superpixel based on the intensity values.
The first dimension is the average intensity values of all pix-
els within the superpixel S,

f1(i) =
1

n

∑
(x,y)∈i

I(x,y) (1)

where I(x,y) is the intensity of pixel (x, y) and n is the total
number of pixels within the superpixel Si. The second di-
mension is computed as the average intensity values of the
neighboring superpixels of Si,

f2(i) =
1

N

∑
j∈η

f1(j), (2)

where η represents the neighboring superpixels of Si and N
is the number of neighboring superpixels.

Standard deviation features Similar to intensity, we
also compute a two-dimensional feature based on the stan-
dard deviation values in small pixels neighborhoods around
each image pixel. For all experiments in this paper, we used
a 5 × 5 square window to compute the standard deviation
value at each image pixel. The standard deviation feature
for the superpixel is then computed in the same way as that
computed for the intensity feature.

Gabor features We apply Gabor filters [14] to an image
with eight orientations varying in increments of π/8 from
0 to 7π/8, and with five exponential scales exp(i × π), i =
0, 1, 2, 3, 4 to compute a 40-dimensional feature at each pixel.
The Gabor feature for the superpixel is then computed as
the average Gabor feature of all pixels within the superpixel.

Speeded Up Robust features Similar to the Gabor fea-
tures, we also extract a 128-dimensional extended SURF de-
scriptors [1] at each image pixel. Extended SURF descrip-
tors for each superpixel in then computed in the same way
as the computation of the Gabor features.

3.3 Cascade feature matching scheme for ini-
tial color assignment

We exploit the features which are extracted in the pre-
vious section to find correspondences between the reference
and target superpixels, and harness these correspondences to
assign a set of initial colors to the target superpixels. Here,

1http://www.cs.toronto.edu/ babalex/research.html

for each target superpixel, one can search among all refer-
ence superpixels across all feature types to find the reference
superpixel which is most similar to the target. This how-
ever demands large processing time. For greater efficiency,
we instead employ a fast cascade feature matching scheme
which continually prunes the search space at each step of the
cascade and concentrates the search only on reference super-
pixels which are sufficiently similar to the target. To ensure
that the search space are pruned reliably, we exploit the
more discriminative Gabor and SURF features at the initial
cascade steps to sieve out a set of matching reference super-
pixels for a target superpixel, before relying on the intensity
and standard deviation features to find its final matching
reference superpixel. In our work, we found feature matches
to be largely unaffected by using SURF before/after Gabor
and intensity before/after standard deviation.

Let {ri} denote the set of reference superpixels which are
extracted from the reference image Ir. Consider a target
superpixel ti. Starting at the first cascade step, we find a set
of α reference superpixels from {ri} which are most similar
to ti based on the Gabor features. Let this set of α reference
superpixels be denoted as Φi. We compute distance between
two features of the same type by the Euclidean distance
measure. Following that, at the second level, we find α

2
reference superpixels from Φi which is most similar to the
currently considered target superpixel ti based on the SURF
features. Intensity and standard deviation features are then
used in the third and fourth levels respectively to find the
set of reference superpixels which are most similar to ti.
Let Υi denote the set of reference superpixels found by the
cascade filtering process to be most similar to ti at the final
step of the cascade. The reference superpixel ra within Υi

which correspond to ti is then identified as one with the least
matching cost across different feature types to ti,

a = argmin
b

F (rb, ti), rb ∈ Υi, (3)

and

F (rb, ti) = w1C1(rb, ti) + w2C2(rb, ti)

+ w3C3(rb, ti) + w4C4(rb, ti). (4)

