
Java Threads and
Concurrency

Efthimios Alepis

Concurrency 1/2

• Concurrency is the ability of a program to execute several computations
simultaneously

• This can be achieved by distributing the computations over the available
CPU cores of a machine or even over different machines within the same
network

• Processes are an execution environment provided by the operating
system that has its own set of private resources (e.g. memory, open files,
etc.)

• Threads in contrast are processes that live within a process and share
their resources (memory, open files, etc.) with the other threads of the
process

• The ability to share resources between different threads makes threads
more suitable for tasks where performance is a significant requirement

Concurrency 2/2

• Though it is possible to establish an inter-process communication
between different processes running on the same machine or even on
different machines within the same network, for performance reasons,
threads are often chosen to parallelize the computation on a single
machine

• Each program has at least one thread: the main thread

• This main thread is created during the start of each Java application and
it is the one that calls the main() method of your program

• From this point on, the Java application can create new Threads and
work with them

What is a thread?

• A thread is an independent path of execution through program code

• Threads can be managed independently by a scheduler, which is typically a
part of the operating system

• Multiple threads can exist within the same process and share resources such
as memory

• On a multiprocessor or multi-core system, threads can be executed in a true
concurrent manner, with every processor or core executing a separate thread
simultaneously

Multithreading Advantages

• Responsiveness

• Faster execution

• Lower resource consumption

• Better system utilization

• Parallelization

Multiple CPUs, Multicore CPUs

Single threaded system

Multi threaded system

Same threaded with messaging

Concurrency vs. Parallelism

The JVM Memory Model

The Hardware Memory Model

Threads running on different CPUs

Lets start with some basic thread info

Thread States

• NEW: A thread that has not yet started is in this state

• RUNNABLE: A thread executing in the Java virtual machine is in this
state

• BLOCKED: A thread that is blocked waiting for a monitor lock is in this
state

• WAITING: A thread that is waiting indefinitely for another thread to
perform a particular action is in this state

• TIMED_WAITING: A thread that is waiting for another thread to
perform an action for up to a specified waiting time is in this state

• TERMINATED: A thread that has exited is in this state

Creating and starting
threads

Extending the Thread class

Using our thread

Example 1/2

Example 2/2

Implementing the Runnable Interface

Using it

Through an anonymous class

Through anonymous inner class that
implements runnable interface

Pausing Thread Execution with Sleep

• Thread.sleep causes the current thread to suspend execution for a specified
period

• This is an efficient means of making processor time available to the other
threads of an application or other applications that might be running on a
computer system

• Two overloaded versions of sleep are provided: one that specifies the sleep
time to the millisecond and one that specifies the sleep time to the
nanosecond

Make a thread sleep

• An invocation of sleep() puts the current Thread to sleep without
consuming any processing time

• This means the current thread removes itself from the list of active
threads and the scheduler doesn’t schedule it for the next execution until
the specified time has passed

• The time passed to the sleep() method is only an indication for the
scheduler and not an absolutely exact time frame

Thread.sleep()

• Thread.sleep can throw an InterruptedException which is a checked
exception

• All checked exceptions must either be caught and handled or else you
must declare that your method can throw it

• Not declaring a checked exception that your method can throw is a
compile error

Thread.sleep and
InterruptedException

Joining Threads

• Waiting for threads to finish their work is quite useful in many cases

• Because the while loop/isAlive() method/sleep() method technique proves
useful, it is packaged into some methods:

• join(), join(long millis), and join(long millis, int nanos).

join()

• The current thread calls join(), via another thread's thread object
reference when it wants to wait for that other thread to terminate

• The current thread calls join(long millis) or join(long millis, int nanos)
when it wants to either wait for that other thread to terminate or wait
until a combination of millis millseconds and nanos nanoseconds passes

Joining Threads

User Threads Vs Daemon Threads
• A user thread performs important work for the program's user, that must finish

before the application terminates

• A daemon thread performs “housekeeping” and other background tasks that
probably do not contribute to the application's main work but are necessary
for the application to continue its main work

• Unlike user threads, daemon threads do not need to finish before the
application terminates

The problem of synchronization

• The exact sequence in which all running threads are executed depends
next to the thread configuration like priority also on the available CPU
resources and the way the scheduler chooses the next thread to execute

• Although the behavior of the scheduler is completely deterministic, it is
hard to predict which threads execute in which moment at a given point
in time

• This makes access to shared resources critical as it is hard to predict
which thread will be the first thread that tries to access it

The Java synchronized Keyword

• Synchronized blocks in Java are marked with the synchronized keyword

• A synchronized block in Java is synchronized on some object

• All synchronized blocks synchronized on the same object can only have
one thread executing inside them at the same time

• All other threads attempting to enter the synchronized block are blocked
until the thread inside the synchronized block exits the block

What can we “synchronize”?

