
Switch Statement

• switch statement -> is used to perform different actions based on
different conditions

Switch syntax

switch(expression) {

case x:

// code block

break;

case y:

// code block

break;

default:

// code block

}

What the above means

• switch(expression) -> is evaluated once

• value of the expression ->is compared with the values of each case

➢strict comparison (===)->same type and value

• If there is a match -> associated block of code is executed

• If there is no match -> default code block is executed

What the above means

• When JS reaches the break keyword -> it breaks out of the switch
block

• SOS: If you omit the break statement, the next case will be executed
even if the evaluation does not match the case.

Lets see an example!

Keep in mind:

• If multiple cases matches a case value ->first case is selected

• If no matching cases are found -> default label is executed

• If no default label is found-> code runs beyond switch

Loops

Loops

• A loop is -> block of code that allows you to repeat a section of code
a certain number of times

Pros

• repeat lines of code without retyping them

• save time/trouble/errors of repeatedly typing the same lines of code

• change one or more variable values in each time loop

• set the number of iterations dynamically

Conditional Loops

• Conditional loops are often defined by where the condition is written-> in
reference to the executable block of code:

➢Pre-test loops: condition located before the executable block

➢As a result, there is a possibility that a pre-test loop may never execute. (ie
while loop)

➢Post-test loops: condition located after the executable block

➢A pre-test loop’s executable block will always execute at least once (ie do
… while loop)

For Loop
• 3 parts : initialization, condition, iteration

• loop initialization -> we initialize counter to starting value

➢ initialization statement is executed before the loop begins

• test statement -> tests if the given condition is true or not

➢ If condition is true then code given inside the loop will be executed otherwise loop will come out

• iteration statement -> where we increase /decrease the counter

10

For loop

for (varname=1;varname<11;varname+=1)

initialization As long as
varname value
is less than 11
run

Determines the rate at
which the variable is
changed and whether it
gets larger or smaller

For loop Example

More about for loop

Iteration can begin anywhere -> it can end anywhere

for (j = −10; j <= 10; j = j + 1) { . . . }
for (j = 2.5; j <= 6; j = j + 1) { . . . }

• test statement -> any expression resulting in a Boolean value

• It must involve the iteration variable

• Iteration statement allows us to specify how big or small the change in the iteration
variable

• The amount of change is known as step or step size:
i=i+1 i+=2 i+=10

Beware of Infinite Loops

• It is possible to create infinite loops that never terminate!

• If the test statement is based on values that don’t change in the loop,
the loop will never end !

Nested Loops

• Nested Loop ->Loop in a Loop

• Programming languages allow loops to nest

• NOTE: Inner and outer loops must use different iteration variables or
else they will interfere with each other

What will we see with the code below?

example

for/in loop

• for/in statement -> loops through properties of an object (or array)

• block of code inside the loop will be executed once for each property

• Syntax:

for (var in object) {

code block to be executed

}

Lets see an example

Lets see an example

for/of Statement

• for/of statement -> loops through the values of an iterable object

for..of vs. for..in

• Both for..of and for..in statements iterate over lists

• the values iterated on are different though:

• for..in returns a list of keys on the object being iterated

• whereas for..of returns a list of values of the object being iterated

Examples

???

While loop

• Allows repeatable code until a given condition is met

• Pre-Test Loop (Loop may NEVER execute)

For vs while

• When the exact number of iterations is known you may use the ‘for’
loop

• When the number of iterations depend upon a condition being met
you may use the ‘while’ loop

do/while Loop

• Allows repeatable code while a given condition is true.

• Must have a way of terminating the structure from within the loop!

• Note that: it is Post-Test Loop (Loop always executes at least once)

Example

Arrays more…

Syntaxes for creating an empty array:

var arrname = new Array();
var arrname = [];

Note: There is no need to use new Array()! For simplicity,
readability and execution speed, use the [] syntax (put initial
elements in the brackets.)

join method

• join method of an Array -> returns a string elements of an array,
separated by the string supplied in the function’s argument

• Syntax

array.join(separator)

• If an separator is not specified, elements are separated with a comma

Array.sort

• Sorting data

• Putting data in a particular order, such as ascending or descending

• Array object in JavaScript has a built-in method sort()

• no arguments-> the method uses string comparisons to determine the
sorting order of the Array elements

• reverse() method reverses the elements in an array= sort an array in
descending order: first sort then reserve

Array.sort

• What will we see below?