We denote C1, C2, C3 and C4 as the Euclidean distance be-
tween the Gabor, SURF, intensity and standard deviations
features, and w as their accompanying weights. For all ex-
periments in this paper, we fixed w1, w2, w3 and w4 to be
0.2, 0.5, 0.2 and 0.1 respectively.
We use the CIELab color space to transfer the color from

reference superpixel to target superpixel. While transferring
the color, we only transfer the chromatic color values a and
b of the reference superpixel as micro-scribbles to the cen-
ter of its matching target superpixel. These color scribbles
are spread across all the pixels with an optimization-based
color interpolation algorithm [9]. The algorithm is based on
the principle that neighboring pixels with similar luminance
should also have similar colors. The algorithm attempts to
minimize the difference J(C) between the color assigned to
a pixel p and the weighted average of the colors assigned to
its neighbors,

J(C) =
∑
p∈l

⎛
⎝C(p)−

∑
q∈N(p)

wpq C(q)

⎞
⎠

2

, (5)

where the weights wpq are determined by the similarity of
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Figure 2: Colorization results obtained at different steps of cascade feature matching. We assign chromatic values

ab of the reference superpixels as micro-scribbles to the center of its matching target superpixels, and propagate the

colors across the entire image by [9]. Target gray and reference color images are shown in (a) and (b) respectively.

Colorizations obtained at the first (Gabor only), second (Gabor + SURF only), third (Gabor + SURF + intensity only)

and fourth (Gabor + SURF + intensity + standard deviation) steps of cascade are shown respectively in (c) to (f).

Circled regions in (f) depict visually invalid color assignments at the final step of the cascade, which are automatically

identified and corrected by image space voting as detailed in Section 3.4. Best viewed on screen.

(a) (b) (c) (d)

Figure 3: Colorization results obtained by a single feature type of (a) Gabor, (b) SURF, (c) intensity and (d) standard

deviation. Poor colorizations are obtained using a feature type independently, since no one feature type can model

difference image regions sufficiently well.

(a) (b)

Figure 4: Manually labeled regions on (a) reference and

(b) target images. Regions with similar labels are de-

picted by similar colors.

their luminance (Y ),

wpq ∝ e−(Y (p)−Y (q))2/2σ2
p . (6)

Figure 2 shows intermediate colorization results obtained
at each cascade step. For comparison, we show in Figure 3
colorization results that are obtained by using each feature
type independently. It can be seen that colorizations are
poor with a single feature type (Figure 3). This is due to
the inability of a single feature type to correctly find cor-
respondences across different regions of an image. On the
other hand, by collectively exploiting different feature types,
we show the synergy of different feature types can markedly
improve colorization quality (Figure 2 (f)). To illustrate the
improvement following each cascade step, we manually label
image regions (i.e. sky, castle etc.) in both the target gray
and reference images of Figures 2 (a) and (b) as shown in
Figures 4 (a) and (b) respectively. These labels are used

(a) (b)

Figure 5: Extracted superpixels and image segments are

shown overlaid on target image in (a) and (b) respec-

tively. Image segments which participate in the image

space voting are highlighted within yellow border in (b).

to quantify the extent of matching errors at each cascade
step, where the matching error is computed based on the
target gray image superpixels that have the same labels as
its matching reference image superpixels.

Without using the cascade feature matching scheme, the
matching errors obtained with Gabor, SURF, intensity and
standard deviation features independently are 48.7%, 37.9%,
33.1% and 46.1%, respectively. The matching errors reduce
significantly with the proposed cascade feature matching
scheme. Specifically, the matching errors at the first, second,
third and fourth cascade steps are 48.7% (Gabor), 34.8%
(Gabor + SURF), 27.1% (Gabor + SURF + Intensity) and
16.5% (Gabor + SURF + Intensity + Standard deviation),
respectively. This error can be further reduced using image
space voting, as discussed in the following section.

373



(a) (b) (c) (d)

Figure 6: Comparison of colorization results following the color reassignment step. (a) Colorization from the feature

matching step. (b) Confidence of correct color assignment, where brighter superpixels indicate weaker confidence for

its color assignment. (c) Superpixels (indicated in white) whose colors are reassigned. (d) Final colorization following

color reassignment.

