

What is Cloning

o Creating an identical copy of the original Object

o In Java by default tis is implemented by copying the all the fields of the object, one-by-one

Detault cloning by the JVM

o If the class contains primitive data type members then a completely new copy of them will be created and the
reference to the new object copy will be returned

o If the class contains members of any class type then only the object references to those members are copied
and hence the member references in both the original object as well as the cloned object refer to the same

object

o So primitive types are represented by new copies, while reference types are copied as references

Cloneable Intertace

o Itis a marker Interface (Important: It does not contain an abstract method...)

o A class implements the Cloneable interface to indicate to the Object.clone() method that it is legal for that
method to make a field-for-field copy of instances of that class.

o Invoking Object's clone method on an instance that does not implement the Cloneable interface results in the
exception CloneNotSupportedException being thrown.

o By convention, classes that implement this interface should override Object.clone (which is protected) with a
public method. See Object.clone() for details on overriding this method.

o Note that this interface does not contain the clone method. Therefore, it is not possible to clone an object
merely by virtue of the fact that it implements this interface. Even if the clone method is invoked reflectively,
there is no guarantee that it will succeed.

Use Cloning in Java

(e}

You must implement Cloneable interface.

(e}

You must override clone() method from Object class.

You need both of the abovel..

(e}

From Java docs:

o

1) x.clone() != x will be true

2) x.clone().getClass() == x.getClass() will be true, but these are not
absolute requirements.

3) x.clone().equals(x) will be true, this is not an absolute requirement.

cXAMPLE

g File Edit View Navigate Code Refactor Build Run Tools VCS Window Help

untitled69

I Project

Structure

M Bookmarks

& Mainjava

o ..

src / com | unipi / talepis /(€ Student

€ Studentjava

package com.unipi.talepis;

public class Student {
String name = null;

int id = 0;
Student(String name, int id)
{

this.name = name;
this.id = id;

untitled69 - Student.java

L

N

Main ¥

» # G G ~

Q B
2 A W
~ -

aseqeleq [(“

g File Edit View Navigate Code Refactor Build Run Tools VCS Window Help untitled69 - Main.java

untitled69 = sic | com unipi @ talepis C’\Iylvgiﬂ M main L~ ‘\ Main ¥ | 2 ﬁ rp Q ~

_48 C’M@iﬂiﬂ&é € Studentjava
E package com.unipi.talepis; 0
> public class Main {
> public static void main(String[] args) {
Student s1 = new Student(name: "John", id: 123);
e Student s2 = (Student) sl.clone(); //you cannot call clone on sl1, since it has protected access..
}
}
E
n

aseqeleq {[“

Override clone()

g File Edit View Navigate Code Refactor Build Run Tools VCS Window Help untitled69 - Student.java

untitled69 = src © com . unipi = talepis = (€ Student

= Main.java € Studentjava

I Project

public class Student {
String name = null;
int id = 0;
Student(String name, int id)
{
this.name = name;
this.id = id;

@0verride
o] protected Object clone() throws CloneNotSupportedException {

return super.clone();

Structure

M Bookmarks

fa .. . = -on [e~

L

N

Main ¥

> & G G ~

Q B
2 A W
~ -

aseqeleq [(“

untitled69

I Project

Structure

M Bookmarks

>

P
€ Main.java

T

a g & Yl

src / com | unipi ~ talepis " Main

€ Student.java

package com.unipi.talepis;
public class Main {

public static void main(String[] args) {
Student s1 = new Student(name: "John", id: 123);
try {
Student s2 = (Student) sl.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();

H

Main

L~

Main ¥

> & G G ~ Q %

aes

o —

v

aseqeleq [(“.

