
J Supercomput (2016) 72:1063–1091
DOI 10.1007/s11227-016-1641-y

Parallel Partition and Merge QuickSort (PPMQSort) on
Multicore CPUs

Ratthaslip Ranokphanuwat1 ·
Surin Kittitornkun1

Published online: 18 February 2016
© Springer Science+Business Media New York 2016

Abstract An explosive amount of data has tremendous impacts on sorting, search-
ing, indexing, and so on. Sorting is one of the basic Computer Science problems
needed to be fast and efficient to serve Big Data. This paper presents an efficient and
scalable algorithm called Parallel Partition and Merge QuickSort (PPMQSort) run-
ning on any shared memory/multicore/multi-socket systems. Together with OpenMP
3.0 library, the PPMQSort is developed to be compatible and benchmarked with the
fastest C/C++ Stdlib qsort (). The PPMQSort recursively divides an unsorted input
array into partially sorted partitions up to Cutoff length using nested multithreading.
Finally, those independent partitions are qsort () (conquered) such that no synchro-
nizations are needed. The resulting Speedup of 12.29× on a dual-socket 8-core Xeon
E5520 can be achieved for sorting random200M32-bit integer data at 16 threads.With
the same configuration, a 4-core AMD A6-3600 CPU (non-HyperThread) can reach
up to 4.67×, a superlinear Speedup. It has been proved that the proposed PPMQSort
can exploit all available cache levels and HyperThread CPU cores well thus utilizing
up to 83 % and 96% of CPU on E5520 and A6-3600, respectively.

Keywords QuickSort · Parallel · OpenMP · Multicore · Multithread · Superlinear

B Ratthaslip Ranokphanuwat
udom.ran@dpu.ac.th

Surin Kittitornkun
surin.ki@kmitl.ac.th

1 Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, No. 1, Soi Chalong
Krung 1, Chalong Krung Rd., Ladkrabang, Bangkok 10520, Thailand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1641-y&domain=pdf
http://orcid.org/0000-0002-7094-5590

1064 R. Ranokphanuwat, S. Kittitornkun

1 Introduction

Sorting has become highly important for Big Data analyses especially in social/web
mining, large scale scientific, commercial application domains and so on. Among all
the sorting algorithms, QuickSort [1,2] is the most well-known and standard sorting
algorithm. To compare with any existing sorting algorithms, QuickSort is the fastest
one in practice [3].

Numerous parallel architectures can be applied to perform sorting algorithms. Ear-
lier studies have shown [4–6] that sorting can be done at the interconnection level of
a particular network of processors named the MultiRing network. Recently, sorting
networks have been implemented on FPGAs instead. References [7–9] used FPGAs
as sorting kernels for database intensive operations. In addition to FPGAs, hundreds
to thousands of processing elements/cores inside the GPUs can be applied as co-
processors for sorting [10] based on SIMD parallelism including the Bitonic-Merge
Sort on Intel Xeon Phi [11].

A few parallel algorithms have been proposed to enhance the existing QuickSort
algorithm. Initially, Heidelberger [12] presented the parallel version on an ideal Par-
allel Random Access Machine. In practice, the sequential QuickSort can be enhanced
with several parallel techniques to run on any shared memory/multicore systems with
multithreading operating system. In 2003, Tsigas and Zhang [13] proposed a fine-grain
parallel QuickSort algorithm to fit data into L1 caches. A year later, [14] presented
several alternative algorithms of parallel QuickSort based on pthreads and OpenMP
2.0. Man et al. [15,16] developed psort () algorithm to be compatible with Stdlib
qsort (). Their work can achieve Speedup by only 11 times faster with 24 cores.
Meanwhile, Kim et al. [17] have shown that a dual-core OMAP-4430 can achieve
only 1.47xSpeedup from their IntrospectiveQuickSort algorithm.Mahafzah [18] split-
ted the input array with multi-pivot/thread into partitions using extra space and then
sorted them in parallel up to 8 threads. Very recently, Bingmann et al. [19] proposed
multikey QuickSort algorithms for string sorting on NUMA (Non Uniform Memory
Access) architectures. Their results show that the Speedup is bounded by memory
bandwidth.

However, it is still challenging to enhance parallel QuickSort performance and
efficiency at the same time. These challenges are due to sequential data partitioning,
latency/bandwidth between memory hierarchy, and sequential and recursive nature
of QuickSort. Furthermore, the bottlenecks of parallel QuickSort should be further
investigated together with some performance characteristics such as CPU utilization,
memory bandwidth and branch misprediction rate.

In this paper, we have proposed and developed a Parallel Partition and Merge
QuickSort (PPMQSort) for variousmulticoreCPUs.Our contributions are summarized
as follows:

1. The PPMQSort algorithm is compatible and benchmarked with Stdlib qsort ()
while achieving superlinear Speedups in some CPUs.

2. The efficiency called Speedup perCore of PPMQSort and any parallel algorithmon
bothHyperThread andnon-HyperThreadCPUs is proposed.Hence, thePPMQSort
can achieve higher efficiency than previous algorithms.

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1065

3. The time complexity of PPMQSort has been analyzed and presented in big-O
notations.

4. Based on the Linux Perf measurement tool, a system performance model of any
sharedmemory/multiprocessor/multicore systems is proposed to estimatememory
bandwidth.

5. The Speedups of PPMQSort withWorst-case input data although very rare but can
be as high as those of Random cases.

The rest of the paper is organized as follows. Section 2 presents background and
related work. Section 3 presents our algorithm and discusses the implementation
details. Section 4 describes performance evaluation and discussions. Finally, Sect.
5 concludes and suggests future work.

2 Background and related work

We begin with a brief overview of QuickSort, Stdlib qsort (), a number of parallel
QuickSort algorithms, and finally OpenMP library.

2.1 QuickSort algorithm [1, 2]

QuickSort is the most famous and widely used sorting algorithm. The divide and con-
quer concept recursively partitions and swaps an input array into two halves: less than
or equal (LEQ) half and greater than (GT) half with respect to a selected pivot ele-
ment at each recursion level. The time complexity on average is, therefore, O(n log n)
although the poorly selected pivot can affect its complexity. Evenworse, theworst-case
input array can make the complexity become O(n2). In terms of space requirements,
QuickSort is considered to be an in-place algorithm using minimal extra memory.
During the recursion, extra space for calling stack is proportional to O(log n). To
optimize its performance, selecting good pivot(s) from several candidates has been
considered.

2.2 Stdlib qsor t()

The Standard Library qsort () is a very useful function for sorting an array of any data
types with a user-defined comparison function. It is implemented in C/C++ and also
provided as a built-in function for several C/C++ compilers. Its function prototype is
declared in Stdlib.h as follows.

void qsort(void *base, size_t num_elements,
size_t element_size,
int (*compare)(void const *, void const *));

The argument base is a pointer to the unsorted array, num_elements indicates the
number of elements, element_si ze is the size of each element, and compare is a
pointer to the user-defined function that returns integer values according to the com-
parison result.

123

1066 R. Ranokphanuwat, S. Kittitornkun

2.3 Parallel QuickSort algorithms

In 1990, Heidelberger et al. [12] presented a parallelization of the Quicksort on a
theoretical/ideal Parallel Random Access Machine with average of O(log n) time
complexity. In practice, the sequential QuickSort can be enhanced with several par-
allel techniques to run on any shared memory/multicore systems with multithreading
operating system. Parallel versions of QuickSort normally start with partitioning data
into several chunks to fit any cache level depending on the size. These chunks can be
partially or fully sorted and then merged to form bigger chunks. These two steps may
be recursive as indicated in the Recursion row of Table 1. Some algorithms may use
extra space to hold the intermediate results as shown in Ex. Space row. Eventually, they
shall be fully sorted again with either the Stdlib qsort () or others. The comparison
of previous parallel QuickSort algorithms is shown in Table 1 in chronological order
from left to right.

Tsigas and Zhang [13] proposed a fine-grain (block-based) parallel Quicksort algo-
rithm. Subsequently, [14] presented several alternative algorithms of parallelQuicksort
based on pthreads and OpenMP 2.0. Rashid et al. [20] enhanced Tsigas and Zhang’s
[13] PQuicksort on x86 Multithreaded Architectures. Man et al. [15,16] developed
psort () algorithm to be compatible with Stdlib qsort (). The input array is divided
into groups and qsort () them. Later on, these partitions can be merged using extra
space and finally qsort () them again. Their work can achieve Speedup by 11 times
faster with up to 24 cores. Kim et al. [17] have shown that an embedded dual-core
OMAP-4430 can achieve 1.47x Speedup from their Introspective Quicksort algo-
rithm. Mahafzah [18] splitted the input array with multi-pivot/thread into partitions
using extra space and then sort them in parallel up to 8 threads. Recently, Saleem et
al. [21] estimated Speedup for QuickSort and Merge sort algorithms using Intel Cilk
Plus.