3.4 Image space voting for color reassignment
The correspondences found by the above matching step

assign colors to superpixels based solely on image features.
While our use of multiple feature types improves color as-
signments significantly as compared to that using a single
feature type, there could be some visually invalid assign-
ments due to incorrect correspondences found (circled re-
gions in Figure 2(f)). To improve the color assignments, we
enforce spatial consistency in the colorization by explicitly
voting for the color assignments in the image space. Here,
our basic intuition is that color assignment for a superpixel
is likely to be correct if its neighboring superpixels which
have similar image properties are also assigned similar col-
ors. Consequently, we can exploit neighboring superpixels
to identify and to correct invalid color assignments.

Let I be a target image, and {si} be the set of image seg-
ments. To extract these image segments, we use the mean-
shift algorithm proposed by Comaniciu et al. [4]. We use
their source code2 with the default input parameters Spa-
tialBandwidth and RangeBandwidth as 2 and 3, respectively.
After computing the image segments, we keep only such im-
age segments for voting that contain at least three superpix-
els in it as shown in Figure 5, where the selected segments
have been highlighted using yellow border. Intuitively, each
image segment si is a grouping of connected superpixels
which have similar image properties. For each image seg-
ment si, we cluster its corresponding superpixels based on
their initial a and b chromatic color values (which are ob-
tained from Section 3.3) with k -means clustering. Densely
populated clusters provide strong evidence for the correct
color assignments of its member superpixels, while super-
pixels from sparsely populated clusters indicate that such
superpixels have little support for its color assignments. In
this regard, the clustering procedure identifies invalid color
assignments by pooling evidence from its neighboring super-
pixels together, where the confidence of a color assignment
for a target superpixel is computed as the number of mem-
ber superpixels belonging to the same cluster as the target
superpixel. Here, we identify sparsely populated clusters as
those which have less than 1

2k
the number of superpixels in

segment si. We reassign colors to superpixels from sparsely
populated clusters by the average color values of the super-
pixels from the most populated cluster. For all experiments
in this paper, we set k to be 2.

2http://coewww.rutgers.edu/riul/research/code/EDISON/

We show colorization obtained directly with the cascade
feature matching scheme on an example image in Figure 6(a).
The confidence of its color assignments that are obtained
with the feature matching step is visualized in Figure 6(b),
where brighter patches indicate weaker confidence for cor-
rect assignment. It is seen that most superpixels identified
to have low confidences for their correct color assignments
are located at image regions where there are sharp changes
in image properties (e.g. along castle-sky and field-leaves
boundaries). This is not surprising since patch based fea-
tures (as used here) are often affected by changes in inten-
sity and textures, and hence features extracted from such
superpixels are often less reliably matched as those located
on a more homogeneous image patches. We depict superpix-
els whose colors are reassigned as the white patches in Fig-
ure 6(c), and the resulting colorized results in Figure 6(d).
It can be seen that visually invalid colors, such as those from
the grass and sky segments, have been reassigned to yield a
perceptually more appealing colorization where the match-
ing errors are further reduced from 16.5% to 9.24%. These
errors are concentrated in image segments with very few su-
perpixels, which reduces the robustness of the image voting
step. This is further discussed in Section 4.2.

4. EXPERIMENTS
We present colorization results on a diverse range of im-

ages, and compare them to those obtained with existing
state-of-the-art colorization methods. For all experiments,
the following same fixed parameters are used for our method.
We normalize the reference and target images to have a diag-
onal length of 500 pixels, and extract around 3000 superpix-
els [10] from an image using the input parameters mentioned
in Section 3.1. The cascade feature matching step finds cor-
respondences between reference and target superpixels with
α equal to 600, and weights w1, w2, w3 and w4 equal to
0.2, 0.5, 0.2 and 0.1 respectively. Colors reassignment are
obtained with k fixed as 2. For the comparison methods,
we used the default parameters which are supplied by the
authors.