Array.sort

• What will we see below?

Array.sort

• sort() function sorts values as strings -> However, if numbers are
sorted as strings, “31" is bigger than "100", because “3" is bigger than
"1".

• You can fix this by providing a compare function

Array.map()

• map() method -> creates a new array by performing a function on
each array element

• map() method -> only executes the function for array elements with
values

• map() method -> does not change the original array

Using Array.length

• The following code averages the values stored in an
array

Note that…

• When iterating over all the elements of an Array, use a for…in
statement to ensure that you manipulate only the existing elements of
the Array

• for…in statement skips any undefined elements in the array

Lets see some examples

• What will the result be below?

Lets see some examples: for with undefined

• In the array below we have an undefined element. What will the result
be?

Lets see some examples:

• How could we fix the above issue?

Lets see some examples:

• How could we fix the above issue?

forEach() Method

Arrays forEach() method -> calls a function once for each element in
an array

• forEach doesn’t return anything, (map creates another array)

• Note: the function is not executed for array elements without values.

What will console log print?

Lets see an example…

function() Required.
A function to run for each
array element.

currentValue Required.
The value of the current
element.

index Optional.
The index of the current
element.

arr Optional.
The array of the current
element.

array.forEach(function(currentValue, index, arr))

<script>
var sum = 0;
var numbers = [5, 10, 1, 3];
numbers.forEach(myFunction);

console.log(sum);//19

function myFunction(item) {
sum += item;

}
</script>

Source: https://www.w3schools.com/

Array.filter()

• array filter() method -> creates a new array with array elements that
pass a condition

DOM

What is the DOM

The DOM defines a standard for accessing documents:

➢"The W3C Document Object Model (DOM) is a platform and language-
neutral interface that allows programs and scripts to dynamically access and
update the content, structure, and style of a document."

• The Document Object Model (DOM) is a programming interface for web
documents.

• The DOM represents the document as nodes and objects; that way, programming
languages can interact with the page.

49

HTML DOM

• When a web page is loaded -> the browser creates a Document
Object Model of the page, DOM for short

• HTML DOM -> allows JavaScript to access and change all elements
of an HTML document

• So, DOM gives access to all the elements on a web page -> Using
JavaScript we are able to create, modify, remove elements in the page
dynamically.

50

Introduction

• The HTML DOM model is constructed as
a tree of Objects:

• Element Node – contains an HTML tag

• Text Node – contains text

➢Text Nodes are contained in
Element Nodes

Note that:

The Document Object Model (DOM) is not part of the JavaScript programming language; it is a Web API used to construct

webpages.

The Document Object Model was designed to be independent of any specific programming language.

Even while most web developers will only utilize the DOM via JavaScript, DOM implementations can be created for any

language.

Nodes Organise the Page

<html>
<head>

<title>Hello DOM</title>
</head>
<body>

<p>This is text on my page</p>
</body>

</html>

html

head

title

Text:
“Hello DOM “

body

p

Text:
“This is text on

my page”

52

DOM Nodes and Trees

• nodes in a document -> make up the page’s DOM tree
➢This tree describes the relationships among elements

• nodes are related to each other -> through child-parent relationships

• a node -> may have multiple children

• a node -> has only one parent

• nodes with the same parent node-> named siblings

• root node -> has no parent

53

childNodes vs children

.children -> is a property of an Element
Elements have .children-> these children are all of type Element

.childNodes -> is a property of Node(text is also a node)-> contains any node

Tip: if you do not want to loop over Text or Comment nodes use .children

childNodes vs children

• childNodes:

• returns a Nodelist of child nodes.

• Nodelist items are objects ->they can be accessed using index numbers

• The first childNode starts at index 0.

