Closures

Y UNIVERSITY
B OF PIRAEUS

MDN DEFINITION

* A closure gives you access to an outer function's scope from an inner
function.

* In JavaScript, closures are created every time a function is created, at
function creation time.

Y UNIVERSITY
B OF PIRAEUS

* Eotw OTL £Youpe aUTO TO AP AdELY QL.

e —gpoupe otL €va function €xeL mpooBaon otic petaBANTEC TOU
opilovtal og outer function. Eivat Aoyiko va BAEMOUE AUTO TO
QTOTEAECOL

person(name) {

hiFriends(){
console.log(hi, I am ${name});

hi, I am aristes

iamHappy () { aristea is happy

console.log(" name} is happy’); . .
} hi, I am maria

hiFriends(); maria is happy

iamHappy();
}
person("aristea")
person(“maria")

person(name) {

hiFriends(){
° AV T(bpa eéhw Va ((TpéXOUV)) OL } console.log(hi, I am ${name});
. . ’ ’ iamHappy (){
inner functions kamowa aAAn | R S 0 i
OTLYULN OTOV KWOLKA LOU... -~

iamHappy
}

* 2TO TIALPOLKATW TTOPASELY AL
d)a':ve-[al' rl Gn uac('a va aristea= person("aristea™)
Closu res. maria = person("maria™)

* Ta closures «GUYKPATOUV -
Bupouvtaw to outer function
scope aKOMO KoL LETA TO

aristea.hiFriends();

creation time tov. naria. ianHappy();

hi, I am aristes

maria 1s happy

Y UNIVERSITY
B OF PIRAEUS

A closure is created when a function is defined within another function, allowing the
inner function to access variables from the outer (enclosing) function's scope. Closures
have the ability to "remember" the environment in which they were created, even after
the outer function has finished executing.

Here's a concise explanation of closures:

Definition: A closure is the combination of a function and the lexical(place where
code is writen) environment within which that function was declared.

Key Points:
* C(Closures allow inner functions to access variables from outer functions even after

the outer function has completed execution.

* The inner function "closes over" the variables it uses, preserving their values.

Y UNIVERSITY
B OF PIRAEUS

Factory functions

* A factory function in JavaScript is a function that returns an object.

* It is called a "factory" because it's designed to produce instances of

objects.
 Just like a car factory would do

Y UNIVERSITY
B OF PIRAEUS

createCar(brand, model) {
return {

brand: brand,
model: model,
start:

console.log("Engine started for " + .brand + " " + .model);
stop:

console.log("Engine stopped for " + .brand + " " + .model);

)

}s

createCar("Toyota", "Camry");
createCar("Honda", "Civic");

start();
start();

stop();
stop();

Y UNIVERSITY
B OF PIRAEUS

Factory functions

* Simple!

* Easy to read

* No class constructor for example!
* No duplicate

* Data privacy

makeAdder(x) {

add5 = makeAdder(5);
add10 = makeAdder(19);

console.log(add5(2))

(2)
console.log(add10(2)

));

makeAdder : takes a parameter x.
Inside makeAdder, inner function is defined that takes a parametery.

inner function is returned from outer function.

At this point, the inner function has access to the x parameter from the
outer function's scope, even though the outer function has already
finished executing. This behavior is known as a closure.

When you create new functions using makeAdder and assign them to
add5 and add10, they "remember" the value of x that was passed
during their creation.

So:
add5 effectively becomes a function that adds 5 to its argument.

add10 becomes a function that adds 10 to its argument.

When you later call add5(2), it's equivalent to makeAdder(5)(2), and it
returns 5 + 2, which is 7. Similarly, add10(2) is equivalent to
makeAdder(10)(2), and it returns 10 + 2, which is 12.

Y UNIVERSITY
B OF PIRAEUS

SOURCE

* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

	Διαφάνεια 1: Closures
	Διαφάνεια 2: MDN DEFINITION
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6: Factory functions
	Διαφάνεια 7
	Διαφάνεια 8: Factory functions
	Διαφάνεια 9
	Διαφάνεια 10: SOURCE