Figure 7 shows colorization results of our method, with
comparisons to existing state-of-the-art methods [17, 8, 2]
which have similar extent of user interaction as our method.
The algorithm [8] requires the segmentation mask of the ref-
erence color image as an additional input. We compute this
mask by using automatic image segmentation with same in-
put parameters as we used in Section 3.4. It is seen that our
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Input image Our method Welsh et al. [17] Irony et al. [8] Charpiat et al. [2] Reference image

Figure 7: Comparison with existing state-of-the-art colorization methods which have similar extent of user interaction

as our method. Last column shows reference color images that are used by all algorithms for colorizing the input images.

The input segmentation masks used by Irony et al. [8] are computed with the method discussed in Section 3.4.
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(a) (b) (c) (d) (e) (f)

Figure 8: Comparison against Liu et al. [12] and Chia et al. [3] which have additional constraints. (a) and (b) show

the input gray image and reference color image used for color transfer. (c) shows our colorization result. (d) shows

the colorization results obtained with Liu et al. [12] which requires reference image to have the exact object instances

as the gray image. (e) shows colorization results obtained by Chia et al. [3] which requires segmentation masks. For

comparison, results obtained with Irony et al. [8], which is most similar to our method, are included in (f).

(a) (b) (c) (d)

Figure 10: Colorization using multiple exemplars by

our method. (a) Input gray image. (b,c) Reference color

images. (d) Colorization obtained using both reference

images.

method yields perceptually more appealing colorization re-
sults than other methods. Our method is seen to work well
on these complex images which exhibit variations in inten-
sity and texture, even with the same fixed set of parameters.

Figure 8 compares our method against other colorization
methods which have additional input constraints. From the
figure, we can see that the algorithms [12] (which requires
exact object instances to be present in both reference and
gray images) and [3] (which requires segmentation masks
of foreground objects) are able to transfer the exact color
values at few pixel locations due to their use of spatial po-
sitions during the color transfer. The use of spatial position
restricts the flexibility of these algorithms and works well
only if the reference images used to transfer the color have
been taken from the same viewing angle. Although, the pro-
posed algorithm does not use such constraint, it is still able
to achieve comparable colorization result and clearly out-
performs Irony’s method [8], which is most similar to the
proposed algorithm.

In Figure 9, we demonstrate colorization with user-supplied
keywords (rather than with user-supplied color images). Here,
given a target gray image and a keyword, we automatically
find semantically relevant reference color images for coloriza-
tion. Specifically, based on the user-supplied keyword, we
download 2000 images from photo sharing websites such as
Flickr and Google Image Search. We evaluate the colorful-
ness of the downloaded images by using the method pro-
posed by Hasler et al. [5], and discard those images whose

Figure 11: Examples of images displayed for quantita-

tive evaluation during the user study. The second image

is artificially colored with our colorization method, while

the others are original color images.

colorfulness scores are below the recommended thresholds
suggested in [5]. From among the remaining images, we used
near duplicate key frame search method [19] to identify the
internet image which is the most similar to the input gray
image. Figure 9 shows colorization results obtained by user-
supplied keywords, where the keywords are shown at the top
of each reference color image. It is seen that colorization re-
sults are weak with coarse keyword (first colorized results
with the ‘lighthouse’ keyword). This is not surprising since
the retained internet image does not provide sufficient se-
mantically similar image and color information to correctly
colorize the input image. On the other hand, when more
specific keywords are used (remaining results), colorization
results improved markedly. Note that the first two rows of
Figure 9 depict colorizations on the same grayscale image
using different reference images.

Extension of our method to colorize gray image using mul-
tiple exemplars are depicted in Figure 10. Here, we extract
superpixels from multiple exemplars and match the target
superpixels with them in the cascade feature matching step.
Figure 10(a) shows a grayscale image, while reference im-
ages used for its colorization are shown in Figures 10(b) and
(c). We show the colorization result in Figure 10(d).