• children

• returns the child elements of an element as objects.

childNodes vs children

• children work upon elements

• childNodes on nodes including non-element nodes
like text and comment nodes.

• The text inside elements forms text nodes, labelled
as #text.

• A text node contains only a string ->is always a leaf
of the tree.

• Spaces and newlines are totally valid characters,
like letters and digits. They form text nodes and
become a part of the DOM.

•node.childNodes
•node.firstChild
•node.lastChild
•node.parentNode
•node.nextSibling
•node.previousSibling

DOM allows Js to create dynamic HTML

JavaScript can

➢Change/ remove /add HTML elements in the page

➢Change/ remove /add HTML attributes in the page

➢change all CSS styles in the page

➢react to all existing HTML events in a webpage

57

terminology…

• HTML DOM methods are -> actions you can perform on HTML
Elements (ie. add or delete)

• HTML DOM properties are -> values of HTML Elements that you
can set or change (like changing content of an HTML element)

58

terminology…

Example:

• document.getElementById("demo").innerHTML = “Hi there!";

• getElementById-> method

• innerHTML -> property (used for getting/replacing content of
HTML elements)

59

Finding HTML Elements

• getElementById() -> allows you to find and work with elements based
on their individual id

• getElementsByTagName() -> allows you to find and work with groups
of elements based on their tag name(This method returns an array)

• document.getElementsByClassName(name)-> allows you to find and
work with elements based on their class name

60

getElementsByTagName()

Example:

• var c= document.getElementsByTagName("button");

• var c = c[0].childNodes;

• Note: it is an array, so if we want first button occurrence: index 0

61

getElementById

Methods: Changing /Adding /Deleting
Elements

element.setAttribute(attribute, value) Change the attribute value of element

document.createElement(element) Create an HTML element

document.removeChild(element) Remove an HTML element

document.appendChild(element) Add an HTML element

document.replaceChild(new, old) Replace an HTML element

document.write(text) Write into the HTML output stream

Attribute Nodes

• Lets look at:

• getAttribute()

• setAttribute()

65

get/set Attribute Method

• getAttribute() method -> returns value of the attribute with the
specified name of an element

• setAttribute() method -> adds specified attribute to an element &
gives it the specified value

➢In case the specified attribute already exists -> only the value is set/changed.

• Syntax:

➢element.setAttribute(attributename, attributevalue)

➢ie. attribs.setAttribute("class","democlass1");

• Note that: the removeAttribute() method removes an attribute from an
element.

66

Task
• we have a some p elements in our html and a button.

• On click of the button and -> get all p elements and for each one of them, we get
the class attribute.

• Then we must store the class attribute in an array.

• In case a p element does not have a class attribute, set the class attribute to
“democlass1

• Present the above result with “,” in another p element

67

Question

• How can we use DOM methods to add a p element with some text in
our webpage?

Question

There are five steps:

1. Create new Element
2. Create new Text
3. Append the new Text to the new Element
4. Find an existing Element
5. Append the new Element to the existing Element

1. Create New Element Node

create a new <p> element so that we can attach some
text to it

Code:
var newNode = document.createElement("p");

2. Create a Text Node

Next, create a text node:

Code:
var myText = "This is new text to be added to the page

dynamically.";
var newText = document.createTextNode(myText);

3. Attach the New Text Node to the New
Element

To put the text into the page, we have to attach the text
node to the new HTML element:

newNode.appendChild(newText);

4.Find an Existing Element

The new element with our text node attached to it is still
floating around in a Javascript world

• So we must now find an existing element so that we
can attach it!:

<p id="thisLocation">New text will appear below
here</p>

var docElement= document.getElementById(location);

5. Append the New Element to the Existing
Element

To insert our text into the page, we now have to append
the new element to the existing element

docElement.appendChild(newNode);

To be continued…

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

String to Number: https://dev.to/sanchithasr/7-ways-to-convert-a-string-to-number-in-javascript-4l

https://careerkarma.com/blog/javascript-queryselector-vs-getelementbyid/

https://dev.to/sanchithasr/7-ways-to-convert-a-string-to-number-in-javascript-4l

