
Node.js
Blocking & NonBlocking

Introduction

Synchronous code

• This means that each statement is processed one after the other
• So each line waits for the result of the previous one
• Thus each line blocks the execution of the rest of the code

Asynchronous code

• Asynchronous code allow us to transfer heavy work in the background,
in order for the rest of the code to continue being executed

• Asynchronous code - > non-blocking code

• Lets change file reading code to asynchronous code…

from Synchronous to Asynchronous

• fs.readFile() method syntax:

• fs.readFile(filename, encoding, callback_function)

• filename: holds the name/path of the file to read

• encoding:holds the encoding of file (default :‘utf8’)

• callback_function: a function that is called after reading of file. It takes two
parameters:
➢err: If any error occurs
➢data: Contents of the file.

callback_function

• callbacks for some are considered the foundation of Node.js

• In Node.js we are able to use callback functions in order to implement
asynchronous behavior

• A callback -> is a function called at the completion of a given task
➢any blocking is prevented that way

➢ it allows other code to run in the meantime

callback_function

• The general idea is that the callback is the last parameter (in a method
or function)

• it gets called after the function is done with all operations.

• Usually the first parameter of the callback is ->error value.

• If a callback has no error then error param is null and the rest is/are
the return value(s).

Asynchronous code

Asynchronous code

• Question: When we execute the code above, which log do we
expect to see first?

Asynchronous code

So the file is being read in the background and then, immediately execution is moved on to
the next statement, printing to the console

Once the data is read-> callback function will get called to be executed in the main single
thread

Asynchronous code error example

Why is this important…

• Node.js is single threaded ->each application runs in a single thread

• All user accessing the application they access the same thread

//not like php for example that each user has a different thread

• When a users blocks a thread with synchronous code all users need to wait for the
code to be executed

• Imagine thousands of users….

Why is this important…

• So Node.js to avoid that, we use asynchronous, non-blocking code.

• In asynchronous code -> we upload heavy work to be worked on in the background

• once that work is done -> a callback function is called to handle the result.

• During all that time…. rest of the code can still be executed (thus no blocking by a
heavy task)

Why is this important…

• Let's consider a case where each request to a web server takes 50ms
to complete and 45ms of that 50ms is database I/O that can be done
asynchronously.

• Choosing non-blocking asynchronous operations frees up that 45ms
per request to handle other requests. This is a significant difference in
capacity just by choosing to use non-blocking methods instead of
blocking methods.

• SOURCE: https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/

Why is this important…

• The NodeJs event loop is a single thread

• But when this single thread encounters blocking i/o => it will delegate
the task to a separate pool of worker threads.

Embedded async code

Embedded async code

Lets see how we can perform the following:

• Create directory with asyncronous function :

To be continued…

https://nodejs.org/api/fs.html

	Διαφάνεια 1: Node.js Blocking & NonBlocking Introduction
	Διαφάνεια 2: Synchronous code
	Διαφάνεια 3: Asynchronous code
	Διαφάνεια 4: from Synchronous to Asynchronous
	Διαφάνεια 5: callback_function
	Διαφάνεια 6: callback_function
	Διαφάνεια 7: Asynchronous code
	Διαφάνεια 8: Asynchronous code
	Διαφάνεια 9: Asynchronous code
	Διαφάνεια 10: Asynchronous code error example
	Διαφάνεια 11: Why is this important…
	Διαφάνεια 12: Why is this important…
	Διαφάνεια 13: Why is this important…
	Διαφάνεια 14: Why is this important…
	Διαφάνεια 15: Embedded async code
	Διαφάνεια 16: Embedded async code
	Διαφάνεια 17
	Διαφάνεια 18