4.1 User study
We performed a user study to quantitatively compare our

colorization method with the state-of-the-art methods. Here,
we use the exact framework and the same set of test images
as those used by Chia et al. [3] for the evaluation. We engage
30 volunteers and present to them a set of images. Some of
these images are artificially colorized, while the rest are real
color images. We show each subject a set of four different
images at a time (such as in Figure 11) for a total of 30
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Lighthouse

Montauk point Lighthouse

Himeji castle

Neuschwanstein castle

Input gray Our result Charpiat et al. [2] Internet reference

Figure 9: Colorization with user-supplied keywords. The first column shows the input gray images. The second and

third columns show the colorization results obtained by our method and Charpiat et al. [2], respectively. Last column

shows the reference color images, along with the keywords (shown at the top of each image) which used to download

the reference images from the internet.

sets, and ask the subjects to identify all artificially colorized
images in each set. Each subject was given five seconds to
view an image set. Prior to the experiment, the subjects
were told that at most two images from each set were arti-
ficially colorized. Using our method, the subjects classified
colorized images obtained by our method as real 64.9% of the
time. This compares favorably to 48.90% obtained by [17],
53.2% by [8], and 32.30% by [2]. While it attains slightly
weaker colorization results as compared to Chia et al. [3]
(which obtains 66.59%), we note that [3] directly exploits
spatial information in their colorization and hence require
users to manually segment major foreground objects from
the input image. In contrast, our method only require users
to present a semantically similar color image as input, which
is substantially more intuitive.

(a) (b) (c)

Figure 12: Limitations of automatic image colorization.

(a)-(c) show the input gray image, automatic segmented

input image and the colorization result, respectively.

Circled regions in (c) depict some artifacts generated

due to small image segments.
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4.2 Limitations
There are a few limitations in our method. First, our use

of superpixel representation, while supporting more spatial
coherency in colorization, can be inaccurate at object bound-
aries or thin image structures. This could potentially lead
to bleeding artifacts at object boundaries. Second, image
segments generated in Section 3.4 are often very small in
dense textured regions. This reduces the robustness of the
image voting step since these segments have fewer superpix-
els within them than larger segments. Consequently, voting
for the colors within these segments by its superpixels be-
come less reliable. This is shown in Figure 12, where Fig-
ures 12(a) and (b) show an input gray image and segmented
mask used for image space voting respectively, and coloriza-
tion artifacts due to small segments are shown within circled
regions in Figure 12(c). Finally, our method relies on the
availability of color exemplar which is semantically similar
to the gray image. Consequently, our method may fail when
suitable color exemplars are unavailable.

5. CONCLUSIONS
In this paper, we present a new method for colorizing gray

images using semantically similar reference images. Our
method works at the resolution of superpixels, in which we
extract a variety of features from the reference and target im-
ages. Correspondences between superpixels are found by a
fast cascade feature matching scheme which examines differ-
ent feature types at each cascade step. Leveraging on spatial
information, we identify and correct invalid correspondences
through an automatic image space voting paradigm. This,
coupled with our superpixel representation, empowers our
method to attain a strong extent of spatial consistency in
the colorization. Experimental results on a wide array of
images demonstrate our method achieves perceptually ap-
pealing colorizations, even with a fixed set of parameter
settings. Additionally, comparisons against existing state-
of-the-art methods also demonstrate our method to be more
effective at colorization.

As future work, we would like to employ more features for
finding correspondences between reference and target im-
ages. In particular, our current framework employs patch
based features only, and we will explore how these features
can be combined with contour fragment features. Addition-
ally, we would also want to explore more advanced tech-
niques to fuse various feature types to improve their overall
discriminative potential. Finally, we have shown the poten-
tial of our method to colorize an image using internet images
downloaded with user-supplied keywords. In the future, we
also plan to study how we can identify semantically more
relevant internet images, perhaps by incorporating object
recognition abilities into the image filtering framework.
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