Android
Java Threads

What is a thread?

A thread is an independent path of execution
through program code

Threads can be managed independently by a
scheduler, which is typically a part of the
operating system

Multiple threads can exist within the same
process and share resources such as memory

On a multiprocessor or multi-core system,
threads can be executed in a true concurrent
manner, with every processor or core executing a
separate thread simultaneously

Multithreading Advantages

Responsiveness
Faster execution

_ower resource consumption
Better system utilization
Parallelization

CREATING AND USING THREADS

Extending the Thread class

class MysimpleThread extends Thread

2 {
public void run ()
5
System.out.println ("Hallo from MysimpleThread") ;
}

Using our thread

public class ThreadTesterl
2 {
public static void main (String [] args)

L {

MysimpleThread mt = new MysimpleThread() ;
mt.start () ;

-

B C\Windows\system32\cmd.exe

E:\myjavaprogs>javac ThreadTesterl.java

E:\myjavaprogs>java ThreadTester]
Hallo from MysimpleThread

E:\myjavaprogs>

Example 1/2

class MysimpleThread2 extends Thread
& {
public void run ()
E {
for (int 1=0;i<=10;1++)
E {
try
E {

Thread.sleep (); // Sleep for 1 second
}

catch (InterruptedException e)
= {
}

System.out.println (i+" Hallo from MysimpleThread2");

Example 2/2

public class ThreadTester?2
=R
public static void main (String [] args)

o

MysimpleThread? mt2 = new MysimpleThread2() ;
mt2.start () ;

(B C\Windows\system32\cmd.exe L" e ‘J { q| =1 ‘&‘ 1

E:\myjavaprogs>javac ThreadTester2. java

E:\myjavaprogs>java ThreadTester2
0@ Hallo from MysimpleThread2
1 Hallo from MysimpleThread2
2 Hallo from MysimpleThread2
3 Hallo from MysimpleThread2
4 Hallo from MysimpleThread2
S Hallo from MysimpleThread2
6 Hallo from MysimpleThread2
T Hallo from MysimpleThread2
8 Hallo from MysimpleThread2
9 Hallo from MysimpleThread2
10 Hallo from MysimpleThread2

E:\myjavaprogs>

Implementing the Runnable Interface

HBpublic class MyRunnable implements Runnable {

1l
L1

public void run () {
System.out.println("Hallo from runnable');
}
}

Using it

public class ThreadTester3
= {
public static void main (String [] args)
o

Thread mtZ2 = new Thread(new MyRunnable()) ;
mt2.start () ;

7

B C:\Windows\system32\cmd.exe

E:\myjavaprogs>javac ThreadTester3. java

E:\myjavaprogs>java ThreadTester3
Hallo from runnable

E:\myjavaprogs>

Through an anonymous class

public class ThreadTester4

{

public static void main (String [] args)

{

Thread t = new Thread() {
public void run() {
System.out.println("Hallo from anonymous inner class");
}
b
t.start () ;

-

B C\Windows\system32\cmd.exe

E:\myjavaprogs>javac ThreadTestery4. java

E:\myjavaprogs>java ThreadTestery
Hallo from anonymous 1lnner class

E:\myjavaprogs>_

Through anonymous inner class that
implements runnable interface

public class ThreadTesterb

{

public static void main (String [] args)

{

Runnable myRunnable = new Runnable () {
public void run () {
System.out.println("Hallo from Inner Runnable™);
}
};
Thread t = new Thread (myRunnable) ;
t.start () ;

-

B C\Windows\system32\cmd.exe

E:\myjavaprogs>javac ThreadTester5. java

E:\myjavaprogs>java ThreadTesterS
Hallo from Inner Runnable

E:\myjavaprogs>

Pausing Thread Execution with Sleep

* Thread.sleep causes the current thread to
suspend execution for a specified period

* This is an efficient means of making processor
time available to the other threads of an
application or other applications that might be
running on a computer system

* Two overloaded versions of sleep are
provided: one that specifies the sleep time to
the millisecond and one that specifies the
sleep time to the nanosecond

Thread.sleep()

* Thread.sleep can throw an

InterruptedException which is a checked
exception

* All checked exceptions must either be caught
and handled or else you must declare that
your method can throw it

* Not declaring a checked exception that your
method can throw is a compile error

Thread.sleep and
InterruptedException

try {
Thread.sleep(1000);

} catch (InterruptedException e) {
e.printStackTrace();
// handle the exception...
// For example consider calling Thread.currentThread().interrupt(); here.

Or declare that your method can throw an InterruptedException :

public static void main(String[]args) throws InterruptedException

Joining Threads

* Waiting for threads to finish their work is quite
useful in many cases

* Because the while loop/isAlive() method/sleep()
method technique proves useful, it is packaged
into some methods:

— join(), join(long millis), and join(long millis, int nanos).

join()

* The current thread calls join(), via another
thread's thread object reference when it
wants to wait for that other thread to
terminate

* The current thread calls join(long millis) or
join(long millis, int nanos) when it wants to
either wait for that other thread to terminate
or wait until a combination of millis
millseconds and nanos nanoseconds passes

User Threads Vs Daemon Threads

* A user thread performs important work for the
program's user, that must finish before the
application terminates

A daemon thread performs “housekeeping” and
other background tasks that probably do not
contribute to the application's main work but

are necessary for the application to continue its
main work

 Unlike user threads, daemon threads do not
need to finish before the application terminates