2.4 OpenMP library

OpenMP library [22] is the most well-known library that can be applied successfully
to develop parallel programs running on multicore CPUs architecture. It provides an
application program interface (API) for thread-based parallelism on shared memory
multicore processors. The API consists of a set of compiler directives, library routines,
and environmental variables that support FORTRAN and C/C++ on multiple archi-
tectures. OpenMP uses the fork-join model for multithreading execution model. The
main advantage of using OpenMP is the ability of all CPU cores to share and access
the same memory pool (data) with less communication overhead and network latency
compared with other parallel computing paradigms such as cluster computing, grid
computing, etc.

Since OpenMP version 3.0, Task construct has been introduced to handle irreg-
ular and dynamic parallelism in the form of recursive routines. Tasks are units
of work which can be executed (forked) in parallel as threads. This paper specif-
ically demonstrates how to exploit the Task construct in our parallel QuickSort
algorithm.

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1067

Ta
bl
e
1

C
om

pa
ri
so
n
of

pr
ev
io
us

pa
ra
lle

lQ
ui
ck
So

rt
al
go

ri
th
m
s,
Pa

r.
Pa
ra
lle
l,
Se
q.
Se
qu
en
tia
l,
Sy
nc
.S

yn
ch
ro
ni
za
tio

n,
N
A
N
ot

A
va
ila
bl
e

Y
ea
r

20
03

20
04

20
11

20
11

20
13

20
14

R
ef
er
en
ce
s

[1
3]

[1
4]

[1
6]

[1
7]

[1
8]

[2
1]

A
lg
o.

na
m
e

PQ
ui
ck
so
rt

cv
_1
.0

ps
or
t1

In
tr
os
pe
ct
iv
e

Q
ui
ck
So

rt
Q
ui
ck
so
rt

Pa
rt
iti
on

Pa
r.
in

bl
oc
ks

Se
q.

Pa
r.
n/

c
Se
q.

Pa
r.
m
ul
tip

le
Se
q.

of
L
1
si
ze

an
d
q
so
rt
()

n/
c

pi
vo
ts

n

M
er
ge

Se
q.

Sw
ap

N
o

Se
q.

M
er
ge

an
d

N
o

N
o

N
o

an
d
q
so
rt
()

R
ec
ur
si
on

Y
es

Y
es

N
o

N
o

N
o

Y
es

T
im

e
co
m
pl
ex
ity

O
(
n c

+
n c
lo
g
n c
)

N
A

O
(n

+
n c
lo
g
n c
)

O
(
n 2

+
n 2
lo
g
n 2
)

O
(
n h
lo
g
n h
)

N
A

E
xt
ra

sp
ac
e
(s
iz
e)

N
o

N
o

Y
es
(n
)

N
o

Y
es
(n
)

N
o

U
si
ng

q
so
rt
()

Si
m
ila
r

N
o

Y
es

N
o

N
o

N
o

O
th
er

so
rt

In
se
rt
io
n

N
o

N
o

In
se
rt
io
n

N
o

N
o

L
ib
ra
ry

N
A

pt
hr
ea
ds

O
pe
nM

P
3.
0

O
pe
nM

P
3.
0

pt
hr
ea
ds

C
ilk

Pl
us

Pr
os

C
ac
he

ef
fic
ie
nt
,

L
oa
d
ba
la
nc
e-

Q
so
rt
()
lib

.c
om

pa
tib

le
,

L
im

it
de
ep

pa
rt
iti
on
,

U
til
iz
e
SM

T
ar
ch
ite
ct
ur
e,

E
as
ily

Fi
ne
-g
ra
in
ed
,

W
ith

bu
sy

w
ai
tin

g
G
oo
d
lo
ad

ba
la
nc
e

C
ac
he

fr
ie
nd
ly
,

G
oo
d
lo
ad

ba
la
nc
e

G
oo
d
lo
ad

ba
la
nc
e

C
on
s

B
ot
tle
ne
ck
-

Sy
nc
.a
dd
ed
,

D
if
fic
ul
tt
o
im

pl
em

en
t,

N
o
ne
st
ed

pa
ra
lle
lis
m
,

Sy
nc
.a
dd
ed
,

U
np
op
ul
ar

lib
.

In
se
q.

m
er
ge
,

L
es
s
al
go
ri
th
m

de
ta
ils

H
ig
h
ov
er
he
ad

Se
q.

pa
rt
iti
on

E
xt
ra

sp
ac
e

Sp
ec
ia
lS

yn
c.
-

In
st
ru
ct
io
n

123

1068 R. Ranokphanuwat, S. Kittitornkun

3 PPMQSort algorithm

Previous parallel QuickSort algorithms focus on optimizing either partitioning phase
or recursive QuickSort phase. Our PPMQSort pays attention on both phases. In this
section, we propose the Parallel Partition and Merge QuickSort (PPMQSort) on
any multicore CPUs. The concept of PPMQSort is to partition an unsorted array
into partially sorted partitions in the Parallel Partition Step. Then, these partitions
can be eventually sorted independently using OpenMP Task construct in the Par-
allel qsort () Step. Those important steps mentioned above can be illustrated in
Fig. 1.

Fig. 1 Illustration of Parallel Partition and Merge QuickSort (PPMQSort) consisting of Parallel Partition
Step and Parallel qsort () Step

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1069

Table 2 Notations

a Input data array

a j Data element at index j

aid Data element at the middle index id

ap Data element at pivot p

B Branch Loads

Bm Branch Load Misses

Bm/s Branch Load Misses Per Second

C Cache References

Cm Cache Misses

Cm/s Cache Misses Per Second

|Cline| Cache Line Size

c Number of processor cores

d The middle index

f () A function

HT/NHT HyperThread/Non-HyperThread

i, j Loop indices

iL , iR Left most and right most indices of the left-hand side subarray, respectively

jL , jR Left most and right most indices of the right-hand side subarray, respectively

id , jd The middle indices of left subarray and right subarray, respectively

k Number of CPU sockets

K 103 or 210

l Recursion level l

M 106 or 220

Mbw Total memory bandwidth

n Number of elements of array a

O() BigO notation

o Optimization Level

p The pivot place

Rx,y Correlation Coefficient of x and y

S Speedup

s Second

Tqsort Run Time of sequential Stdlib qsort ()

Tppmqsort Run Time of PPMQSort

Tseq Run Time of any sequential QuickSort

Tpar Run Time of any parallel QuickSort

U %CPU Utilization

u Cutoff size

The PPMQSort is actually developed in C language on top of an open-source/past
version of Stdlib qsort () utilizing stack rather than recursion. Due to limited space
and ease of understanding, the algorithms are explained in recursion. Notations used
in this paper are listed in Table 2.

123

1070 R. Ranokphanuwat, S. Kittitornkun

We first present the Partition Phase with 2 Threads and Merge Phase with 1 or 2
Threads. Then we show how to apply OpenMP Task parallelism to call qsort (). At
last, the time complexity of our algorithm is analyzed.

3.1 Parallel Partition Step

The partitioning operation has been a major bottleneck of QuickSort since it was
invented. Previous work has tried to optimize it by both reducing the number of key
comparisons and fast swapping code.Thekey idea of thePartitionPhasewith 2Threads
is to divide the input data array into two subarrays. Then, they can be partitioned in
parallel with 2 threads into 4 sub-subarrays using the same pivot value. Next is the
Merge Phase with 1 or 2 Threads swapping the second and third sub-subarrays. Both
phases of Parallel Partition Step are explained in details as follows.

3.1.1 Partition Phase with 2 Threads

Initially, an unsorted data array, a = a0, a1, . . . , an−1, is divided into two inde-
pendent subarrays at the pivot p. Let ap denotes the pivot element selected by
MedianO f T hree() function. Let iL and iR be left indices and jL and jR be
right indices of a, respectively. The left subarray of a, a0, . . . , ap−1 corresponds to
(iL = 0, iR = p − 1). Similarly, the right subarray, ap+1, . . . , an−1, corresponds to
(jL = p + 1, jR = n − 1). In this phase, both subarrays, (aiL , aiR) and (a jL , a jR),
are compared and swapped with the same pivot ap simultaneously using 2 threads on
line 13 and line 15 in seq_parti tion() of Algorithm 1. In addition, seq_parti tion()
returns the partition index as id and jd for the left and right partitions, respectively, as
shown. As a result, a0, . . . , an−1 are splitted into 4 sub-subarrays; two sub-subarrays
on the left, a0, . . . , aid and aid+1, . . . , ap−1, and two sub-subarrays on the right,
ap+1, . . . , a jd−1 and a jd , . . . , an−1. Notice that id and jd are the middle indices of the
left and right subarrays, respectively.

