

POST

e Here we need want to send data from the client to the server

a new landmark
nere shall remalin the same,

fthe only thing that changes is the http method

app.post(’/fapi/vl/landmarks"’, (req,res)=>{

POST

* Here we need want to send/submit data from the client to the server
* These data we would like to be available at the request
* We want to send data in a payload also known as request body

* This request body we want to be referenced with the request object

POST

e Express does not put body data on the request
* But we want to extract incoming data of a POST request.

* In order to have that data available -> we use something called
middleware.

a new landmark

here shall remain the same,

'/the only thing that changes is the http method

app.post(' /api/vil/landmarks’, (reqg,res)=>{

Before proceed to post, lets see what
Middleware is....

Middleware

* With express in order to have that data in the request body available
we need to use something called middleware

* Middleware functions are functions that have access to
» the request object (req)
»the response object (res)
»the next middleware function

in the application’s request-response cycle

Middleware

* Middleware functions can
» Execute any code.
» Make changes to the request and the response objects.
»End the request-response cycle.
» Call the next middleware in the stack.

If the current middleware function does not end the request-response
cycle, it must call next() to pass control to the next middleware function.
Otherwise, the request will be left hanging.

Middleware

* Middleware-> is a function executed between receiving the request

and sending the response

* A step that the request goes through -> while it's being processed.
* request-response cycle: starts with incoming request-> execute all

middlewares step by step-> send the response

Waleware Stock

M.l AMQ WA |-

le'l & \e wart

ngx () -

ngxt ()~

express.json()

e express.json()-> is a built-in middleware function in Express

'/ create app variable -» assigned result of calling express f
// add a wide number of methods to app variable
Cconst app= EKPFESS{};

f/creating middleware express.json() :it is called middleware becaus

f/it is in the middle of the request and the response

app.use(express.json());

express.json()

e express.json()-> is a built-in middleware method in Express

* it parses incoming requests with JSON payloads and is based on body-
parser.
* payload in APl -> is the actual data pack that is sent
* |t can be sent/ received in various formats JSON included

App.use

* app.use function

* is used to mount the specified middleware function(s) at the path which is being
specified

e |t allows us to create our own middleware

* app.use(path, function)

e path: It is the path for which the middleware function is being called(we
can leave it blank...)

.]ﬁunction: It is @ middleware function or a series/array of middleware
unctions.

L ets create our own middleware

* With app.use we are creating our own middleware

* Lets see what we get to the console when we run a get request

app.use((reqg,res,next)=>{
console.log("hi my friend, I am your middleware!™)
—— next(); _

13 F

3" party middleware

* We can also install and use 3™ party middlewares.

* le. we may want to use morgan -> a Node.js middleware to log HTTP
requests and errors

34 party middleware
Steps:

* Npm I morgan
e const morgan = require('morgan’);

* app.use(morgan('dev'));

More...

* More about middleware you may check below...

* https://expressjs.com/en/guide/using-middleware.html

POST

* Here in our example, in order to add something in our json file we are

going to use middleware
* express.json()-> parses incoming requests with body data

assigned result of calling express function

create app variable -

'/ add a wide number of methods to app variable

const app= EKPPESS{};

‘creating middleware express.json() :it is called middleware because

ffit is in the middle of the request and the response

app.use(express.json());

POST

* Our code to check the request we are sending after adding the
middleware

andmark

here shall remalin the same,

//the only thing that changes is the http method

app.pnst{:fapifwiflaﬂdmark;', (req,res)=>{
console.log(req.body)
res.status(288).send(CODOL");

POST w http://localhost:8080/apifviflandmarks m

Params Auth Headers (8) Body e Pre-req. Tests Settings Cookies

raw JSOM

Beautify

) T

2 "ig": 18,

x ’ 3 "type":"museum",
S e C‘ lo 4 "name": - "Benaki - Museum",

g "description™:"The Benaki Museum ranks among the major institutions that have enriched
the material assets of the Greek state. It houses 38.888 item illustrating the
character of the Greek world through a spectacular historical panorama covering
several periods ranging from-the Prehistoric, Ancient. andRoman periods to- the
Byzantine and the contemporary Hellenic period.”,

6 "ratingsAverage”: 4.9,

7 "ratingsQuantity": 97,

] "imageCover": "benaki_cover.jpg"”,

] “images™: [""]

0 |

POST

* Next we will need to store the data we have sent in our json file
* (In the future we will see how we can do this with databases!)
* We have already read the json file and-> turn it to js object

;

[

E

§

3
<} . -
% [dirname]
e . var landmarks

fconvert json to javascript object

landmarks = JSGH.péPSE{lEHdePk;};

BN

POST

We push the request in the json object

Convert landmarks from an object to a string with JSON.stringify
Write it to json file

Return the result > newly created object

app.post(' fapi/v1/landmarks
console. log(req body} ;

rin lT

fs.writeFile{‘i{__diPname 1e 1a+ fdata/ lanimatP .json” ,JS0ON. strlnglfytlandmark },err=
res.status(2e1) {

status:"success”,
data: {
landmarks

To be continued...

	Διαφάνεια 1: Express.js CRUD Post
	Διαφάνεια 2
	Διαφάνεια 3: POST
	Διαφάνεια 4: POST
	Διαφάνεια 5: POST
	Διαφάνεια 6
	Διαφάνεια 7: Middleware
	Διαφάνεια 8: Middleware
	Διαφάνεια 9: Middleware
	Διαφάνεια 10: express.json()
	Διαφάνεια 11: express.json()
	Διαφάνεια 12: App.use
	Διαφάνεια 13: Lets create our own middleware
	Διαφάνεια 14: 3rd party middleware
	Διαφάνεια 15: 3rd party middleware
	Διαφάνεια 16: More…
	Διαφάνεια 17: POST
	Διαφάνεια 18: POST
	Διαφάνεια 19: POST
	Διαφάνεια 20: POST
	Διαφάνεια 21: POST
	Διαφάνεια 22