1. Instance methods

2. Static methods

3. Code blocks inside instance methods

4. Code blocks inside static methods

Synchronized Instance Methods

A synchronized instance method in Java is synchronized
on the instance (object) owning the method

Synchronized Static Methods

Synchronized static methods are synchronized on the
class object of the class the synchronized static method
belongs to. Since only one class object exists in the Java
VM per class, only one thread can execute inside a static
synchronized method in the same class.

Synchronized Blocks in Instance
Methods

The object taken in the parentheses by the synchronized
construct is called a monitor object. The code is said to
be synchronized on the monitor object.

Synchronized Blocks in Static Methods

Examples

Synchronized access to a resource
that exists once per JVM

Using a static member variable of a class

Java “volatile” Visibility

• The Java volatile keyword is used to mark a Java variable as "being
stored in main memory“

• Every read of a volatile variable will be read from the computer's main
memory, and not from the CPU cache, and every write to a volatile
variable will be written to main memory, and not just to the CPU cache

• The Java volatile keyword guarantees visibility of changes to variables
across threads

• Note: Reading from and writing to main memory is more expensive than
accessing the CPU cache

• Note: In a multithreaded application where the threads operate on non-volatile
variables, each thread may copy variables from main memory into a CPU cache
while working on them, for performance reasons

Example

volatile since Java 5

• If Thread A writes to a volatile variable and Thread B subsequently reads
the same volatile variable, then all variables visible to Thread A before
writing the volatile variable, will also be visible to Thread B after it has
read the volatile variable

Is “volatile” enough?

• Not always, of course...!

• If a thread needs to first read the value of a volatile variable, and based
on that value generate a new value for the shared volatile variable, a
volatile variable is no longer enough to guarantee correct visibility

• The short time gap in between the reading of the volatile variable and
the writing of its new value, creates an race condition where multiple
threads might read the same value of the volatile variable, generate a
new value for the variable, and when writing the value back to main
memory - overwrite each other's values

Even with volatile

Race Conditions and Critical Sections

• A race condition is a special condition that may occur inside a critical
section

• A critical section is a section of code that is executed by multiple threads
and where the sequence of execution for the threads makes a difference
in the result of the concurrent execution of the critical section

• When the result of multiple threads executing a critical section may
differ depending on the sequence in which the threads execute, the
critical section is said to contain a race condition

• The term race condition stems from the metaphor that the threads are
racing through the critical section

Preventing Race Conditions

• To prevent race conditions from occurring you must make sure that the
critical section is executed as an atomic instruction

• That means that once a single thread is executing it, no other threads can
execute it until the first thread has left the critical section

• Thread synchronization can be achieved using (1) synchronized blocks of
Java code, (2) locks, or (3) atomic variables like
java.util.concurrent.atomic.AtomicInteger.

Discuss about the differences!

ThreadLocal: A class that helps

• The ThreadLocal class in Java enables you to create variables that can
only be read and written by the same thread

• Even if two threads are executing the same code, and the code has a
reference to a ThreadLocal variable, then the two threads cannot see each
other's ThreadLocal variables

Example

The get() method returns an Object and the set() method
takes an Object as parameter.

Generic Version (to avoid casting…)

Thread Safety

• Code that is safe to call by multiple threads simultaneously is called
thread safe

• If a piece of code is thread safe, then it contains no race conditions

• Local variables are stored in each thread's own stack

• All local primitive variables are thread safe

• If an object created locally never escapes the method it was created in, it
is thread safe

• Object member variables (fields) are stored on the heap along with the
object

• If two threads call a method on the same object instance and this method
updates object member variables, the method is not thread safe

Local Objects vs Member Objects

Thread Control Escape Rule

If a resource is created, used and disposed within

the control of the same thread,

and never escapes the control of this thread,

the use of that resource is thread safe

Some important notes!