From a programming perspective, we have applied OpenMP Parallel Tasks without
barrier synchronization, leading to improved CPU utilization. To reduce the number
of shared memory accesses, d = p is copied to be a local private variable to improve
cache locality. Both Phases are listed in Algorithm 1.

In summary, based on id , p, and jd , two independent subarrays can be partitioned
into 4 sub-subarrays in parallel with respect to the global ap pivot in this phase. These
4 sub-subarrays are ordered as follows: less than or equal (LEQ), greater than (GT),
LEQ, and GT from left to right.

3.1.2 Merge Phase with 1 or 2 Threads

In this subsection,wewill explain how the second (GT) sub-subarray, aid+1, . . . , ap−1,
and the third (LEQ) sub-subarray, ap+1, . . . , a jd−1, are swapped and merged together.
The idea of this phase is to swap all data in both sub-subarrays to rearrange them in
the correct order, LEQ and GT. Because this phase needs only to swap a bulk of data

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1071

Algorithm 1 The Parallel Partition algorithm
1: function ParallelPartition(a,start ,end) � Parallel Partition Step
2: iL , jR , p ← Parti tion(a, start, end) � call Partition function
3: p ← Merge(a, p, iL , jR) � call Merge function
4: return p
5: end function

6: function Partition(a, iL , jR) � Partition Phase with 2 Threads
7: p ← MedianO f T hree(a, iL , jR)
8: d ← p
9: iR ← p − 1
10: jL ← p + 1
11: begin OpenMP parallel Tasks private(d)
12: OpenMP Task
13: id ← seq_parti tion(a, d, iL , iR) � Partition the Left Subarray
14: OpenMP Task
15: jd ← seq_parti tion(a, d, jL , jR) � Partition the Right Subarray
16: end parallel Tasks
17: iL ← id + 1
18: jR ← jd − 1
19: return (iL , jR , p)
20: end function

21: function Merge(a, p, iL , jR) � Merge Phase with 1 or 2 Threads
22: � Three cases for calculating location and moving the pivot p
23: if len(iL , p − 1) < len(p + 1, jR) then � Left side is shorter.
24: length ← len(iL , p − 1)
25: Swap(ap, a jR−length)

26: p ← jR − length
27: temp ← p + 1
28: else if len(iL , p − 1) > len(p + 1, jR) then � Right side is shorter.
29: temp ← p + 1
30: length ← len(p + 1, jR)
31: Swap(ap, aiL+length)

32: p ← iL + length
33: else � Left side equals right side.
34: temp ← p + 1
35: length ← len(p + 1, jR)
36: end if
37: begin OpenMP parallel For with 1 or 2 Threads
38: for i ← 0, length − 1 do � Swapping with 1 Thread or 2 Threads
39: Swap(aiL+i , atemp+i)

40: end for
41: end parallel For
42: return p
43: end function

between them, no comparisons are necessary. Furthermore, swapping would work
with data on the same sub-subarrays so that our method does not use an extra memory.

The Merge Phase with 1 or 2 Threads is shown as function Merge() on line 21
of Algorithm 1 where len() returns the number of elements between two arguments
(len(x, y) = y − x + 1; y ≥ x). Let iL = id + 1 and jR = jd − 1 be the left most
index and the right most index of the sub-subarray. So, the second (GT) sub-subarray
consists of aiL , . . . , ap−1 and the third (LEQ) sub-subarray consists of ap+1, . . . , a jR .

123

1072 R. Ranokphanuwat, S. Kittitornkun

Both arrays must be swapped to complete the Parallel Partition Step. The swapping
will start from this pair (aiL+i , atemp+i) and incrementally continue for i = 0 to
length− 1 on line 39 of Algorithm 1. After swapping is finished, ap must be adjusted
to the correct position. Both phases of Parallel Partiton Step are recursive as shown
in function _QSort () until each partition’s size is no greater than Cutoff u on line 1
of Algorithm 2. Although it is associated with OpenMP Single construct on line 15,
parallelism can be achieved up to 2h threads in reality. That’s because the Parallel
Partition Step each forks 2 threads internally.

Three important steps need to be considered in this phase. Firstly, the total number
of elements swapped between two sub-subarrays is calculated. This number can be
determined from the shorter length of either id and pivot place p or jd and p. The
variable length can be ≤ n

4 . Then, the direction of swapping sequence is determined.
To be cache friendly, increasing order is chosen. The last step is to move the pivot to
the appropriate position in the array after swapping process is finished to guarantee
that the Parallel Partition Step is completed. In the next Parallel qsort () Step, those
partitions can be qsort () in parallel up to h threads.

3.2 Parallel qsor t() Step

The Parallel Partition Step can be cutoff by u elements to avoid over partitioning so
that qsort () can efficiently sort in each core’s private L2 cache or shared L3 cache
depending on the hardware. The Parallel qsort () Step is on the else part of function
_Qsort () on line 9 of Algorithm 2. Therefore, Cutoff u should be parameterized in the
experiment to achieve the best Speedup. As a result, if the Stdlib qsort () performance
is improved, the performance of PPMQSort will be automatically enhanced. Next, the
time complexity of PPMQSort will be analyzed in O() notation.

Algorithm 2 The PPMQsort Algorithm
1: function _QSort(a, iL , jR , u)
2: if iL + u < jR then � if jR − iL > Cutoff u
3: p ← Parallel Parti tion(a, iL , jR) � Parallel Partition Step
4: OpenMP Task
5: _QSort (a, iL , p − 1, u) � Left Subarray
6: OpenMP Task
7: _QSort (a, p + 1, jR , u) � Right Subarray
8: else � else less than or equal Cutoff u
9: qsort (a, iL , jR) � Parallel qsort () Step
10: end if
11: end function

12: function PPMQsort(a,start ,end,h,u) � PPMQsort() Function
13: begin OpenMP parallel with h threads
14: OpenMP Single
15: _QSort (a, start, end, u) � with Cutoff u
16: end parallel
17: end function

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1073

3.3 Complexity analysis

The time complexity of PPMQSort is analyzed assuming that all c cores are 100%
utilized by running h ≥ c threads. The analysis can be divided into two steps: Parallel
Partition Step and Parallel qsort () Step as follows.

Lemma 1 Let n be the size of data array a, where a = a0, a1, . . . , an−1. Then, the
time complexity of Parallel Partition Step with h Threads on c cores where h ≥ c is
O(n + n

c log
n
2uc).

Proof At the beginning (level 1), the number of comparisons in Partition Phase with
2 Threads is 2 × n

4 . Due to c ≥ 2 cores, the time complexity is 1
c × 2 × n

4 = 2
2 (

n
4).

The number of swappings in Merge Phase with 1 Thread is n
4 . Due to its sequential

operation, its time complexity is n
4 . In the first recursion level, the time complexity is

hence 2
2 (

n
4)+

n
4 . In the second level, there are two independent partitions with c ≥ 2

processor cores. The time complexity of Partition Phase with 2 Threads is 1
c ×4× n

8 =
4
c (

n
8). The number of swappings in Merge Phase with 1 Thread is 2 × n

8 . Due to its
parallel operation, its time complexity is now 1

c × 2 × n
8 = 2

c (
n
8). The total time

complexity of the second level is 4
c (

n
8) + 2

c (
n
8). The partitioning process is recursive

until the condition on line 2 of Algorithm 2 is FALSE. That means the partition size
is not larger than Cutoff u elements. Based on the divide and conquer concept, the
number of this recursive partitioning is log2

n
u levels on average with respect to Cutoff

u.
Therefore, the total time complexity of the Parallel Partition Step is

= 2

2

(n
4

)
+ n

4
+ 4

c

(n
8

)
+ 2

c

(n
8

)
+ 8

c

(n

16

)
+ 4

c

(n

16

)

+ · · · + 2log2
n
u

c

(
n

2log2
n
u +1

)
+ 2log2

n
u −1

c

(
n

2log2
n
u +1

)

= 3 ×
[
20

2

(n

22

)
+ 21

c

(n

23

)
+ 22

c

(n

24

)
+ · · · + 2log2

n
u −1

c
(

n

2log2
n
u +1

]

= 3 ×
⎡
⎣n

log2 c∑
l=1

1

2l

(
2l−1

2l+1

)
+ n

c

log2
n
u∑

l=log2 c+1

(
2l−1

2l+1

)⎤
⎦

= 3

4
×

⎡
⎣n

log2 c∑
l=1

1

2l
+ n

c

log2
n
u∑

l=log2 c+1

1

⎤
⎦

= 3

4
×

[
n

(
1 − 1

c

)
+ n

c
log2

n/u

c

]
.