C:\Users\talepis\.jdks\openjdk-17.0.2\bin\java.exe "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2021.2.2\lib\idea_rt.jar=65841:C:\Program

java.lang.CloneNotSupportedException Create breakpoint : com.unipi.talepis.Student

at java.base/java.lang.0Object.clone(Native Method)
at com.unipi.talepis.Student.clone(Student.java:14)

at com.unipi.talepis.Main.main(Main.java:8)

Process finished with exit code ©

P Version Control =~ ® Run (=T0DO © Problems Terminal Cp Profiler N Build

a

Build completed successfully in 2 sec, 4 ms (4 minutes ago)

13:2

O Event Log
CRLF UTF-8 4 spaces ‘i

@

Override clone(), implement Cloneable

g File Edit View Navigate Code Refactor Build Run Tools VCS Window Help untitled69 - Student.java

untitled69

I Project

Structure

M Bookmarks

Y
€ Main java

src / com | unipi & talepis & '€ Student

€ Studentjava

package com.unipi.talepis;

public class Student implements Cloneableq
String name = null;

int id = 0;
Student(String name, int id)
{

this.name = name;
this.id = id;

@0verride
protected Object clone() throws CloneNotSupportedException {

return super.clone();

L

N

Main ¥

> & G G ~

Q B
2 A W
~ -

aseqeleq ((“

g File Edit View Navigate Code Refactor Build Run Tools VCS Window Help

untitled69

I Project

Structure

M Bookmarks

P
€ Main java

1 [PR ||

o g - N Vs
src / com | unipi ~ talepis & '€ Main

€ Studentjava

package com.unipi.talepis;
public class Main {

public static void main(String[] args) {
Student sl1 = new Student(name: "John", id:
try {
Student s2 = (Student) sl.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();

H

Main

untitled69 - Main.java

123);

L

N

Main ¥

> # G G ~ Q n

o —

C:\Users\talepis\.jdks\openjdk-17.0.2\bin\java.exe "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2021.2.2\lib\idea_rt

Process finished with exit code 0O

v

aseqeleq {({'

Cloning and Copying

(e}

(e}

(e}

Both mean practically the same thing in terms of result
Cloning needs the clone() method to be used

Copying could include the clone() method, but it can be achieved with other ways as well

There is a very big difference regarding the way we Copy, namely:
o Deep Copying and
o Shallow Copying

Deep Copy Vs Shallow Copy

o Shallow clone is the “default” implementation in Java. While overriding the clone() method, if you are not
cloning all the object types (not primitives), then you are making a shallow copy. Shallow copy can be achieved
without using the clone() method. With shallow copy you don’t create new variables for the reference type fields

o Deep copying is the desired behavior in most of the cases. In the deep copy, we create a real “clone” which is
independent of original object and making changes in the cloned object should not affect the original object.
Nevertheless, deep copying is much more difficult to be achieved and needs special care.

With deep copy, each mutable object in the object graph is recursively copied

Primitives and immutable objects: No need to copy them
with special care

Deep copy
basics

Mutable objects: each mutable object in the object graph
should be recursively copied

There exist different approaches in deep copying objects:

Deep copy with
external libraries (e.g.
Apache commons)

Deep copy with copy Clone with deep copy Deep copy with
constructor implementation serialization

Deep copy with copy Constructor

Passing an instance of a
class to the copy
constructor will return a
new instance of class
with values copied from
the argument instance

Copy constructors are
special constructors in a
class that take an
argument of its own
class type

Address

city String
country String

street String
Address()

B!

Student

firstName String
lastName String
address Address
Student()

package com.unipi.talepis.deepcopying.copyconstructor; package com.unipi.talepis.deepcopying.copyconstructor;

public class Address { public class Student {
private String street; private String firstName;
private String city; private String lastName;
private String country; private Address address;

' oetandard aattape e
// standard getters and setter

'/ e+ Felalil Tt apnc | ceattap
s 5 A/ stanaara getters and ettel

public Address(Address a) { public Student(Student s) {
this.street = a.street; this.firstName = s.firstName;
this.city = a.city; this.lastName = s.lastName;

this.country = a.country; this.address = new Address(s.address);