• Race conditions occur only if multiple threads are accessing the same
resource, and one or more of the threads writes to the resource

• If multiple threads only read the same resource race conditions do not
occur

• If we make sure that the objects shared between threads are never
updated by any of the threads, e.g. by making the shared objects
immutable, then these objects will be thread safe

Example: Value through constructor
and only getter method

Locks

• Additionally to the monitors (through synchronized keyword), Java has
support of the mutual exclusion locks

• A lock is a more flexible and sophisticated thread synchronization
mechanism than the standard synchronized block

• Locks are available through java.util.concurrent.locks package

• Any lock must be explicitly released by calling the unlock() method

Lock API

• void lock() – acquire the lock if it’s available; if the lock is not available a
thread gets blocked until the lock is released

• void lockInterruptibly() – this is similar to the lock(), but it allows the
blocked thread to be interrupted and resume the execution through a
thrown java.lang.InterruptedException

• boolean tryLock() – this is a non-blocking version of lock() method; it
attempts to acquire the lock immediately, return true if locking succeeds

• boolean tryLock(long timeout, TimeUnit timeUnit) – this is similar to
tryLock(), except it waits up the given timeout before giving up trying to
acquire the Lock

• void unlock() – unlocks the Lock instance

Code Snippets

Differences between Lock and
Synchronized block

• A synchronized block is fully contained within a method – We can have Lock
API’s lock() and unlock() operation in separate methods

• A synchronized block does not support the fairness: any thread can acquire
the lock ones released, no preference can be specified - We can achieve
fairness within the Lock APIs by specifying the fairness property: It makes
sure that longest waiting thread is given access to lock

• A thread gets blocked if it can’t get an access to the synchronized block - The
Lock API provides the tryLock() method: the thread acquires lock only if it’s
available and not held by any other thread. This reduces blocking time of
thread waiting for the lock

• A thread which is in “waiting” state to acquire the access to synchronized
block, can’t be interrupted - The Lock API provides a method,
lockInterruptibly(), which can be used to interrupt the thread when it is
waiting for the lock

Thread Signaling

• The purpose of thread signaling is to enable threads to send signals to
each other

• Additionally, thread signaling enables threads to wait for signals from
other threads

• In order to achieve thread signaling there is a number of proposed
techniques/solutions

Signaling via Shared Objects

• A simple way for threads to send signals to each other is by setting the
signal values in some shared object variable

• Thread A may set a Boolean member variable to true from inside a
synchronized block, and thread B may try to read the member variable,
also inside a synchronized block

• Thread A and B must have a reference to a shared instance for the
signaling to work

• If threads A and B have references to different instances, they will not
detect each others signals

Pros & Cons of this solution

• Pros:

• Easy to understand

• Easy to implement

• It works for short waiting periods

• Cons:

• “Busy Wait”(One of the threads is using the CPU, while waiting…): Busy
waiting is not a very efficient utilization of the CPU in the computer running
the waiting thread, except if the average waiting time is very small

Java built-in signaling mechanisms

• Class java.lang.Object defines three methods, wait(), notify(), and
notifyAll()

• A thread that calls wait() on any object becomes inactive until another
thread calls notify() on that object

• The notifyAll() method will wake all threads waiting on a given object

• In order to invoke either wait(), notify(), or notifyAll(), on any object, the
calling thread must first obtain the lock on that object

• In other words, the calling thread must call these methods from inside a
synchronized block

General code structure

Time for examples
without and with wait()-notify()

Exercise!

• What do you think will happen if in the previous example the one thread
calls notify (once) before the other thread is put in a “waiting” condition?

• Make some tests and try to see if there is a problem

• If you find a problem, suggest/write some code (and an example) of how
this could be solved

Deadlocks 1/2

• Lock management is really hard and full of pitfalls

• The most infamous of them is deadlock: a situation in which two or more
competing threads are waiting for each other to proceed and thus neither
ever does so

• Deadlocks usually occur when more than one locks or monitor locks are
involved

• Sometimes JVM is able to detect the deadlocks in the running
applications and warn the developers

Deadlocks 2/2

• A deadlock occurs when two or more threads are blocked waiting to
obtain locks that some of the other threads involved are holding

• Deadlocks can occur when multiple threads need the same locks, at the
same time, but obtain them in different order