= 3

4
×

[
n − n

c
+ n

c
log2

n/u

c

]
.

123

1074 R. Ranokphanuwat, S. Kittitornkun

= 3

4
×

[
n + n

c
log2

n/u

2c

]
.

= 3

4
×

[
n + n

c
log2

n

2uc

]
.

As a result, the time complexity of Parallel Partition Step is O(n + n
c log

n
2uc). ��

Lemma 2 Let c processor cores perform qsort () each partition of size u elements in
parallel. Since there are at least n

u partitions, the time complexity of Parallel qsort ()
Step is O(nc log u).

Proof FromParallel Partition Step, at least nu partitions can be obtained. Each partition
of up to u elements is sorted by qsort () in parallel up to h ≥ c threads. The time
complexity of Parallel qsort () Step is, therefore, 1

c × n
u × u log2 u

= n
c log2 u= O(nc log u). ��

Theorem 1 (PPMQSort’s Theorem) The total time complexity of sorting n elements
with the proposed PPMQSort running in parallel on c ≥ 2 processor cores with Cutoff
u elements and h ≥ c threads is O(n + n

c log
n
2c).

Proof The complexities of Parallel Partition Step (see Lemma 1) and of Parallel
qsort () Step (see Lemma 2) are O(n + n

c log
n
2uc) and O(nc log u), respectively. The

total time complexity is O(n + n
c log

n
2uc + n

c log u). Therefore, the time complexity
of PPMQSort is O(n + n

c log
n
2c). ��

The time complexity of PPMQSort is similar to that of psort1 algorithm [15] as
listed in Time Complexity row of Table 1. PPMQSort requires no extra space for
intermediate results. As the data size n and number of cores c grow, PPMQSort can
eventually outperform other algorithms due to its simplicity, scalability, and efficiency.
The next section will show how PPMQSort is evaluated.

4 Performance evaluation and discussions

This section presents how various performance metrics are measured. The experiment
setups and results are discussed later on.

4.1 Performance measurement

To investigate how the multicore architectures impact the performance of the algo-
rithm, various performance metrics are measured and analysed.

1. CPU Time (in Seconds)
To fairly compare Tqsort and Tppmqsort in any experimental configurations, the CPU
time is measured without data file loading and other overheads and averaged by 5
times.

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1075

2. Speedup S(x)
This metric indicates that how many times our PPMQSort can be executed faster
than the sequential Stdlib qsort (). Based on the measured Tqsort and Tppmqsort,
Speedup S can be computed as

S = Tqsort
Tppmqsort

(1)

where × denotes times.

3. Efficiency: Speedup/Core
We would like to propose a new metric to measure the efficiency of any parallel
QuickSort called Speedup per Core, S/c. S/c > 1.00 corresponds to superlinear
Speedups. It can be due to cache locality/friendliness of the algorithm [23,24].
Similarly, [18] proposed a similar metric, Speedup/Thread instead. Higher thread
counts h can lead to more opportunities to achieve more parallelism that will be
limited by hardware.

4. %CPU Utilization U
The metric can be obtained from the contents of /proc/stat file which keeps
track of statistics of all HyperThread-enabled/disabled CPU cores. This %CPU
Utilization is based on user-time only.

5. Cache Refs/Cache Misses
Perf [25] is a software tool that relies on a number of hardware/software counters
to collect statistics of CPU resource usages with minimal overhead [26]. For this
paper, CacheRef,C , CacheMisses,Cm and other performance events are collected
and averaged by 5 times to achieve high accuracy. In addition, a new metric called
cache miss per second, Cm/s , can be obtained as shown in Eq. (2).

Cm/s = Cm

Tppmqsort
(2)

It can be beneficial to measure the number of cache misses per time unit especially
for highly multithreaded programs. Larger Cm/s may result in higher demands for
memory bandwidth which will be presented next.

6. Branch Loads/Branch Load Misses
Other important metrics of Perf are Branch Loads, B, and Branch Load Misses,
Bm . They can be used to address the algorithm whose performance is limited by
branch prediction, i.e., parallel QuickSort. Perfmakes use of the hardware counters
to measure the branch prediction unit. Similarly, a new metric called branch load
misses per second, Bm/s , can be obtained as shown in Eq. (3).

Bm/s = Bm

Tppmqsort
(3)

Bm/s can be regarded as number of branch mispredictions per time unit. Larger
Bm/s and Cm/s may result in lower utilization of the long execution pipelines and
frequent memory stalls which may affect %CPU Utilization U eventually.

123

1076 R. Ranokphanuwat, S. Kittitornkun

Fig. 2 Our shared memory/multiprocessor/multicore system model measured by Perf (blue boxeson the
left- and right-hand sides are instruction and data caches, respectively. HT HyperThread (color figure
online)

7. Average Memory Bandwidth Mbw
The complex interactions between multicore architecture and characteristics of
a parallel algorithm directly and indirectly impact both branch mispredictions
and cache misses. In multithreaded programs, off-chip memory bandwidth is one
of the important metrics that can be the performance bottleneck due to memory
contention, memory saturation and bad allocation among cores.
Many researchers use hardware performance counters to track the amount of con-
sumed memory bandwidth while the multithreaded program is running [27,28].
The measurement accuracy depends on measurement events, number of coun-
ters and the characteristics of memory system including DDR2/DDR3, channels
(interleaving), bus clock frequency, etc. However, we cannot directly measure the
amount of memory bandwidth consumption. This paper rather proposes a perfor-
mance model to estimate and evaluate as shown in Fig. 2. Our model can utilize a
number of available events measured by Perf resulted in Average Memory Band-
width.

Mbw = f (Bm/s,Cm/s) (4)

Assume that Bm/s has negligible effects due to small program size and its recur-
sive nature. The majority of memory bandwidth should be proportional to Cm/s .
Therefore, the Average Memory Bandwidth, Mbw, can be calculated in terms of
cache line size |Cline| multiplied by Cm/s as shown in Eq. (5).

Mbw = |Cline| × Cm/s . (5)

4.2 Experiment setup

The results reported in this paper are based on five multicore CPUs: Intel E5405
Harpertown, Intel E5520 Nehalem-EP, Intel i3-2100 Sandybridge, Intel i7-2600
Sandybridge, andAMDA6-3650APU. Table 3 provides a summary of thesemulticore
systems.

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1077

Ta
bl
e
3

A
rc
hi
te
ct
ur
al
de
ta
ils

of
m
ul
tic
or
e
C
PU

s
in

ou
r
ex
pe
ri
m
en
t

Sy
st
em

X
eo
n
E
54

05
X
eo
n
E
55

20
A
6-
36

50
i3
-2
10

0
i7
-2
60

0
C
od

e
na
m
e

H
ar
pe
rt
ow

n
N
eh
al
em

-E
P

L
la
no

Sa
nd

yb
ri
dg

e
Sa

nd
yb

ri
dg

e

C
lo
ck

(G
H
z)

2.
00

2.
66

2.
6

3.
1

3.
4

k
×

c
2

×
4

2
×

4
1

×
4

1
×

2
1

×
4

H
yp
er
T
hr
ea
d

N
o

Y
es

N
o

Y
es

Y
es

L
1/
L
2
(K

B
)/
co
re

32
/3
07

2
32

/2
56

64
/1
02

4
32

/2
56

32
/2
56

L
3
(K

B
)/
so
ck
et

–
81

92
–

30
72

81
92

R
A
M

(G
B
)

4
12

16
8

16

R
A
M

D
D
R
2-
66

7
D
D
R
3-
80

0/
10

66
D
D
R
3-
18

66
D
D
R
3-
10

66
/1
33

3
D
D
R
3-
10

66
/1
33

3

O
th
er
s

Sm
ar
tC

ac
he

8
M
B

PC
I
ex
pr
es
s
2.
0

Sm
ar
tc
ac
he

3
M
B

Sm
ar
tc
ac
he

8
M
B

Q
PI
2
5.
86

G
T
/s

16
-w

ay
L
2

D
M
I
5G

T
/s

D
M
I
5G

T
/s

123

1078 R. Ranokphanuwat, S. Kittitornkun

Table 4 Parameter set of the
experiments

Parameters Values

Data types Uint32, Uint64, Double

Size n (M) 10, 20, 50, 100, 200

Cases Random, Worst

Cutoff u (K) 50, 100, 200, 500

Sockets k 1, 2

Cores c 1, 2, 4, 8

Threads h 1, 2, 4, 8, 16, 32

HyperThread Enable, Disable

Optimization o2, o3

In every system listed in Table 3, the operating system is 64-bit Ubuntu 14.04 kernel
3.13 LTS. The PPMQSort is compiled with GCC 4.8 and linked with OpenMP 3.0
library under -fopenmp option. The measurement tool, Perf version 4.2, is called using
perf stat -r 5 -e to profile PPMQSort algorithm for 5 times.