1.COPY CONSTRUCTOR

Notes about copy constructor

> You should also provide other ways of “first ” instantiation
o The copy constructor will be used for “cloning” purposes

o Be careful about mutable fields inside the copied object. If present, you should also take care for their deep
copying (possible through copy constructor as well)

Using default cloning approach

o We will use the previous model

o We will initially try the basic cloning approach

package com.unipl.talepis.deepcopying.copyconstructor;

public class Student implements Cloneabled
private String firstName;
private String lastName;
private Address address;

public String getFirstName() { return firstName; }

public void setFirstName(String firstName) { this.firstName = firstName; }
public String getlLastName() { return lastName; }

public void setlLastName(String lastName) { this.lastName = lastName; }
public Address getAddress() { return address; }

public void setAddress(Address address) { this.address = address; }

public Student(String firstName, String lastName, Address address) {...}
public Student(Student s) {...}

@override
public Object clone() throws CloneNotSupportedException {
return super.clone();

package com.unipil.talepis;

import com.unlpl.talepls.deepcopylng.copyconstructor.Address;
import com.unlpl.talepls.deepcopylng.copyconstructor.Student;

public class Main {

public static void main(String[] args) {
Address adl = new Address(street "Karaoli", city: "Piraeus", country: "Greece");
Student stdl = new Student(firstName: "John", lastName: "Pap",adl);
//Clone process
try {
Student clone = (Student) stdl.clone();
//Now let's test it
clone.getAddress().setCity("Athens");
System.ouvt.println(stdl.getAddress().getCity());//prints Athens
} catch (CloneNotSupportedException e) {
e.printStackTrace();

Detfault cloning approach results

o As we see from the previous example, though cloning seems to work, only shallow copy is achieved
o The "address” field which is clearly mutable, is not deep copied

o As a result, changing values in the cloned object affects the initial object!..

2. Using custom cloning approach

o We will use the previous model
o We will do a deep copy

o Each mutable field will be handled separately

package com.unipi.talepis.deepcopying.copyconstructor;

public class Address implements Cloneableq{
private String street;
private String city;
private String country;
// standard getters and setters

public String getStreet() { return street; }

public void setStreet(String street) { this.street = street; }
public String getCity() { return city; }

public void setCity(String city) { this.city = eity; }

public String getCountry() { return country; }

public void setCountry(String country) { this.country = country; }

public Address(String street, String city, String country) {...}
public Address(Address a) {...}

@0verride
public Object clone() throws CloneNotSupportedException {
return super.clone();

package com.unipi.talepis.deepcopying.copyconstructor;

public class Student implements Cloneable{
private String firstName;
private String lastName;
private Address address;

public String getFirstName() { return firstName; }

public void setFirstName(String firstName) { this.firstName = firstName; }
public String getLastName() { return lastName; }

public void setLastName(String lastName) { this.lastName = lastName; }
public Address getAddress() { return address; }

public void setAddress(Address address) { this.address = address; }

public Student(String firstName, String lastName, Address address) {...}
public Student(Student s) {...}

@verride
public Object clone() throws CloneNotSupportedException {
return new Student(getFirstName(),getLastName(), (Address) getAddress().clone());

package com.unipi.talepis;

import com.unipi.talepis.deepcopying.copyconstructor.Address;
import com.unipi.talepis.deepcopying.copyconstructor.Student;

public class Main {

public static void main(Stringl[] args) {
Address adl = new Address(street: "Karaoli", city: "Piraeus", country: "Greece");
Student stdl = new Student(firstName: "John", lastName: "Pap", adl);
//Clone process
try {
Student clone = (Student) stdl.clone();
//Now let's test it
clone.getAddress().setCity("Athens");
System.out.println(stdl.getAddress().getCity());//Now it's ok, prints Piraeus
} catch (CloneNotSupportedException e) {

e.printStackTrace();

3. Using a serialization approach

o We will use the previous model