• E.g. if thread 1 locks A, and tries to lock B, and thread 2 has already
locked B, and tries to lock A, a deadlock arises. Thread 1 can never get B,
and thread 2 can never get A

More Complicated Deadlocks

Or even Database Deadlocks

Deadlock Prevention

• Some basic techniques:

✓ Lock Ordering

✓ Lock Timeout

✓ Deadlock Detection

Lock Ordering

• Deadlock occurs when multiple threads need the same locks but obtain
them in different order

• If we are able to make sure that all locks are always taken in the same
order by any thread, deadlocks cannot occur

• Lock ordering is a simple yet effective deadlock prevention mechanism

• However, it can only be used if you know about all locks needed ahead
of taking any of the locks, which is not always possible

Example

Lock Timeout

• Another deadlock prevention mechanism is to put a timeout on lock
attempts meaning a thread trying to obtain a lock will only try for a
specific amount of time before giving up

• If a thread does not succeed in taking all necessary locks within the given
timeout, it will (1) backup, (2) free all locks taken, (3) wait for a random
amount of time and then (4) retry

• The random amount of time waited serves to give other threads trying to
take the same locks a chance to take all locks, and thus let the application
continue running without locking

• An issue to keep in mind is, that just because a lock times out it does not
necessarily mean that the threads had deadlocked

Example

Deadlock Detection

• Deadlock detection is a heavier deadlock prevention mechanism aimed
at cases in which lock ordering isn't possible, and lock timeout isn't
feasible

• Every time a thread takes a lock it is noted in a data structure (e.g. map,
graph, etc.) of threads and locks

• Additionally, whenever a thread requests a lock this is also noted in this
data structure

• When a thread requests a lock but the request is denied, the thread can
traverse the lock graph to check for deadlocks

• In case of a deadlock detection one possible action is to release all locks,
backup, wait a random amount of time and then retry

Example in a graphical illustration

Executors and Thread Pools

• Java standard library provides extremely useful abstractions in the form
of executors and thread pools targeted to simplify threads management

• In its simplest implementation, thread pool creates and maintains a list
of threads, ready to be used right away

• Applications, instead of spawning new threads every time, just borrow
as many threads as needed from the pool

• Once a borrowed thread finishes its job, it is returned back to the pool,
and becomes available to pick up its next task

Thread Pools

• Thread Pools are useful when you need to limit the number of threads
running in your application at the same time

• There is a performance overhead associated with starting a new thread,
and each thread is also allocated some memory for its stack etc.

• Instead of starting a new thread for every task to execute concurrently,
the task can be passed to a thread pool

• Internally the tasks are inserted into a Blocking Queue which the threads
in the pool are dequeuing from

• As soon as the pool has any idle threads the task is assigned to one of
them and executed

• Java 5 comes with built in thread pools in the java.util.concurrent
package

Blocking Queues

• A blocking queue is a queue that blocks when you try to dequeue from it
and the queue is empty, or if you try to enqueue items to it and the queue
is already full

• A thread trying to dequeue from an empty queue is blocked until some
other thread inserts an item into the queue

• A thread trying to enqueue an item in a full queue is blocked until some
other thread makes space in the queue, either by dequeuing one or more
items or clearing the queue completely

• Java 5 comes with blocking queue implementations in the
java.util.concurrent package

BlockingQueue interface methods

BlockingQueue implementations

• The java.util.concurrent package has the following implementations of
the BlockingQueue interface (in Java 6):

• ArrayBlockingQueue

• DelayQueue

• LinkedBlockingQueue

• PriorityBlockingQueue

• SynchronousQueue

Blocking Queue illustrated

Full example
Using a Producer, a Consumer and an ArrayBlockingQueue

ExecutorService

• The java.util.concurrent.ExecutorService interface represents an
asynchronous execution mechanism which is capable of executing tasks in
the background

• An ExecutorService is thus very similar to a thread pool

• An ExecutorService can be created using the newFixedThreadPool() factory
method

• Since ExecutorService is an interface, you need to its implementations in
order to make any use of it:

• ThreadPoolExecutor

• ScheduledThreadPoolExecutor

• Alternatively you can use the Executors factory class to create
ExecutorService instances

• When you are done using the ExecutorService you should shut it down, so
the threads do not keep running

ExecutorService illustrated

Basic ExecutorService instantiation

Basic ExecutorService implementation

ExecutorService basic tasks

• execute(Runnable)

• submit(Runnable)

• submit(Callable)

• invokeAny(...)