Data sets are unsigned 32-bit integer (Uint32), unsigned 64-bit (Uint64) and 64-bit
double precision floating point (Double). These are generated using theGCC random()
function with two distributions: Random and Worst-case and in different number of
elements, n = 10M, 20M, 50M, 100M, 200M. The first distribution contains random
elements with small number of duplicates. The second distribution is generated such
that the sequence seems to be sorted in a descendingmanner. However, for each distrib-
ution, the input sequence once generated is stored as a file. Therefore, both PPMQSort
and sequential qsort() algorithms sort the same input sequences. All parameters are
listed in Table 4.

4.3 Results and discussions

This subsection elaborates various aspects of the PPMQSort algorithm such as best
Speedups, trade-offs between Speedup, Cutoff, and Thread, etc. Finally, the last two
subsections are based on statistical analysis of Perf results.

4.3.1 The best Speedups

Table 5 tabulates the best Speedup, Tqsort, and Tppmqsort of all systems based on various
data types, cases, and optimizations. The Tqsort is obtained with the same experiment
configuration as Tppmqsort. It can be noticed that the best Speedups of Uint32 are higher
than those of Uint64 and Double. Remark that i3-2100, i7-2600 and E5520 systems
are HyperThread enabled. Therefore, their Speedups are higher than the number of
physical cores. For a non-HyperThread 8-core Intel Xeon E5405 system, the best
Speedup is as high as 7.75×. Due to limited space, best Speedups of Xeon E5404
are omitted. An exceptional case is the 4-core AMD A6-3600 whose Speedups are
superlinear at 4.91× and 4.96× in Random and Worst cases, respectively. It can be
observed that%CPUUtilizations approach 100% in everyRandom-case configuration
while those of Worst-case are significantly lower.

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1079

Ta
bl
e
5

B
es
tS

pe
ed
up

S
an
d
ot
he
r
m
et
ri
cs

on
di
ff
er
en
td

at
a
ty
pe
s
an
d
co
rr
es
po

nd
in
g
pa
ra
m
et
er
s

C
PU

O
pt
.

U
in
t3
2

U
in
t6
4

D
ou

bl
e

R
an
do

m
W
or
st

R
an
do

m
W
or
st

R
an
do

m
W
or
st

o2
o3

o2
o3

o2
o3

o2
o3

o2
o3

o2
o3

i3
-2
10

0
n(
M
)

20
0

20
0

20
0

20
0

10
0

10
0

20
0

20
0

20
0

20
0

20
0

20
0

u
(K

)
50

10
0

50
50

20
0

50
0

50
50

20
0

50
0

50
50

S(
x)

3.
19

3.
03

3.
79

3.
67

2.
88

2.
79

3.
44

3.
35

2.
82

2.
72

3.
69

3.
63

T q
so
rt
(s
)

39
.8
0

39
.8
8

14
.8
8

14
.8
9

20
.3
9

20
.3
7

16
.8
3

17
.0
0

45
.1
8

45
.2
1

17
.7
2

17
.8
7

T p
pm

qs
or
t(
s)

12
.4
9

13
.1
4

3.
92

4.
04

7.
07

7.
31

4.
89

5.
06

16
.0
0

16
.6
4

4.
79

4.
91

h
(t
hr
ea
ds
)

8
8

8
8

8
8

8
8

8
16

8
8

U
(%

)
98

98
86

85
96

96
82

80
95

94
84

83

M
bw

(M
B
/s
)

15
0

17
0

31
9

30
0

36
1

39
5

70
0

66
9

33
1

37
2

61
9

60
8

B
m
/
s

1.
3e
+
8

1.
4e
+
8

4.
9e
+
6

4.
7e
+
6

1.
5e
+
8

1.
6e
+
8

3.
2e
+
6

3.
1e
+
6

1.
4e
+
8

1.
4e
+
8

3.
2e
+
6

3.
1e
+
6

A
6-
36

00
n(
M
)

20
0

20
0

20
0

10
0

50
20

20
0

20
0

20
20

0
20

0
50

u
(K

)
20

0
20

0
20

0
20

0
20

0
10

0
10

0
10

0
10

0
50

0
10

0
10

0

S(
x)

4.
67

4.
91

4.
96

4.
74

3.
64

3.
54

4.
62

4.
37

3.
72

3.
56

4.
60

4.
43

T q
so
rt
(s
)

59
.1
8

65
.0
3

23
.4
3

11
.3
9

12
.5
3

4.
76

26
.4
5

25
.3
2

5.
47

60
.9
8

26
.6
6

6.
30

T p
pm

qs
or
t(
s)

12
.6
7

13
.2
5

4.
71

2.
40

3.
45

1.
35

5.
71

5.
78

1.
47

17
.1
5

5.
79

1.
42

h
(t
hr
ea
ds
)

4
16

4
4

8
8

8
8

8
8

8
8

U
(%

)
96

96
83

80
94

91
76

76
91

92
77

75

M
bw

(M
B
/s
)

1.
85

2.
25

4.
39

5.
98

9.
11

6.
53

4.
57

3.
81

6.
85

2.
30

5.
97

20
.3
3

B
m
/
s

4.
3e
+
6

6.
8e
+
6

2.
4e
+
4

3.
2e
+
4

1.
3e
+
7

1.
7e
+
7

7.
9e
+
4

5.
9e
+
4

2.
1e
+
7

1.
4e
+
7

6.
4e
+
4

1.
6e
+
5

123

1080 R. Ranokphanuwat, S. Kittitornkun

Ta
bl
e
5

co
nt
in
ue
d

C
PU

O
pt
.

U
in
t3
2

U
in
t6
4

D
ou

bl
e

R
an
do

m
W
or
st

R
an
do

m
W
or
st

R
an
do

m
W
or
st

o2
o3

o2
o3

o2
o3

o2
o3

o2
o3

o2
o3

i7
-2
60

0
n(
M
)

20
0

20
0

20
0

20
0

10
0

10
0

20
0

20
0

20
0

20
0

20
0

20
0

u
(K

)
10

0
20

0
50

0
50

0
20

0
20

0
50

0
50

0
20

0
50

0
50

0
50

0

S(
x)

5.
65

5.
35

5.
71

5.
46

5.
01

4.
85

4.
66

4.
48

4.
79

4.
61

5.
12

4.
98

T q
so
rt
(s
)

32
.5
3

32
.5
3

12
.3
6

12
.3
6

16
.7
6

16
.7
8

14
.0
3

14
.0
8

37
.0
5

37
.1
5

14
.7
9

14
.8
5

T p
pm

qs
or
t(
s)

5.
76

6.
08

2.
16

2.
26

3.
34

3.
46

3.
00

3.
14

7.
74

8.
06

2.
88

2.
98

h
(t
hr
ea
ds
)

16
16

8
16

16
16

16
16

16
16

16
16

U
(%

)
92

92
78

75
90

90
72

70
87

86
75

73

M
bw

(M
B
/s
)

14
5

14
8

53
6

51
9

26
6

25
6

10
42

99
3

24
9

27
9

97
1

95
8

B
m
/
s

1.
2e
+
7

1.
5e
+
7

4.
9e
+
4

1.
6e
+
5

2.
2e
+
7

2.
1e
+
7

9.
6e
+
4

7.
7e
+
4

2.
5e
+
7

4.
4e
+
7

9.
5e
+
4

6.
4e
+
4

E
55

20
n(
M
)

20
0

20
0

20
0

10
0

20
0

20
0

50
10

0
20

0
20

0
10

0
10

0

u
(K

)
10

0
10

0
50

0
20

0
10

0
20

0
20

0
50

0
20

0
50

0
50

0
50

0

S(
x)