• invokeAll(...)

execute(Runnable)

• The execute(Runnable) method takes a java.lang.Runnable object, and
executes it asynchronously

submit(Runnable)

• The submit(Runnable) method also takes a Runnable implementation,
but returns a Future object. This Future object can be used to check if the
Runnable is finished executing

submit(Callable)

• The submit(Callable) method is similar to the submit(Runnable) method
except for the type of parameter it takes. The Callable instance is very
similar to a Runnable except that its call() method can return a result

invokeAny(...)

• The invokeAny() method takes a collection of Callable objects, or
subinterfaces of Callable

• Invoking this method does not return a Future, but returns the result of
one of the Callable objects

• You have no guarantee about which of the Callable's results you get

• If one of the tasks complete (or throws an exception), the rest of the
Callable's are cancelled

invokeAll(...)

• The invokeAll() method invokes all of the Callable objects you pass to it
in the collection passed as parameter

• The invokeAll() returns a list of Future objects via which you can obtain
the results of the executions of each Callable

• A task might finish due to an exception, so it may not have "succeeded“

• There is no way on a “Future” to tell the difference

Some examples
Using invokeAny()

Example using invokeAll()

• In this example we have a list of tasks that we need them all to be
executed

• We will create a list of them, then submit them to the ExecutorService

• Finally, we will wait for all the results

• P.S. we will also calculate how much time the whole operation took to
finish

Semaphores

• The java.util.concurrent.Semaphore class is a counting semaphore

• The class has two main methods:

• acquire()

• release()

• The counting semaphore is initialized with a given number of "permits“,
as a simple counter

• For each call to acquire() a permit is taken by the calling thread

• For each call to release() a permit is returned to the semaphore

• At most N threads can pass the acquire() method without any release()
calls, where N is the number of permits the semaphore was initialized
with

Guarding Critical Sections

Semaphore fairness

• No guarantees are made about fairness of the threads acquiring permits
from the Semaphore => there is no guarantee that the first thread to call
acquire() is also the first thread to obtain a permit

• If you want to enforce fairness, the Semaphore class has a constructor
that takes a boolean telling if the semaphore should enforce fairness

• e.g. Semaphore semaphore = new Semaphore(1, true);

• Enforcing fairness comes at a performance / concurrency penalty, so
don't enable it unless you need it

ForkJoinPool

• The fork/join framework was presented in Java 7

• It provides tools to help speed up parallel processing by attempting to
use all available processor cores

• This is accomplished through a divide and conquer approach

• The framework first “forks”, recursively breaking the task into smaller
independent subtasks until they are simple enough to be executed
asynchronously

• After that, the “join” part begins, in which results of all subtasks are
recursively joined into a single result, or in the case of a task which
returns void, the program simply waits until every subtask is executed

Instantiation and Tasks

• In Java 8, the most convenient way to get access to the instance of the
ForkJoinPool is to use its static method commonPool()

• ForkJoinTask<V> is the base type for tasks executed inside ForkJoinPool

• In practice, one of its two subclasses should be extended:

• the RecursiveAction for void tasks

• and the RecursiveTask<V> for tasks that return a value

✓ Both classes have an abstract method compute() in which the task’s logic is defined

• ForkJoinPool’s invokeAll() method is perhaps the most convenient way to
submit a sequence of ForkJoinTasks to the ForkJoinPool:

• It takes tasks as parameters (two tasks, var args, or a collection), forks them and
returns a collection of Future objects in the order in which they were produced

Example

• In this example we are going to create a simple task:

• We will uppercase a given string, that might be quite long

• We will define a threshold which will indicate if the initial string will be
divided in two substrings

• Recursively the substrings may be divided again until the threshold is met

• The result will be printed on the screen

• On purpose, we don’t mind about the sequence of the returned results, but
only whether the job is done, divided in its parts!

Optimization in synchronized blocks

• Question: Synchronize an entire method call, or only the thread-safe
subset of that method?

• Of course it depends on the actual requirements, but in the situation
where the operations are identical, does it make any difference?