12
.2
9

11
.2
0

9.
44

8.
60

11
.3
4

10
.9
6

8.
16

7.
26

9.
43

9.
06

8.
40

7.
90

T q
so
rt
(s
)

72
.3
5

70
.0
0

21
.0
5

10
.5
7

80
.4
1

80
.5
3

6.
33

12
.1
7

69
.4
0

69
.3
7

12
.6
5

12
.7
0

T p
pm

qs
or
t(
s)

5.
89

6.
25

2.
23

1.
23

7.
09

7.
35

0.
78

1.
67

7.
36

7.
66

1.
51

1.
61

h
(t
hr
ea
ds
)

16
16

16
16

16
16

16
16

16
32

32
16

U
(%

)
83

82
67

59
80

80
55

54
73

73
59

56

M
bw

(M
B
/s
)

19
0

17
2

75
1

59
5

30
6

27
8

15
37

13
90

30
3

33
7

15
58

12
78

B
m
/
s

7.
8e
+
8

4.
0e
+
8

1.
9e
+
8

1.
9e
+
8

6.
6e
+
8

6.
1e
+
8

2.
9e
+
8

3.
8e
+
8

7.
1e
+
8

1.
2e
+
9

7.
2e
+
8

4.
1e
+
8

B
ol
d
va
lu
es

in
di
ca
te
th
e
m
ax
im

um
re
su
lts

of
ea
ch

C
PU

It
al
ic
s
va
lu
es

in
di
ca
te
th
e
m
ax
im

um
re
su
lts

of
ea
ch

D
at
a
ty
pe

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1081

PPMQSort can achieve high Speedup regardless of the data types and randomness
even in theWorst case. It can be obviously noticed that Worst-case Tqsort and Tppmqsort
are always faster than those of Random-case with the same configuration. Further-
more, their Speedups are almost always higher than those of Random-case except in
dual-socket systems, E5520 and E5405. PPMQSort can exploit the Branch Predic-
tion Unit and caches well, although seq_parti tion() must execute a large number
of comparisons and swappings on lines 13 and 15 in Algorithm 1. That means the
Branch Prediction unit can learn/yield higher prediction rate than the Random-case
due to remarkably low Branch Misprediction Rate Bm/s except those of E5520 cases.

However, the highest memory bandwidth Mbw ofWorst-case is always greater than
Random-case because of its two to three times higher Cm/s . The highest Mbw of
each system is highlighted in bold face. This also concurs with Eq. (5) that memory
bandwidth of PPMQSort depends heavily on Cm/s . Despite 2–3 orders of magnitude
lower Bm/s , %CPU Utilization U ’s of Worst-case are generally lower than those of
Random-case in every configuration. It can be due to oftenmemory stalls. On the other
hand, high Bm/s can be the performance bottlenecks in all Random-case as shown in
Italic. Much lower Mbw can be observed.

In both Random and Worst cases, Cutoff u should fit the last level cache of each
system. It can be noticed that the suitable Cutoff u for Uint32 ranges between 50 and
200 K elements. For Uint64 and Double cases, Cutoff u ranges between 200K and
500K elements or even bigger instead. The best Cutoff u of i3-2100 (Uint32) is 50 K
by majority vote. It seems like 50 K of Uint32 can fit the private L2 cache (256 KB)
in each core. The rest can almost fit Cutoff in their last level caches except in some
cases of u = 500K of Uint64 and Double.

4.3.2 Speedup S vs. Cutoff u and Thread h

For a given systemand experiment configuration, Speedup S ofPPMQSort is a function
of Cutoff u and Thread h. As already listed in Table 5, the best S of i7-2600 system
is 5.65× at n = 200M of Uint32, u = 100K, and h = 16 threads. Figure 3 shows a
3-D surface plot of PPMQsort with this configuration. Speedups can be visualized as
surface height on the Z axis with colors according to the Color bar on the right-hand
side. This plot presents the scalability and trade-offs between Speedups, Cutoffs, and
Threads. While increasing thread count h, the Speedup S scales up for all Cutoffs.
Therefore, high thread counts enable the PPMQSort to utilize the CPU cores more
until S saturates. As discussed earlier in Sect. 4.3.1 Best Speedups, while varying
Cutoff u, Speedup changes slightly as darker and lighter colors at the same thread
count. This behavior in this 3-D surface plot agrees with the derived time complexity
in Theorem 1, where u has been canceled out.

4.3.3 HyperThread vs. non-HyperThread CPUs

This subsection will contrast and compare Speedups of PPMQSort on Intel Hyper-
Thread and non-HyperThread CPUs with the same experiment configuration. Figure
4 illustrates Speedups (Line) and %CPU Utilization (Bar) of Intel HyperThread and
non-HyperThread of PPMQSort (Uint32, Random-case, o2). The cyan bars and lines

123

1082 R. Ranokphanuwat, S. Kittitornkun

Fig. 3 Three-D Surface Plot of Speedup, S vs. Cutoff, u and Thread, h of PPMQSort on i7-2600 (Uint32,
Random, o2, n = 200M)

Fig. 4 Best Speedup, S (Line, Left) vs. %CPU Utilization, U (Bar, Right) of PPMQSort on Intel Hyper-
Thread (HT) and non-HyperThread (non-HT) Platforms (Uint32, Random, o2)

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1083

Fig. 5 Best Speedup (Line, Right) vs. CacheRefs (Bar, Left) of PPMQSort (Cyan) and PPPMQSort (Brown)
on all Platforms (Uint32, Random, o2) (color figure online)

are of HT enabled while the brown ones are HT disabled. The Speedup differences
between HT-enabled and HT-disabled systems are significant due to lower average
%CPU UtilizationU , despite the fact that other statistics are similar. It can be roughly
estimated that HT can boost up the performance by more than 50% which is compa-
rable to [29].

4.3.4 PPMQSort vs. PPPMQSort

PPPMQSort is a minor variation of PPMQSort where its Merge Phase is parallelized
with 2 threads on line 37 of Algorithm 1. To compare PPMQSort (Cyan) with PPPMQ-
Sort (Brown), their Speedups (Line) and Cache Refs (Bar) are plotted on all platforms
(Uint32, Random, o2) with the same parameter set. Note that Cache Refs on the left
Y axis are in logarithm and scaled by 1 million. It can be observed in Fig. 5 that
PPMQSort can achieve better Speedups on the same experiment configurations due
to significantly lower C .

CacheRefs are particularly high onAMDA6-3600 compared to other Intel systems.
It might be due to fewer general-purpose Integer/Floaing-Point registers thus resulting
in more register spills. However, AMD A6-3600 demands Mbw up to 20.3 MB/s as
listed in Table 5 due to both large private L1 data cache (64 KB/core) and L2 cache
(1 MB/core). In addition, its Branch Load Misses/sec Bm/s’s are considerably lower
than those of Intel systems. Therefore, its PPMQSort Speedups can be superlinear in
some configurations. The rest is comparable on all Intel systems.

4.3.5 Efficiency: Speedup/Core

Figure 6a, b depicts the scatter plot of S/c vs. c of non-HT and HT, respectively. It can
be observed in Fig. 6a that PPMQSort can achieve S/c � 1.00 or above (inside the

123

1084 R. Ranokphanuwat, S. Kittitornkun

Fig. 6 Speedups per Core S/c of PPMQSort (inside the oval) vs. Others (Random, Uint32) (a) non-
HyperThread (NHT) (b) HyperThread (HT)

oval) while others can only reach up to 0.8. The HyperThread-disabled i3-2100 and
non-HT A6-3600 can achieve S/c at 1.11 and 1.17 resulting in superlinear Speedups
because of high %CPUUtilization at 98 and 96, respectively. Similarly, Fig. 6b shows
that PPMQSort can achieve S/c � 1.40 or above while others can only reach up to
0.33. Some HT systems like i3-2100 and E5520 can achieve S/c at 1.59 and 1.63,

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1085

respectively, because of better %CPU utilization with 3-MB and 8-MB Smart Caches,
respectively. It can be concluded that PPMQSort can exploit theCPUcoresmuch better
than other algorithms on both non-HT and HT architectures. Moreover, PPMQSort
can be scablable on any non-HT/HT/multicore/multi-socket systems with S/c � 1.00
and S/c � 1.50 or better.