• To answer it is helpful to know that when the Java compiler converts this
source code to byte code, it handles synchronized methods and
synchronized blocks very differently

• It is also helpful to know how to look at the Java byte code in general
and use it whenever you want!

Steps to follow
(to view java bytecode)

• Build (or Run) your project

• Then choose from IntelliJ menu: View -> Show ByteCode

• Or use javap (the Java Class Disassembler)

getCounterV1()
0: aload_0
1: getfield #2 // Field counter:I
4: ireturn

3 lines of bytecode…

getCounterV2()

0: aload_0
1: dup
2: astore_1
3: monitorenter
4: aload_0
5: getfield #2 // Field counter:I
8: aload_1
9: monitorexit
10: ireturn
11: astore_2
12: aload_1
13: monitorexit
14: aload_2
15: athrow

14 lines of bytecode…

Using javap

Atomic Variables in Java

• The AtomicReference class provides an object reference variable which
can be read and written atomically

• By atomic is meant that multiple threads attempting to change the same
AtomicReference will not end up in an inconsistent state

• You can get the reference stored in an AtomicReference using the get()
method

• You can set the reference stored in an AtomicReference instance using its
set() method

• The compareAndSet() method compares the reference stored in the
AtomicReference instance with an expected reference, and if they two
references are the same then a new reference is set on the variable

AtomicInteger

• The AtomicInteger class provides you with a int variable which can be
read and written atomically, and which also contains advanced atomic
operations like compareAndSet()

• The AtomicInteger class is located in the java.util.concurrent.atomic
package

AtomicInteger basics

• Creating an AtomicInteger:

• AtomicInteger atomicInteger = new AtomicInteger();

• Getting the AtomicInteger Value:

• int theValue = atomicInteger.get();

• Setting the AtomicInteger Value:

• atomicInteger.set(234);

• Compare and Set the AtomicInteger Value:

• int expectedValue = 123;

int newValue = 234;

atomicInteger.compareAndSet(expectedValue, newValue);

Some more interesting methods of
AtomicInteger

• addAndGet()

• getAndAdd()

• getAndIncrement()

• incrementAndGet()

What do you think these methods do?

Concurrency Models

• A concurrency model specifies how threads in the system collaborate to
complete the jobs they are given

• Different concurrency models split the jobs in different ways, and the
threads may communicate and collaborate in different ways

• Because concurrency models are similar to distributed system
architectures, they can often borrow ideas from each other

Concurrency model: Parallel Workers

• In the parallel worker concurrency model a delegator distributes the
incoming jobs to different workers

• Each worker completes the full job

• The workers work in parallel, running in different threads, and possibly
on different CPUs

• If the parallel worker model was implemented in a car factory, each car
would be produced by one worker. The worker would get the
specification of the car to build, and would build everything from start to
end.

• The parallel worker concurrency model is the most commonly used
concurrency model in Java applications

Parallel Workers

Parallel Workers’ disadvantages

Notes on parallel workers

• A worker that does not keep state internally (but re-reads it every time it
is needed) is called stateless

• In the parallel worker model, the job execution order is nondeterministic:
There is no way to guarantee which jobs are executed first or last

• The nondeterministic nature of the parallel worker model makes it hard
to reason about the state of the system at any given point in time

Concurrency model: Assembly Line

• The workers are organized like workers at an assembly line in a factory

• Each worker only performs a part of the full job

• When that part is finished the worker forwards the job to the next
worker

• Each worker is running in its own thread, and shares no state with other
workers

• This is also sometimes referred to as a shared nothing concurrency
model

• Systems using the assembly line concurrency model are usually
designed to use non-blocking IO

Assembly Line

Assembly Line variations

Channel Model variation

Assembly Line Advantages

• No Shared State

• Stateful Workers

• Better Hardware Conformity

• Job Ordering is Possible

Concurrency Model: Functional
Parallelism

• The basic idea of functional parallelism is that you implement your
program using function calls

• Functions can be seen as "agents" or "actors" that send messages to each
other, just like in the assembly line concurrency model

• When one function calls another, that is similar to sending a message

• All parameters passed to the function are copied, so no entity outside the
receiving function can manipulate the data

• This copying is essential to avoiding race conditions on the shared data

• This makes the function execution similar to an atomic operation

• Each function call can be executed independently of any other function
call

Recommended Tools

Recommended Book
(Advanced concurrency only)