4.3.6 Comparison with previous implementations

Table 6 compares our PPMQSort with previous parallel QuickSort implementations to
show thatwe can achieve the best performance at data size around 100M32-bit Integers
with respect to Tpar and Efficiency, S/c. [18] reported only the Speedup based on
Pthreads Library resulting in higher S/c that may not compare against Stdlib qsort ().
In addition, he also did not report the run time. With respect to 11.58× Speedup, our
PPMQSort on an 8-core HyperThread E5520 can clearly outperform pqsort1 of [15]
on an 8-core Xeon X5355 using the same qsort () benchmark. Although [13] can
achieve 25.03x Speedup on a 32-core UltraSPARC, their efficiency is not quite good
and the benchmark may not be Stdlib qsort ().

On the Uint64 data, Man et al. [16] reported their highest Speedup of 10.47× for
100Mrandomon24 cores and Tpar = 2.712 s.With only 8 cores, PPMQSort can achieve
S = 10.24× at 3.54 s with the same configuration. This can confirm that PPMQSort
is more efficient than others.

4.3.7 Statistical analysis

Figure 7 shows matrix scatter plots between Tppmqsort vs. Cache RefsC , CacheMisses
Cm , Branch Loads B, and Branch Load Misses Bm of PPMQSort on E5520, Uint32,
o2, all Cutoffs, data sizes and threads. The upper half, the diagonal, and the lower
half of the matrix plot illustrate the scatter plots, the density, and the correlation value
between/of them, respectively. Each dot in the scatter plot represents an experiment
configuration.

The top-row figures show the regression analysis between parameters that
Time or Tppmqsort is proportional to Cache Refs C , Cache Misses Cm , Branch
Loads B, and Branch Load Misses Bm , respectively. The green line is a lin-
ear regression generated by lm() function in R Project (http://cran.r-project.
org). The solid red line is a local regression smoothing (LOESS) mean fit line
according to loess() function. The red dotted lines above and below are posi-
tive and negative residual squares above and below the LOESS mean fit line,
respectively.

Cm is highly correlated withC as indicated by correlation value RC,Cm/s = 0.91. As
expected, they are highly correlated. The higher C, the more Cm , and the longer the
Tppmqsort. Similarly, the higher B, the more Bm , and the longer Tppmqsort. In addition,
they are highly correlated with one another. Other systems in our experiment show
similar behaviors.

123

http://cran.r-project.org
http://cran.r-project.org

1086 R. Ranokphanuwat, S. Kittitornkun

Ta
bl
e
6

C
om

pa
ri
so
n
of

PP
M
Q
So

rt
w
ith

ot
he
r
pa
ra
lle

lQ
ui
ck
So

rt
im

pl
em

en
ta
tio

ns
(1
00

M
,U

in
t3
2,

R
an
do

m
),
N
A
N
ot

A
va
ila
bl
e

R
ef
er
en
ce
s

PP
M
Q
So

rt
[1
8]

[2
0]

[1
5]

[1
4]

[1
4]

[1
3]

Y
ea
r

20
13

20
10

20
09

20
04

20
04

20
03

n(
M
)

10
0

80
64

10
0

60
10

0
10

0

S(
x)

11
.5
8

3.
8

2.
65

6.
22

3.
24

3.
87

5
25

.0
3

T s
eq
(s
)

34
.7
8

N
A

15
.9

28
.8
1

24
.3

37
.2

13
9.
22

T p
ar
(s
)

3.
00

N
A

6
4.
63

7.
5

9.
6

5.
56

S/
c

1.
45

1.
9

0.
33

0.
26

0.
81

0.
48

0.
78

U
si
ng

qs
or
t(
)

Y
es

N
o

N
o

Y
es

N
o

N
o

N
o

A
rc
hi
te
ct
ur
e

×8
6

×8
6

×8
6

×8
6

×8
6

U
ltr
aS

PA
R
C
II
I

U
ltr
aS

PA
R
C

G
H
z

2.
66

2.
66

N
A

2.
66

2.
2

0.
9

0.
25

k
×

c
2

×
4

1
×

2
4

2
×

4
1

×
4

1
×8

32
×

1

H
T

Y
es

Y
es

N
o

N
o

Y
es

N
o

N
o

C
ac
he

L
3
8
M
B

L
2
3
M
B

L
2
4

×
2
M
B

L
2
2

×
2
M
B

L
2
2

×
1
M
B

N
A

L
2
4
M
B

C
om

pi
le
r

G
C
C
-o
2

G
+
+

In
te
lC

+
+
9.
1

G
C
C
-o
2

In
te
lC

+
+
8.
1
-o
3

G
ui
de

N
A

L
ib
ra
ry

O
pe
nM

P
3.
0

pt
hr
ea
ds

O
pe
nM

P
2.
5

O
pe
nM

P
2.
0

O
pe
nM

P
2.
0

N
A

N
A

R
em

ar
ks

X
eo
n
E
55

20
In
te
l

X
eo
n
70

00
X
eo
n
X
53

55
O
pt
er
on

22
00

Su
n
Fi
re

68
00

Su
n
E
nt
er
pr
is
e

M
A
C
Pr
o
20

10
D
ua
l-
C
or
e

Po
w
er
E
dg

e
68

00
so
rt
_o

m
p_

2.
0

so
rt
_p

th
re
ad
s_
cv
_1

.0
10

,0
00

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1087

Fig. 7 Matrix Scatter Plots between Time Tppmqsort vs. Cache Refs C , Cache Misses Cm , Branch Loads
B, and Branch Load Misses Bm of PPMQSort on E5520, Uint32, Random, o2, all cutoffs, data sizes, and
threads

4.3.8 Speedup vs. %CPU Utilization vs. Memory Bandwidth

Speedup S vs %CPU Utilization U vs. Cache Misses per Second Cm/s and Branch
LoadMisses per Second Bm/s of PPMQSort on i7-2600 can be depicted in Fig. 8. The
configuration of this figure is random n = 200 M Uint32, o2 and h = 4–32 threads.
Both Cm/s and Bm/s can be obtained by Eqs. (2) and (3), respectively.

As plotted, Speedup S is directly proportional to %CPU Utilization U because
the correlation coefficient RS,U is 1.00. That means the higher %CPU Utilization,
the better Speedup because all the forked threads can effectively execute with fewer
memory stalls and pipeline stalls/flushes.

In general, cache misses can be due to cold misses, capacity misses, conflict misses,
and coherence misses. Lower Cm/s can be due to better cache locality resulted from
suitable Cutoff u and Thread h of PPMQSort as shown in Fig. 8. On the other hand,
lower Bm/s represents infrequent branch mispredictions thus more efficient pipelin-

123

1088 R. Ranokphanuwat, S. Kittitornkun

Fig. 8 Speedup S vs %CPU utilization U vs. Cm/s and Bm/s of PPMQSort on i7-2600 (Uint32, 200M,
random, o2, 4–32 threads)

ing. Both frequent cache misses and branch mispredictions per unit time can lead to
memory stalls and pipeline stalls and thus lowerU . It can be reflected on both RU,Cm/s

and RU,Bm/s approaching−1.00. That meansU is negatively proportional toCm/s and
Bm/s .

This figure confirms with the basic concept that memory is the bottleneck of the
parallel algorithms [30] especially in the Worst case bounded by Cm/s. However,
Random-case Speedups are limited by Bm/s rather than Cm/s. As shown in Table
5, Random-case Bm/s’s are two to three orders of magnitude higher than those of
Worst case with the same data size n in one-socket systems. For dual-socket systems,
the gap is not that wide. This results in almost three times longer Random-case Tqsort
and Tppmqsort than those of Worst case in the same table. As pointed out by Eyerman
et al. [31], the misprediction penalty of superscalar CPUs with Reorder Buffer and
deep pipeline equals to the number of clock cycles to refill the front-end pipeline.

123

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1089

Other systems show similar behaviors as the i7-2600 system. We can conclude that
the branch prediction unit is as performance critical as the memory hierarchy for
parallel sorting algorithms due to the randomness of input data in modern multicore
CPUs.

5 Conclusion

The proposed PPMQSort algorithm is different from others as the partitioning process
has been simply parallelized since the beginning. The basic concept of the PPMQ-
Sort is to divide the input data array by half in parallel/recursively until the obtained
partitions are up to Cutoff size u. These partitions can be locally cached and qsort ()
them simultaneously by h ≥ c threads. Hence, the performance bottleneck can be
eliminated.

PPMQSort is compatible with the Stdlib qsort () since we use it as a benchmark.
Various OpenMP 3.0 parallel constructs are employed and coded in C language. Per-
formance of PPMQSort was evaluated on one AMD and four Intel CPUs running
64-bit Ubuntu Linux 14.4 LTS. In general, PPMQSort can achieve the best Speedup
up to and beyond the number of CPU cores. In spite of the Worst cases’s fast Tqsort,
their Speedups are almost always greater than those of Random. For HyperThread
CPUs, PPMQSort can get up to 50% Speedup increase over HT-disabled ones. In
terms of efficiency, the PPMQSort can get Speedup/Core from 0.97 to 1.17 and from
1.41 to 1.63 on NHT and HT CPUs, respectively, and more superior than previous
parallel QucikSort algorithms.

Statistical analysis of PPMQSort shows that Tppmqsort is proportional to Cache
Misses and Branch Load Misses. On the other hand, its Speedup S is proportional to
%CPUUtilizationU and limited by Bm/s andCm/s . The proposed systemperformance
model can estimatememory bandwidth required by thePPMQSort. In addition,Branch
Prediction Units are as performance critical as the memory hierarchy for PPMQSort
algorithm due to randomness of input data.

For future work, PPMQSort should be optimized further to support thread affin-
ity/cache locality and minimize cache coherence misses even more. The performance
model and average memory bandwidth shall be analyzed and fine-tuned to support a
variety of algorithms/programs. To serve big data, task scheduling and load balancing
strategy are investigated by mixed CPU, memory, and I/O-intensive [32].

In addition, on-chip and off-chip graphics processing unit (GPUs) should be inves-
tigated whether PPMQSort can be applied to exploit a massive number of GPU cores
as it has been done on multicore CPUs.

Acknowledgments The authors wish to thank Mr. Apisit Rattanatranurak and Mr. Surapong Towtiamton
for experiments and discussions on some of the algorithms in this paper. The authors wish to thank the
reviewers for their insightful comments which greatly improved the paper.

References

1. Hoare CAR (1962) Quicksort ACM 4:321
2. Sedgewick R (1978) Implementing quicksort program. Commun ACM 21(10):847–857

123

1090 R. Ranokphanuwat, S. Kittitornkun

3. Mishra AD (2009) Selection of best sorting algorithm for a particular problem. Master’s thesis, Thapar
University, Computer Science and Engineering Department

4. Bhandarkar SM, Arabnia HR (1995) The hough transform on a reconfigurable multi-ring network. J
Parallel Distrib Comput 24(1):107–114

5. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network.
J Supercomput 10(3):243–269

6. Bhandarkar SM, Arabnia HR (1997) Parallel computer vision on a reconfigurable multiprocessor
network. IEEE Trans Parallel Distrib Syst 8(3):292–309

7. KochD, Torresen J (2011) Fpgasort: a high performance sorting architecture exploiting run-time recon-
figuration on fpgas for large problem sorting. In: Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’11. ACM, New York, pp 45–54

8. Mueller R, Teubner J, Alonso G (2012) Sorting networks on fpgas. VLDB J 21(1):1–23
9. Casper J, Olukotun K (2014) Hardware acceleration of database operations. In: Proceedings of the

2014 ACM/SIGDA International Symposium on Field-programmable Gate Arrays, FPGA ’14. ACM,
New York, pp 151–160

10. Capannini G, Silvestri F, Baraglia R (2012) Sorting on gpus for large scale datasets: a thorough
comparison. Inf Process Manag 48(5):903–917

11. Xiaochen T, Rocki K, Suda R (2013) Register level sort algorithm on multi-core simd processors. In:
Proceedings of the 3rd Workshop on Irregular Applications: Architectures and Algorithms, p 9. ACM

12. Heidelberger P, Norton A, Robinson JT (1990) Parallel quicksort using fetch-and-add. IEEE Trans
Comput 39(1):847–857

13. Tsigas P, Zhang Y (2003) A simple, fast parallel implementation of quicksort and its performance
evaluation on sun enterprise 10000. In: 11thEuromicroConference onParallelDistributed andNetwork
based Processing (PDP 2003). Genoa, pp 372–381

14. Sub M, Leopold C (2004) A user’s experience with parallel sorting and openmp. In: Proc. of the 6th
European Workshop on OpenMP (EWOMP 2004). Stockholm

15. Man D, Ito Y, Nakano K (2009) An efficient parallel sorting compatible with the standard qsort.
In: International Conference on Parallel and Distributed Computing, Applications and Technologies.
Hiroshima, pp 512–517

16. Man D, Ito Y, Nakano K (2011) An efficient parallel sorting compatible with the standard qsort. Int J
Found Comput Sci 22(5):1057–1071

17. KimKJ, Cho SJ, Jeon JW (2011) Parallel quick sort algorithms analysis using openmp 3.0 in embedded
system. In: 11th International Conference on Control, Automation and Systems. KINTEX, Gyeonggi-
do, pp 757–761

18. Mahafzah BA (2013) Performance assessment of multithreaded quicksort algorithm on simultaneous
multithreaded architecture. J Supercomput 66:339–363

19. Bingmann T (2015) Andreas Eberle, and Peter Sanders. Engineering parallel string sorting. Algorith-
mica, pp 1–52

20. Rashid L, Hassanein WM, Hammad MA (2010) Analyzing and enhancing the parallel sort operation
on multithreaded architectures. J Supercomput 53:293–312

21. SaleemS, LaliMIU,NawazMS,NaumanAB (2014)Multi-core program optimization: parallel sorting
algorithms in intel cilk plus. Int J Hybrid Inf Technol 7(2):151–164

22. Architecture Review Board (2014) The openmp api specification for parallel programming. http://
www.openmp.org

23. Gustafson JL (1990) Fixed time, tiered memory, and superlinear Speedup. In: Proceedings of the Fifth
Distributed Memory Computing Conference (DMCC5)

24. Helmbold DP, Mcdowell CE (1990) Modeling Speedup (n) greater than n. IEEE Trans Parallel Distrib
Syst 1(2):250–256

25. Weaver VM (2013) Linux perf event features and overhead. In: Second International Workshop on
Performance Analysis of Workload Optimized Systems (FastPath 2013). Austin

26. Zhang Y, Li ZP, Cao HF (2015) System-enforced deterministic streaming for efficient pipeline paral-
lelism. J Comput Sci Technol 30(1):57–73

27. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing. 2nd ed. Pearson
Education Limited

28. Akhter S, Roberts J (2006) Multi-core programming increasing performance through software multi-
threading. Intel Press, Hillsboro

123

http://www.openmp.org
http://www.openmp.org

Parallel Partition and Merge QuickSort (PPMQSort) on Multicore... 1091

29. Barker KJ, Davis K, Hoisie A, Kerbyson DJ, Lang Mike, Pakin Scott, Sancho Jose Carlos (2008) A
performance evaluation of the nehalem quad-core processor for scientific computing. Parallel Process
Lett 18(4):453–469

30. WulfWA,McKee SA (1995)Hitting thememorywall: implications of the obvious. SIGARCHComput
Archit News 23(1):20–24

31. Eyerman S, Smith JE, Eeckhout L (2006) Characterizing the branch misprediction penalty. In: IEEE
International Symposium on Performance Analysis of Systems Software (ISPASS 2006). Austin, pp
48–58

32. Qureshi K, Majeed B, Kazmi JH, Madani SA (2012) Task partitioning, scheduling and load balancing
strategy for mixed nature of tasks. J Supercomput 59(3):1348–1359

123

	Parallel Partition and Merge QuickSort (PPMQSort) on Multicore CPUs
	Abstract
	1 Introduction
	2 Background and related work
	2.1 QuickSort algorithm [1, 2]
	2.2 Stdlib qsort()
	2.3 Parallel QuickSort algorithms
	2.4 OpenMP library

	3 PPMQSort algorithm
	3.1 Parallel Partition Step
	3.1.1 Partition Phase with 2 Threads
	3.1.2 Merge Phase with 1 or 2 Threads

	3.2 Parallel qsort() Step
	3.3 Complexity analysis

	4 Performance evaluation and discussions
	4.1 Performance measurement
	4.2 Experiment setup
	4.3 Results and discussions
	4.3.1 The best Speedups
	4.3.2 Speedup S vs. Cutoff u and Thread h
	4.3.3 HyperThread vs. non-HyperThread CPUs
	4.3.4 PPMQSort vs. PPPMQSort
	4.3.5 Efficiency: Speedup/Core
	4.3.6 Comparison with previous implementations
	4.3.7 Statistical analysis
	4.3.8 Speedup vs. %CPU Utilization vs. Memory Bandwidth

	5 Conclusion
	Acknowledgments
	References

